JP2003322435A - Expansion valve - Google Patents

Expansion valve

Info

Publication number
JP2003322435A
JP2003322435A JP2002128532A JP2002128532A JP2003322435A JP 2003322435 A JP2003322435 A JP 2003322435A JP 2002128532 A JP2002128532 A JP 2002128532A JP 2002128532 A JP2002128532 A JP 2002128532A JP 2003322435 A JP2003322435 A JP 2003322435A
Authority
JP
Japan
Prior art keywords
pressure
low
pressure chamber
refrigerant
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002128532A
Other languages
Japanese (ja)
Other versions
JP4081295B2 (en
Inventor
Kazuhiko Watanabe
和彦 渡辺
Toshiharu Katayama
俊治 片山
Tomonori Shimura
智紀 志村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Original Assignee
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp filed Critical Fujikoki Corp
Priority to JP2002128532A priority Critical patent/JP4081295B2/en
Publication of JP2003322435A publication Critical patent/JP2003322435A/en
Application granted granted Critical
Publication of JP4081295B2 publication Critical patent/JP4081295B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/068Expansion valves combined with a sensor
    • F25B2341/0683Expansion valves combined with a sensor the sensor is disposed in the suction line and influenced by the temperature or the pressure of the suction gas

Abstract

<P>PROBLEM TO BE SOLVED: To restrain a refrigerant flow rate, and to reduce a refrigerant flowing sound by delaying a pressure fluctuation in a pressure chamber in a power element on the basis of a pressure drop in a low pressure refrigerant passage of an expansion valve at compressor starting time in a refrigerating cycle. <P>SOLUTION: A collar member 40 is pressed in a temperature sensing bar 36f for penetrating through an expansion valve body 30. The collar member 40 is integrally formed of a large diameter disk part 40a, and a small diameter cylinder part 40b rising from one surface, and has a through hole 40c in the center. The temperature sensing bar 36f is inserted into the through hole 40c. The disk part 40a is inserted into a lower pressure chamber 36c by abutting to a step part 30a of the valve body 30 formed between a lower pressure chamber 36c and a pressure equalizing hole 36e, and the cylinder part 40b is inserted into the pressure equalizing hole 36e. A small hole 30b for communicating the lower pressure chamber 36c with the low pressure refrigerant passage 34 is formed in parallel to the temperature sensing bar 36f in the step part 30a of the valve body 30. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は空気調和装置、冷凍
装置等の冷凍サイクルにおいて、エバポレータに供給さ
れる冷媒の流量制御に用いられる膨張弁に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an expansion valve used for controlling a flow rate of a refrigerant supplied to an evaporator in a refrigerating cycle such as an air conditioner or a refrigerating device.

【0002】[0002]

【従来の技術】この種の膨張弁は、自動車等の空気調和
装置の冷凍サイクルにおいて用いられており、図2は、
従来幅広く用いられている膨張弁の一例の縦断面図を冷
凍サイクルの概略と共に示している。図において、膨張
弁10は、角柱状のアルミ製の弁本体30には、冷凍サ
イクルの冷媒管路11においてコンデンサ5の冷媒出口
からレシーバ6を介してエバポレータ8の冷媒入口へと
向かう部分に介在される高圧の液相冷媒が通過する高圧
側通路となる第1の通路32及び断熱膨張された気液二
相冷媒が流入する低圧側通路となる第3の通路32’
と、冷媒管路11においてエバポレータ8の冷媒出口か
らコンプレッサ4の冷媒入口へと向かう部分に介在され
る低圧冷媒通路となる第2の通路34とが隔壁38fに
より上下に相互に離間して弁本体30の内部に形成され
ている。
2. Description of the Related Art An expansion valve of this type is used in a refrigeration cycle of an air conditioner such as an automobile.
The longitudinal cross-sectional view of an example of the expansion valve widely used conventionally is shown with the outline of the refrigeration cycle. In the figure, an expansion valve 10 is provided in a prism-shaped aluminum valve body 30 at a portion of a refrigerant line 11 of a refrigeration cycle that extends from a refrigerant outlet of a condenser 5 to a refrigerant inlet of an evaporator 8 via a receiver 6. The first passage 32 serving as a high-pressure side passage through which the high-pressure liquid-phase refrigerant passes and the third passage 32 ′ serving as a low-pressure side passage through which the adiabatic gas-liquid two-phase refrigerant that has been adiabatically expanded flows.
And a second passage 34, which is a low-pressure refrigerant passage interposed in a portion of the refrigerant pipe 11 extending from the refrigerant outlet of the evaporator 8 to the refrigerant inlet of the compressor 4, are separated from each other vertically by a partition wall 38f, and the valve main body is separated. It is formed inside 30.

【0003】第1の通路32と第3の通路32’との間
にはレシーバ6の冷媒出口から供給された液体冷媒を断
熱膨張させるためのオリフィス32aが形成されてい
る。オリフィス32aの入口側つまり第1の通路の上流
側には弁座が形成されていて、弁座には上流側から弁部
材32cにより支持された球状の弁体32bが配置さ
れ、弁体32bと弁部材32cとは溶接により固定され
ている。弁部材32cは、弁体と弁本体の下部に設けら
れた圧縮コイルばねの如き付勢手段32dとの間に配置
され付勢手段32dの付勢力を弁体32bに伝え、弁体
32bは弁座に接近する方向に付勢されている。
An orifice 32a for adiabatically expanding the liquid refrigerant supplied from the refrigerant outlet of the receiver 6 is formed between the first passage 32 and the third passage 32 '. A valve seat is formed on the inlet side of the orifice 32a, that is, on the upstream side of the first passage, and a spherical valve body 32b supported by a valve member 32c from the upstream side is arranged on the valve seat, and a valve body 32b is provided. It is fixed to the valve member 32c by welding. The valve member 32c is arranged between the valve body and an urging means 32d such as a compression coil spring provided in the lower portion of the valve body, and transmits the urging force of the urging means 32d to the valve body 32b. It is biased toward the seat.

【0004】レシーバ6からの液冷媒が導入される第1
の通路32は液冷媒の通路となり、入口ポート321
と、この入口ポート321に連続する弁室35を有す
る。弁室35は、オリフィス32aと同軸に形成される
有底の室であり、プラグ39によって密閉されており、
第1の通路32はオリフィス32aを介して第3の通路
32’に連通し、出口ポート322から冷媒管路11に
よりエバポレータ8の冷媒入口に接続されている。
First, the liquid refrigerant from the receiver 6 is introduced
32 becomes a passage for liquid refrigerant, and the inlet port 321
And a valve chamber 35 continuous with the inlet port 321. The valve chamber 35 is a bottomed chamber formed coaxially with the orifice 32a, and is closed by a plug 39,
The first passage 32 communicates with the third passage 32 ′ via the orifice 32 a, and is connected from the outlet port 322 to the refrigerant inlet of the evaporator 8 by the refrigerant pipe 11.

【0005】さらに、弁本体30にはエバポレータ8の
出口温度に応じて弁体32bに対して駆動力を与えてオ
リフィス32aの開閉を行うために、小径の孔37とこ
の孔37より径が大径の孔38が第2の通路34を貫通
してオリフィス32aと同軸に形成され、弁本体30の
外部の上端には感温駆動部となるパワーエレメント部3
6がシール材36mを介して固定されるねじ孔361が
形成されている。
Further, in order to open and close the orifice 32a by giving a driving force to the valve body 32b in the valve body 30 according to the outlet temperature of the evaporator 8, a small diameter hole 37 and a diameter larger than this hole 37 are provided. A hole 38 having a diameter is formed so as to penetrate the second passage 34 and coaxially with the orifice 32a, and the power element portion 3 serving as a temperature-sensitive driving portion is provided at an upper end outside the valve body 30.
6 is formed with a screw hole 361 for fixing 6 through a sealing material 36m.

【0006】パワーエレメント部36は、可撓性のある
金属製薄板であるステンレス製のダイアフラム36a
と、このダイアフラム36aを挟んで互いに溶接により
密着して設けられ、上記ダイアフラムを一壁面として、
その上下に区画された二つの圧力室を形成する第1の圧
力室である上部圧力室36b及び第2の圧力室である下
部圧力室6cをそれぞれ構成する気密壁となるステンレ
ス製の上カバー36d及び下カバー36hと、上部圧力
室36bにダイアフラム駆動媒体となる所定冷媒を封入
するためのめくら栓36iとを備え、下部圧力室36c
は、オリフィス32aの中心線に対して同心的に形成さ
れた均圧孔36eを介して第2の通路34に連通されて
いる。第2の通路34には、エバポレータ8からの冷媒
蒸気が流れ、通路34は気相冷媒の通路となり、その気
相冷媒の圧力が均圧孔36eを介して下部圧力室36c
に負荷されている。また、下カバー36hには、筒状の
取付座362が形成され、取付座362がねじ孔361
に螺着により取付けられ、弁本体30に固定されてい
る。
The power element section 36 is a diaphragm 36a made of stainless steel, which is a flexible thin metal plate.
And the diaphragm 36a is sandwiched between them by welding, and the diaphragm is used as one wall surface.
An upper cover 36d made of stainless steel and serving as an airtight wall which constitutes an upper pressure chamber 36b which is a first pressure chamber and two lower pressure chambers 6c which are two pressure chambers which are divided into upper and lower portions. And a lower cover 36h, a blind plug 36i for enclosing a predetermined refrigerant serving as a diaphragm driving medium in the upper pressure chamber 36b, and the lower pressure chamber 36c.
Are communicated with the second passage 34 via a pressure equalizing hole 36e formed concentrically with respect to the center line of the orifice 32a. The refrigerant vapor from the evaporator 8 flows through the second passage 34, the passage 34 becomes a passage for the vapor-phase refrigerant, and the pressure of the vapor-phase refrigerant is reduced through the pressure equalizing hole 36e to the lower pressure chamber 36c.
Is loaded on. In addition, a cylindrical mounting seat 362 is formed on the lower cover 36h, and the mounting seat 362 has a screw hole 361.
It is attached to the valve body 30 by screwing and is fixed to the valve body 30.

【0007】さらに、下部圧力室36c内にダイアフラ
ム36aと当接し、かつ第2の通路34を貫通して隔壁
38f内の大径の孔38内に摺動可能に配置されて、エ
バポレータ8の冷媒出口温度を下部圧力室36cへ伝達
すると共に、上部圧力室36b及び下部圧力室36cの
圧力差に伴うダイアフラム36aの変位に応じて大径の
孔38内を摺動して駆動力を与えるアルミ製の太延の感
温棒36fと、小径の孔37内に摺動可能に配置されて
感温棒36fの変位に応じて弁体32bを付勢手段32
dの弾性力に抗して押圧する感温棒36fより細径のス
テンレス製の作動棒37fからなり、感温棒36fには
第1の通路32と、第2の通路34との気密性を確保す
るための密封部材、例えばOリング36gが備えられて
いる。感温棒36fの上端部36kは、ダイアフラム3
6aの下面に当接されて受け部となり、上記ダイアフラ
ムとの接触面積を得るため径方向に拡大されたストッパ
部36Lを有している。ダイアフラム36aの変位は感
温棒36fを介して弁体32bに伝達され、感温棒36
fの上端部36kは下部圧力室36c内を摺動すべくス
トッパ部36Lは下カバー36hに支持される。
Further, the refrigerant of the evaporator 8 is disposed in the lower pressure chamber 36c so as to be in contact with the diaphragm 36a and penetrate the second passage 34 to be slidable in the large-diameter hole 38 in the partition wall 38f. It is made of aluminum that transmits the outlet temperature to the lower pressure chamber 36c and slides in the large-diameter hole 38 according to the displacement of the diaphragm 36a due to the pressure difference between the upper pressure chamber 36b and the lower pressure chamber 36c to give a driving force. The thickened temperature sensitive rod 36f and the small-diameter hole 37 are slidably arranged in the hole 37 and bias the valve element 32b in accordance with the displacement of the temperature sensitive rod 36f.
The operating rod 37f is made of stainless steel and has a smaller diameter than the temperature sensitive rod 36f that presses against the elastic force of d. The temperature sensitive rod 36f is provided with airtightness between the first passage 32 and the second passage 34. A sealing member for securing, for example, an O-ring 36g is provided. The upper end portion 36k of the temperature sensitive rod 36f has the diaphragm 3
It has a stopper portion 36L which is in contact with the lower surface of 6a and serves as a receiving portion and which is enlarged in the radial direction in order to obtain a contact area with the diaphragm. The displacement of the diaphragm 36a is transmitted to the valve body 32b via the temperature sensitive rod 36f, and
The stopper portion 36L is supported by the lower cover 36h so that the upper end portion 36k of f slides in the lower pressure chamber 36c.

【0008】さらに、感温棒36fの下端部は大径の孔
38の底部にて作動棒37fの上端と当接し、作動棒3
7fの下端は弁体32bと当接しており、感温棒36f
と作動棒37fとで感温駆動棒が構成され、この感温駆
動棒がダイアフラム36aの変位を弁体32bに伝達す
る伝達部材となる。
Further, the lower end of the temperature sensitive rod 36f abuts the upper end of the operating rod 37f at the bottom of the large diameter hole 38, and the operating rod 3f
The lower end of 7f is in contact with the valve body 32b, and the temperature sensing rod 36f
The operating rod 37f constitutes a temperature-sensitive drive rod, and this temperature-sensitive drive rod serves as a transmission member for transmitting the displacement of the diaphragm 36a to the valve element 32b.

【0009】以上のパワーエレメント部36、感温棒3
6及び作動棒37fの構成において、作動棒37fが小
径の孔37内に挿入され、感温棒36fが大径の孔38
内に挿入された後に、下カバー36hの取付座362が
ねじ孔361に螺合されることによって固定されて、O
リング36mによって下カバー36hと弁本体30との
気密性が確保され、ねじ孔361は下カバー36h及び
ダイアフラム36aと共に、下部圧力室36cを構成す
る。
The power element portion 36 and the temperature sensitive rod 3 described above.
6 and the operating rod 37f, the operating rod 37f is inserted into the small-diameter hole 37, and the temperature sensitive rod 36f is inserted into the large-diameter hole 38.
After being inserted into the inside, the mounting seat 362 of the lower cover 36h is fixed by being screwed into the screw hole 361,
The ring 36m ensures airtightness between the lower cover 36h and the valve body 30, and the screw hole 361 constitutes the lower pressure chamber 36c together with the lower cover 36h and the diaphragm 36a.

【0010】したがって、均圧孔36eには、ダイアフ
ラム36aの下面から第1の通路32のオリフィス32
aまで延出した弁体駆動棒が同心的に配置されているこ
とになる。なお、作動棒37fの部分37eはオリフィ
ス32aの内径より細く形成されて、オリフィス32a
内を挿通し、冷媒はオリフィス32a内を通過する。
Therefore, in the pressure equalizing hole 36e, the orifice 32 of the first passage 32 is formed from the lower surface of the diaphragm 36a.
The valve body drive rod extending to a is arranged concentrically. The portion 37e of the operating rod 37f is formed thinner than the inner diameter of the orifice 32a.
The refrigerant passes through the inside of the orifice 32a.

【0011】以上の構成において、パワーエレメント部
36の上部圧力室36b中には所定冷媒がダイアフラム
駆動媒体(例えば、冷凍サイクルに使用される冷媒ガス
と同じ)として充填されていて、ダイアフラム駆動媒体
には第2の通路34や第2の通路34に連通されている
均圧孔36eに露出された感温棒36f及びダイアフラ
ム36aを介して第2の通路34を流れているエバポレ
ータ8の冷媒出口からの冷媒の圧力及び温度が伝達され
る。
In the above structure, the upper pressure chamber 36b of the power element section 36 is filled with a predetermined refrigerant as a diaphragm driving medium (for example, the same as the refrigerant gas used in the refrigeration cycle), and the diaphragm driving medium is filled with the refrigerant. Is from the refrigerant outlet of the evaporator 8 flowing through the second passage 34 through the temperature sensing rod 36f and the diaphragm 36a exposed to the second passage 34 and the pressure equalizing hole 36e communicating with the second passage 34. The pressure and temperature of the refrigerant are transmitted.

【0012】上部圧力室36b中のダイアフラム駆動媒
体は上記伝達された温度に対応してガス化し圧力が変化
し、ダイアフラム36aの上面に負荷する。ダイアフラ
ム36aは上記上面に負荷されたダイアフラム駆動ガス
の圧力とダイアフラム36aの下面に負荷された圧力と
の差により上下に変位する。ダイアフラム36aの中心
部の上下への変位は感温駆動棒を介して弁体32bに伝
達され弁体32bをオリフィス32aの弁座に対して接
近または離間させる。この結果、冷媒流量が制御される
こととなる。
The diaphragm driving medium in the upper pressure chamber 36b is gasified and the pressure thereof changes according to the transmitted temperature, and the medium is loaded on the upper surface of the diaphragm 36a. The diaphragm 36a is displaced vertically due to the difference between the pressure of the diaphragm driving gas loaded on the upper surface and the pressure loaded on the lower surface of the diaphragm 36a. The vertical displacement of the center of the diaphragm 36a is transmitted to the valve body 32b via the temperature-sensitive drive rod to move the valve body 32b toward or away from the valve seat of the orifice 32a. As a result, the refrigerant flow rate is controlled.

【0013】即ち、エバポレータ8の出口側と接続され
た第2の通路34内に感温棒36fが配せれており、エ
バポレータから送り出される低圧の気相冷媒の温度を上
部圧力室36bに伝達するため、その圧力の温度に応じ
て上部圧力室36bの圧力が変化し、エバポレータ8の
出口温度が高いため、つまりエバポレータの熱負荷が増
加すると、上部圧力室36bの圧力が高くなり、それに
応じて感温棒36fつまり感温駆動棒が下方へ駆動され
て弁体32bを下げるため、オリフィス32aの開度が
大きくなる。これによりエバポレータ8への冷媒の供給
量が多くなり、エバポレータ8の温度を低下させる。逆
に、エバポレータ8から送り出される冷媒の温度が低下
する。つまりエバポレータの熱負荷が減少すると、弁体
32bが上記と逆方向に駆動され、オリフィス32aの
開度が小さくなり、エバポレータへの冷媒の供給量が少
なくなり、エバポレータ8の温度を上昇させるのであ
る。
That is, the temperature sensitive rod 36f is arranged in the second passage 34 connected to the outlet side of the evaporator 8, and the temperature of the low-pressure gas-phase refrigerant sent from the evaporator is transmitted to the upper pressure chamber 36b. Therefore, since the pressure of the upper pressure chamber 36b changes according to the temperature of the pressure and the outlet temperature of the evaporator 8 is high, that is, when the heat load of the evaporator increases, the pressure of the upper pressure chamber 36b increases and accordingly Since the temperature sensitive rod 36f, that is, the temperature sensitive drive rod is driven downward to lower the valve body 32b, the opening degree of the orifice 32a becomes large. As a result, the amount of refrigerant supplied to the evaporator 8 is increased, and the temperature of the evaporator 8 is lowered. On the contrary, the temperature of the refrigerant sent from the evaporator 8 decreases. That is, when the heat load on the evaporator is reduced, the valve body 32b is driven in the opposite direction to the above, the opening degree of the orifice 32a is reduced, the supply amount of the refrigerant to the evaporator is reduced, and the temperature of the evaporator 8 is increased. .

【0014】[0014]

【発明が解決しようとする課題】ところで、上記従来の
膨張弁において、コンプレッサ4の起動によって、低圧
冷媒通路34の圧力低下が急激に生じ、パワーエレメン
ト部36内の第1圧力室と第2圧力室との差圧が大とな
り、これによるダイアフラム36kの変位により感温棒
36f及び作動棒37fは下方に駆動されて弁体32b
を下げることになり、弁体32bをオリフィス32aか
ら離間させ、オリフィス32aは全開状態となり、レシ
ーバ6から高圧側通路である第1の通路32を通ってエ
バポレータ8に向う冷媒の流量が最大に近い状態とな
る。このため、上記冷媒がオリフィス32aを通過する
ときに発生する冷媒の流動音が大きく、特に気液二相冷
媒では、冷媒の流動音が大きくなるという不具合の生じ
ることがあった。
By the way, in the above-mentioned conventional expansion valve, when the compressor 4 is started, the pressure in the low-pressure refrigerant passage 34 suddenly drops, and the first pressure chamber and the second pressure in the power element portion 36 are reduced. The pressure difference between the chamber and the chamber becomes large, and the displacement of the diaphragm 36k due to this causes the temperature sensitive rod 36f and the operating rod 37f to be driven downward and the valve body 32b.
Therefore, the valve body 32b is separated from the orifice 32a, the orifice 32a is fully opened, and the flow rate of the refrigerant from the receiver 6 to the evaporator 8 through the first passage 32 that is the high-pressure passage is close to the maximum. It becomes a state. Therefore, the flow noise of the refrigerant generated when the refrigerant passes through the orifice 32a is large, and particularly in the case of the gas-liquid two-phase refrigerant, there is a problem that the flow noise of the refrigerant becomes large.

【0015】この発明は、上記事情に鑑みてなされたも
ので、その目的は、コンプレッサ起動時の膨張弁の低圧
冷媒通路の圧力低下を遅延させることにより、オリフィ
スの全開状態を回避し、冷媒流動音を低減することが可
能な膨張弁を提供することにある。
The present invention has been made in view of the above circumstances, and an object thereof is to delay the pressure drop of the low pressure refrigerant passage of the expansion valve at the time of starting the compressor, thereby avoiding the fully opened state of the orifice and allowing the refrigerant flow. An object is to provide an expansion valve capable of reducing noise.

【0016】[0016]

【課題を解決するための手段】そこで請求項1の膨張弁
は、高圧側通路と、低圧側通路と、これら通路間を連通
するオリフィスと、低圧冷媒通路及び上記オリフィスに
対向配置される弁体とをその内部に有する弁本体と、ダ
イアフラムで区画された圧力室を有する上記弁本体の外
部に設けられるパワーエレメントと、上記圧力室の圧力
変動に応じた上記ダイアフラムの変位によって上記弁体
を駆動する感温駆動棒と、上記弁体により上記オリフィ
スの開度が制御される膨張弁において、上記低圧冷媒通
路の圧力低下による上記圧力室の圧力変動を遅延させる
遅延手段を上記弁本体内部に具備していることを特徴と
する。この膨張弁によれば、コンプレッサ起動時の低圧
冷媒通路の圧力低下に基づくパワーエレメントの圧力室
の圧力変動を遅延して生じさせることができ、オリフィ
スを通過する冷媒の流量を抑制でき、冷媒流動音を減少
できる。
Therefore, an expansion valve according to a first aspect of the present invention is a high-pressure side passage, a low-pressure side passage, an orifice communicating between these passages, a low-pressure refrigerant passage, and a valve element arranged to face the orifice. A valve body having a valve body inside thereof, a power element provided outside the valve body having a pressure chamber partitioned by a diaphragm, and a displacement of the diaphragm according to a pressure fluctuation of the pressure chamber to drive the valve body. In the temperature-sensitive drive rod and the expansion valve in which the opening degree of the orifice is controlled by the valve body, a delay means for delaying the pressure fluctuation in the pressure chamber due to the pressure drop in the low pressure refrigerant passage is provided inside the valve body. It is characterized by doing. With this expansion valve, it is possible to delay the pressure fluctuation of the pressure chamber of the power element due to the pressure drop of the low pressure refrigerant passage at the time of compressor startup, suppress the flow rate of the refrigerant passing through the orifice, and reduce the refrigerant flow. You can reduce the sound.

【0017】請求項2の膨張弁は、請求項1に記載した
膨張弁において、遅延手段が、低圧冷媒通路と圧力室と
の間に設けられて圧力の伝達を阻止する阻止部材である
と共に、上記圧力低下を圧力室に伝える小穴であること
を特徴としている。これにより、低圧冷媒通路の圧力低
下は上記小穴を介して上記圧力室に伝達されるので、そ
の圧力低下を緩慢に伝えることができる。
An expansion valve according to a second aspect is the expansion valve according to the first aspect, wherein the delay means is a blocking member that is provided between the low-pressure refrigerant passage and the pressure chamber to block the pressure transmission. It is characterized by being a small hole for transmitting the pressure drop to the pressure chamber. As a result, the pressure drop in the low-pressure refrigerant passage is transmitted to the pressure chamber via the small hole, so that the pressure drop can be transmitted slowly.

【0018】請求項3の膨張弁は、請求項2に記載した
膨張弁において、遅延手段が、カラー部材であると共
に、ブリードポートであることを特徴としている。かか
る構成により、従来の膨張弁の構成を大幅に変更するこ
となく、冷媒流動音を低減できる。
An expansion valve according to a third aspect is the expansion valve according to the second aspect, wherein the delay means is a collar member and a bleed port. With such a configuration, the refrigerant flow noise can be reduced without significantly changing the configuration of the conventional expansion valve.

【0019】請求項4の膨張弁は、高圧側通路と、低圧
側通路と、これら通路間を連通するオリフィスと、低圧
冷媒通路及び上記オリフィスに対向配置される弁体とを
その内部に有する弁本体と、上記弁本体の外部に設けら
れるパワーエレメントと、上記パワーエレメントを所定
冷媒の封入された第1の圧力室と上記低圧冷媒通路と連
通する第2の圧力室とに区画するダイアフラムの変位に
より上記弁体を駆動する感温駆動棒を備える膨張弁にお
いて、上記感温駆動棒には、上記第2の圧力室と上記低
圧冷媒通路との連通を阻止する阻止手段が装着されてお
り、上記弁本体には、上記第2の圧力室と上記低圧冷媒
通路とを連通する小穴が形成されていることを特徴とす
る。かかる膨張弁によれば、低圧冷媒通路の圧力低下を
小穴により第2の圧力室に遅延させて伝達できるので、
第1の圧力室の上記低圧冷媒通路の圧力低下に基づく圧
力変動を遅延させて生じさせることとなるので、上記オ
リフィスを通過する冷媒の流量を抑制でき、冷媒流動音
を減少できる。
An expansion valve according to a fourth aspect is a valve having therein a high-pressure side passage, a low-pressure side passage, an orifice communicating between these passages, a low-pressure refrigerant passage and a valve body arranged to face the orifice. Displacement of a diaphragm that defines a main body, a power element provided outside the valve main body, and a second pressure chamber that communicates the power element with a first pressure chamber containing a predetermined refrigerant and the low-pressure refrigerant passage. In the expansion valve including the temperature-sensitive drive rod that drives the valve body, the temperature-sensitive drive rod is equipped with a blocking unit that blocks communication between the second pressure chamber and the low-pressure refrigerant passage, The valve body is characterized in that a small hole that communicates the second pressure chamber and the low-pressure refrigerant passage is formed. With this expansion valve, the pressure drop in the low-pressure refrigerant passage can be delayed and transmitted to the second pressure chamber through the small hole.
Since the pressure fluctuation due to the pressure drop in the low-pressure refrigerant passage of the first pressure chamber is delayed and generated, the flow rate of the refrigerant passing through the orifice can be suppressed and the refrigerant flow noise can be reduced.

【0020】請求項5の膨張弁は、エバポレータに向う
冷媒の通る高圧側通路及び低圧側通路と、これら通路間
を連通するオリフィスと、エバポレータから送り出され
る冷媒の通る低圧冷媒通路と、上記オリフィスに対向配
置される弁体とをその内部に有する弁本体と、上記弁本
体の外部に設けられるパワーエレメントと、上記パワー
エレメント内に封入された所定冷媒によりエバポレータ
から送り出される冷媒の圧力及び温度に応じて内部圧力
が変化する第1の圧力室と、上記低圧冷媒通路と連通す
る第2の圧力室とに区画するダイアフラムと、上記ダイ
アフラムの変位により駆動される感温駆動棒と、上記弁
体を上記オリフィス側に付勢するばねとからなり、上記
感温作動棒により上記弁体を上記オリフィスに接離させ
て上記エバポレータに向う冷媒の流量を制御する膨張弁
において、上記低圧冷媒通路の圧力低下時に上記オリフ
ィスの全開状態を回避する回避手段を上記弁本体内部に
具備することを特徴とする。かかる膨張弁によれば、コ
ンプレッサの起動時の低圧冷媒通路の圧力低下による第
1圧力室と第2圧力室との差圧の急激な変化に基づくオ
リフィスの全開状態を回避でき、オリフィスを通過する
冷媒の流量を抑制でき、冷媒流動音を低減できる。
In the expansion valve of the fifth aspect, the high pressure side passage and the low pressure side passage through which the refrigerant flows toward the evaporator, the orifice communicating between these passages, the low pressure refrigerant passage through which the refrigerant sent from the evaporator passes, and the orifice. Depending on the pressure and temperature of the refrigerant sent out from the evaporator by the valve body having the valve body arranged oppositely, the power element provided outside the valve body, and the predetermined refrigerant enclosed in the power element. The first pressure chamber whose internal pressure changes and the second pressure chamber communicating with the low-pressure refrigerant passage, the temperature-sensitive drive rod driven by the displacement of the diaphragm, and the valve body. And a spring for biasing the orifice side, and the valve body is brought into contact with and separated from the orifice by the temperature-sensitive operating rod. In the expansion valve for controlling the flow rate of the refrigerant toward the, the avoidance means for avoiding the fully opened state of the orifice at a pressure drop of the low-pressure refrigerant passage, characterized by comprising within the valve body. According to such an expansion valve, it is possible to avoid the fully opened state of the orifice due to the rapid change in the differential pressure between the first pressure chamber and the second pressure chamber due to the pressure drop in the low pressure refrigerant passage at the time of starting the compressor, and to pass through the orifice. The flow rate of the refrigerant can be suppressed and the refrigerant flowing noise can be reduced.

【0021】請求項6の膨張弁は、請求項5の膨張弁に
おいて、上記回避手段は、上記低圧冷媒通路と上記第2
圧力室の間に設けられて、その連通を阻止する阻止手段
であると共に、上記低圧冷媒通路の圧力低下を上記第2
圧力室に伝達する上記弁本体に設けられた小穴であるこ
とを特徴とする。かかる膨張弁によれば、低圧冷媒通路
の圧力低下を小穴により第2圧力室に緩慢に伝達される
ので、第1圧力室と第2圧力室との差圧の急激な変化を
抑制できるので、上記差圧に基づくオリフィスの全開状
態を回避でき、オリフィスを通過する冷媒の流量を抑制
でき、冷媒流動音を低減できる。
An expansion valve according to a sixth aspect is the expansion valve according to the fifth aspect, wherein the avoidance means includes the low pressure refrigerant passage and the second
The blocking means is provided between the pressure chambers and blocks the communication between the pressure chambers, and reduces the pressure drop in the low pressure refrigerant passage.
It is characterized in that it is a small hole provided in the valve body for transmitting to the pressure chamber. According to such an expansion valve, the pressure drop in the low-pressure refrigerant passage is slowly transmitted to the second pressure chamber through the small hole, so that a rapid change in the differential pressure between the first pressure chamber and the second pressure chamber can be suppressed. It is possible to avoid the fully opened state of the orifice based on the differential pressure, suppress the flow rate of the refrigerant passing through the orifice, and reduce the refrigerant flow noise.

【0022】請求項7の膨張弁は、請求項6の膨張弁に
おいて、上記阻止手段は、上記感温駆動棒に具備される
カラー部材であると共に、上記小穴は上記感温駆動棒と
略平行に設けられたブリードポートであることを特徴と
する。かかる膨張弁によれば、従来の膨張弁の構成を大
幅に変更することなく、冷媒流動音を低減できる。
An expansion valve according to a seventh aspect is the expansion valve according to the sixth aspect, wherein the blocking means is a collar member provided on the temperature-sensitive drive rod, and the small hole is substantially parallel to the temperature-sensitive drive rod. It is a bleed port provided in the. According to such an expansion valve, the refrigerant flow noise can be reduced without significantly changing the configuration of the conventional expansion valve.

【0023】[0023]

【発明の実施の形態】本発明に係る膨張弁の一実施の形
態について図面に基づいて説明する。図1は、膨張弁の
一実施の形態を示す断面図であり、冷凍サイクルを省略
して示している。図1において、図2に示す従来の膨張
弁とは、基本的構成は同一であり、図2と同一符号は、
同一又は均等部分を示し、膨張弁10’では、弁本体3
0は、図2に示す従来例と同様の弁本体が用いられてお
り、基本的にはエバポレータに送り込まれる高圧冷媒が
通る高圧側流路32と低圧側流路32’との間に形成さ
れたオリフィス32aと、上記オリフィス32aに上記
冷媒の上流側から対向するように配置された球状の弁体
32bと、上記弁体を上流側から上記オリフィスに向け
て付勢するための付勢手段32dと、上記付勢手段の付
勢力を上記弁体32bに伝えるために上記付勢手段と上
記弁体との間に配置された弁部材32cと、低圧冷媒通
路34が通るエバポレータから送り出される低圧冷媒圧
力の温度に対応して動作するパワーエレメント部36
と、弁体32bとの間に配置される感温棒36fと作動
棒37fとからなるオリフィス32a内を挿通する感温
駆動棒を設け、上記パワーエレメント部36の動作に応
じて上記感温駆動棒により上記弁体32bを上記オリフ
ィス32aに対して接離させるようにしたことにより、
オリフィス32aを通過する冷媒流量を制御するように
なっている。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of an expansion valve according to the present invention will be described with reference to the drawings. FIG. 1 is a sectional view showing an embodiment of an expansion valve, and a refrigeration cycle is omitted. In FIG. 1, the basic configuration is the same as the conventional expansion valve shown in FIG. 2, and the same reference numerals as those in FIG.
In the expansion valve 10 ′, the same or equivalent parts are shown, and the valve body 3
No. 0 uses the same valve body as that of the conventional example shown in FIG. 2, and is basically formed between the high pressure side flow passage 32 and the low pressure side flow passage 32 ′ through which the high pressure refrigerant sent to the evaporator passes. An orifice 32a, a spherical valve body 32b arranged so as to face the orifice 32a from the upstream side of the refrigerant, and a biasing means 32d for biasing the valve body from the upstream side toward the orifice. A low pressure refrigerant sent from an evaporator through which a low pressure refrigerant passage 34 passes, and a valve member 32c arranged between the urging means and the valve body to transmit the urging force of the urging means to the valve body 32b. Power element section 36 that operates in response to pressure temperature
And a temperature-sensitive drive rod that is inserted between the valve 32b and a temperature-sensitive rod 36f and an operating rod 37f that are inserted between the valve body 32b and the temperature-sensitive drive rod. Since the valve body 32b is brought into contact with and separated from the orifice 32a by a rod,
The flow rate of the refrigerant passing through the orifice 32a is controlled.

【0024】感温駆動棒は、その上端部36kがパワー
エレメント部36を上部圧力室36bと下部圧力室36
cに区画するダイアフラム36aの下面に当接される端
部が径方向に拡大されたストッパ部36lを有してい
る。ダイアフラム36aの変位は感温棒36fを介して
弁体32bに伝達され、感温棒36fの上端部36kは
下部圧力室36c内を摺動すべくストッパ部36lは下
カバー36hに支持される。
The temperature sensitive drive rod has a power element portion 36 at its upper end portion 36k and an upper pressure chamber 36b and a lower pressure chamber 36.
An end portion of the diaphragm 36a, which is partitioned into c, is in contact with the lower surface of the diaphragm 36a and has a stopper portion 36l that is enlarged in the radial direction. The displacement of the diaphragm 36a is transmitted to the valve body 32b via the temperature sensing rod 36f, and the stopper 36l is supported by the lower cover 36h so that the upper end 36k of the temperature sensing rod 36f slides in the lower pressure chamber 36c.

【0025】而して、感温棒36fにはカラー部材40
が、例えば圧入により具備されており、カラー部材40
は大径の円板部40aとその一方の面から立上がる小径
の筒部40bとで一体に、例えばステンレス又はアルミ
ニウム等の金属で形成され、中心に貫通孔40cを有す
る。貫通孔40cには感温棒36fが挿入され、感温棒
36fの外周面との間にはOリング40dが配置されて
おり、円板部40aは、下部圧力室36cと均圧孔36
eとの間に形成された弁本体30の段部30aに当接し
て下部圧力室36c内に存在し、筒部40bは均圧孔3
6e内に挿入されている。
The collar member 40 is attached to the temperature sensitive rod 36f.
Are provided by, for example, press fitting, and the collar member 40
Is integrally formed of a large-diameter disk portion 40a and a small-diameter cylindrical portion 40b rising from one surface thereof, and is formed of a metal such as stainless steel or aluminum, and has a through hole 40c at the center. A temperature sensitive rod 36f is inserted into the through hole 40c, an O-ring 40d is arranged between the temperature sensitive rod 36f and the outer peripheral surface of the temperature sensitive rod 36f, and the disc portion 40a includes a lower pressure chamber 36c and a pressure equalizing hole 36c.
e is in contact with the stepped portion 30a of the valve body 30 formed between the valve body 30e and e, and is present in the lower pressure chamber 36c.
It is inserted in 6e.

【0026】さらに、弁本体30の段部30aには、下
部圧力室36cと低圧冷媒通路34とを連通する小穴、
例えばブリードポート30bが感温棒36fと平行に形
成されている。
Further, the step portion 30a of the valve body 30 has a small hole for communicating the lower pressure chamber 36c with the low pressure refrigerant passage 34,
For example, the bleed port 30b is formed in parallel with the temperature sensitive rod 36f.

【0027】かかる構成によれば、コンプレッサの起動
時に低圧冷媒通路34の圧力低下を生じても、カラー部
材40が下部圧力室36c内及び均圧孔36e内に存在
するので、低圧冷媒通路34と下部圧力室36cとの間
は、カラー部材40によりその連通が阻止されると共
に、ブリードポート30bを介して低圧冷媒通路34の
圧力低下が下部圧力室36cに伝達されるが、その圧力
変化はブリードポート30bによって遅延されて緩慢に
下部圧力室36cに伝達されることとなる。したがっ
て、低圧冷媒通路34の圧力低下に基づく、上部圧力室
36bの圧力変動を遅延させて生じさせることになる。
この結果、コンプレッサの起動時においても上部圧力室
36bと下部圧力室36cとの圧力差の急激な変化に基
づく、ダイアフラム36aの変位によるオリフィス32
aの急激な全開状態を回避できることになり、オリフィ
ス32aを通過する冷媒の流量を抑制でき、冷媒流動音
を低減できる。即ち、カラー部材40及びブリードポー
ト30bは、コンプレッサの起動時における低圧冷媒通
路34の圧力低下に基づく圧力変動をパワーエレメント
36の下部圧力室36c及び上部圧力室36bへ遅延さ
せて伝達する手段として作用し、また低圧冷媒通路34
の圧力低下に基づくオリフィス32aの急激な全開を回
避する手段として作用しているのである。しかも、図1
に示す実施の形態においては、図2に示す従来の膨張弁
の構成を大幅に変更することなく、冷媒流動音を低減で
きるのである。
According to this structure, even if the pressure in the low-pressure refrigerant passage 34 drops when the compressor is started, the collar member 40 exists in the lower pressure chamber 36c and the pressure equalizing hole 36e, so that the low-pressure refrigerant passage 34 and The collar member 40 blocks communication with the lower pressure chamber 36c, and the pressure drop in the low-pressure refrigerant passage 34 is transmitted to the lower pressure chamber 36c through the bleed port 30b. It is delayed by the port 30b and slowly transmitted to the lower pressure chamber 36c. Therefore, the pressure fluctuation in the upper pressure chamber 36b due to the pressure drop in the low-pressure refrigerant passage 34 is delayed and caused.
As a result, even when the compressor is started, the orifice 32 due to the displacement of the diaphragm 36a based on the rapid change in the pressure difference between the upper pressure chamber 36b and the lower pressure chamber 36c.
It is possible to avoid the sudden full open state of a, the flow rate of the refrigerant passing through the orifice 32a can be suppressed, and the refrigerant flow noise can be reduced. That is, the collar member 40 and the bleed port 30b act as means for delaying and transmitting the pressure fluctuation due to the pressure drop in the low pressure refrigerant passage 34 at the time of starting the compressor to the lower pressure chamber 36c and the upper pressure chamber 36b of the power element 36. The low pressure refrigerant passage 34
It acts as a means for avoiding the sudden full opening of the orifice 32a due to the pressure drop. Moreover, FIG.
In the embodiment shown in FIG. 2, the refrigerant flow noise can be reduced without significantly changing the configuration of the conventional expansion valve shown in FIG.

【0028】以上実施の形態について説明したが、本発
明は上記形態に限定されるものではなく、本発明の範囲
内で種々に変更して実施することができる。即ち、本実
施の形態では、図1に示す膨張弁において、カラー部材
40としては、金属製に限らず樹脂製とすることができ
る。また、本実施の形態では小穴について述べたが、本
発明では圧力変動を遅延させて伝達する伝達手段であれ
ば、小穴に限らないのは勿論である。
Although the embodiment has been described above, the present invention is not limited to the above-described embodiment, and various modifications can be made within the scope of the present invention. That is, in the present embodiment, in the expansion valve shown in FIG. 1, the collar member 40 is not limited to metal, but may be resin. Further, although the small hole has been described in the present embodiment, it goes without saying that the present invention is not limited to the small hole as long as it is a transmission means that delays and transmits the pressure fluctuation.

【0029】[0029]

【発明の効果】本発明によれば、コンプレッサ起動時に
おける膨張弁の低圧冷媒通路の圧力低下に基づくパワー
エレメント内の圧力室の圧力変動を遅延させて生じさせ
ることができ、したがって、オリフィスの急激な全開を
回避できるので、冷媒流量を抑制して、冷媒流動音を低
減できる。
According to the present invention, the pressure fluctuation of the pressure chamber in the power element due to the pressure drop of the low pressure refrigerant passage of the expansion valve at the time of starting the compressor can be delayed and caused, and therefore the abruptness of the orifice can be increased. Since full opening can be avoided, the refrigerant flow rate can be suppressed and the refrigerant flow noise can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の膨張弁の一実施の形態を示す断面図。FIG. 1 is a sectional view showing an embodiment of an expansion valve of the present invention.

【図2】従来の膨張弁の構成を示す断面図。FIG. 2 is a cross-sectional view showing the configuration of a conventional expansion valve.

【符号の説明】[Explanation of symbols]

30 弁本体 30a 段部 30b ブリードポート 32a オリフィス 32b 弁体 34 低圧冷媒通路 36 パワーエレメント 36a ダイアフラム 36b 上部圧力室 36c 下部圧力室 36E 均圧孔 36f 感温棒 37f 作動棒 40 カラー部材 40a 円板部 40b 筒部 40d Oリング 30 valve body 30a step 30b bleed port 32a orifice 32b valve body 34 Low-pressure refrigerant passage 36 Power Element 36a diaphragm 36b Upper pressure chamber 36c Lower pressure chamber 36E Pressure equalizing hole 36f temperature sensitive stick 37f operating rod 40 color members 40a disk part 40b tube 40d O-ring

───────────────────────────────────────────────────── フロントページの続き (72)発明者 志村 智紀 東京都世田谷区等々力7丁目17番24号 株 式会社不二工機内 Fターム(参考) 3H057 AA04 BB45 CC07 DD04 DD05 EE05 FC03 GG08 HH16 HH18   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Tomoki Shimura             Setagaya-ku, Tokyo Todoroki 7-1724 shares             Ceremony company Fuji Kouki F term (reference) 3H057 AA04 BB45 CC07 DD04 DD05                       EE05 FC03 GG08 HH16 HH18

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 高圧側通路と、低圧側通路と、これら通
路間を連通するオリフィスと、低圧冷媒通路及び上記オ
リフィスに対向配置される弁体とをその内部に有する弁
本体と、ダイアフラムで区画された圧力室を有する上記
弁本体の外部に設けられるパワーエレメントと、上記圧
力室の圧力変動に応じた上記ダイアフラムの変位によっ
て上記弁体を駆動する感温駆動棒と、上記弁体により上
記オリフィスの開度が制御される膨張弁において、 上記低圧冷媒通路の圧力低下による上記圧力室の圧力変
動を遅延させる遅延手段を上記弁本体内部に具備してい
ることを特徴とする膨張弁。
1. A valve main body having therein a high-pressure side passage, a low-pressure side passage, an orifice communicating between these passages, a low-pressure refrigerant passage and a valve element opposed to the orifice, and a diaphragm. A power element provided outside the valve body having a pressure chamber, a temperature-sensitive drive rod that drives the valve element by displacement of the diaphragm according to pressure fluctuations in the pressure chamber, and the orifice by the valve element. In the expansion valve whose opening is controlled, the expansion valve is provided inside the valve body, which delay means delays a pressure fluctuation in the pressure chamber due to a pressure drop in the low-pressure refrigerant passage.
【請求項2】 上記遅延手段は、上記感温駆動棒に具備
されて上記低圧冷媒通路と上記圧力室間に設けられてい
る圧力の伝達を阻止する阻止部材であると共に、上記弁
本体内部に形成されて上記低圧冷媒通路の圧力低下を上
記圧力室に伝達する小穴であることを特徴とする請求項
1記載の膨張弁。
2. The delay means is a blocking member that is provided on the temperature-sensitive drive rod and blocks transmission of pressure, which is provided between the low-pressure refrigerant passage and the pressure chamber, and is provided inside the valve body. The expansion valve according to claim 1, wherein the expansion valve is a small hole that is formed to transmit the pressure drop in the low-pressure refrigerant passage to the pressure chamber.
【請求項3】 上記阻止部材はカラーであると共に、上
記小穴はブリードポートであることを特徴とする請求項
2記載の膨張弁。
3. The expansion valve according to claim 2, wherein the blocking member is a collar, and the small hole is a bleed port.
【請求項4】 高圧側通路と、低圧側通路と、これら通
路間を連通するオリフィスと、低圧冷媒通路及び上記オ
リフィスに対向配置される弁体とをその内部に有する弁
本体と、上記弁本体の外部に設けられるパワーエレメン
トと、上記パワーエレメントを所定冷媒の封入された第
1の圧力室と上記低圧冷媒通路と連通する第2の圧力室
とに区画するダイアフラムの変位により上記弁体を駆動
する感温駆動棒を備える膨張弁において、 上記感温駆動棒には、上記第2の圧力室と上記低圧冷媒
通路との連通を阻止する阻止手段が装着されており、上
記弁本体には、上記第2の圧力室と上記低圧冷媒通路と
を連通する小穴が形成されていることを特徴とする膨張
弁。
4. A valve main body having therein a high-pressure side passage, a low-pressure side passage, an orifice communicating between these passages, a low-pressure refrigerant passage and a valve body arranged to face the orifice, and a valve body. The valve element is driven by the displacement of a diaphragm that divides the power element provided outside the vehicle into a first pressure chamber in which a predetermined refrigerant is sealed and a second pressure chamber communicating with the low-pressure refrigerant passage. In the expansion valve including the temperature-sensitive drive rod, the temperature-sensitive drive rod is equipped with a blocking unit that blocks communication between the second pressure chamber and the low-pressure refrigerant passage, and the valve body includes: An expansion valve, wherein a small hole is formed to connect the second pressure chamber and the low-pressure refrigerant passage.
【請求項5】 エバポレータに向う冷媒の通る高圧側通
路及び低圧側通路と、これら通路間を連通するオリフィ
スと、エバポレータから送り出される冷媒の通る低圧冷
媒通路と、上記オリフィスに対向配置される弁体とをそ
の内部に有する弁本体と、上記弁本体の外部に設けられ
るパワーエレメントと、上記パワーエレメント内に封入
された所定冷媒によりエバポレータから送り出される冷
媒の圧力及び温度に応じて内部圧力が変化する第1の圧
力室と、上記低圧冷媒通路と連通する第2の圧力室とに
区画するダイアフラムと、上記ダイアフラムの変位によ
り駆動される感温駆動棒と、上記弁体を上記オリフィス
側に付勢するばねとからなり、上記感温作動棒により上
記弁体を上記オリフィスに接離させて上記エバポレータ
に向う冷媒の流量を制御する膨張弁において、上記低圧
冷媒通路の圧力低下時に上記オリフィスの全開状態を回
避する回避手段を上記弁本体内部に具備することを特徴
とする膨張弁。
5. A high-pressure side passage and a low-pressure side passage through which the refrigerant flows toward the evaporator, an orifice communicating between these passages, a low-pressure refrigerant passage through which the refrigerant sent from the evaporator passes, and a valve element arranged opposite to the orifice. A valve body having therein and a power element provided outside the valve body, and the internal pressure changes according to the pressure and temperature of the refrigerant sent from the evaporator by the predetermined refrigerant enclosed in the power element. A diaphragm that partitions into a first pressure chamber and a second pressure chamber that communicates with the low-pressure refrigerant passage, a temperature-sensitive drive rod that is driven by displacement of the diaphragm, and urges the valve element toward the orifice side. The temperature-sensing rod causes the valve element to move toward and away from the orifice so as to control the flow rate of the refrigerant toward the evaporator. In the expansion valve to be controlled, an expansion valve is provided inside the valve body for avoiding a fully opened state of the orifice when the pressure in the low-pressure refrigerant passage decreases.
【請求項6】 上記回避手段は、上記低圧冷媒通路と上
記第2圧力室の間に設けられて、その連通を阻止する阻
止手段であると共に、上記低圧冷媒通路の圧力低下を上
記第2圧力室に伝達する上記弁本体に設けられた小穴で
あることを特徴とする請求項5記載の膨張弁。
6. The avoidance means is a blocking means that is provided between the low pressure refrigerant passage and the second pressure chamber to prevent communication between the low pressure refrigerant passage and the second pressure chamber. The expansion valve according to claim 5, wherein the expansion valve is a small hole provided in the valve body for transmission to a chamber.
【請求項7】 上記阻止手段は、上記感温駆動棒に具備
されるカラー部材であると共に、上記小穴は上記感温駆
動棒と略平行に設けられたブリードポートであることを
特徴とする請求項6記載の膨張弁。
7. The blocking means is a collar member provided on the temperature sensitive drive rod, and the small hole is a bleed port provided substantially parallel to the temperature sensitive drive rod. The expansion valve according to item 6.
JP2002128532A 2002-04-30 2002-04-30 Expansion valve Expired - Fee Related JP4081295B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002128532A JP4081295B2 (en) 2002-04-30 2002-04-30 Expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002128532A JP4081295B2 (en) 2002-04-30 2002-04-30 Expansion valve

Publications (2)

Publication Number Publication Date
JP2003322435A true JP2003322435A (en) 2003-11-14
JP4081295B2 JP4081295B2 (en) 2008-04-23

Family

ID=29542253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002128532A Expired - Fee Related JP4081295B2 (en) 2002-04-30 2002-04-30 Expansion valve

Country Status (1)

Country Link
JP (1) JP4081295B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7980482B2 (en) 2007-08-17 2011-07-19 Automotive Components Holdings, Llc Thermostatic expansion valve having a restricted flow passage for noise attenuation
JP2017198373A (en) * 2016-04-26 2017-11-02 株式会社不二工機 Expansion valve
CN108332459A (en) * 2017-01-18 2018-07-27 株式会社Tgk Expansion valve

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4986467U (en) * 1972-11-14 1974-07-26
JPH08210734A (en) * 1995-02-07 1996-08-20 Nippondenso Co Ltd Temperature type expansion valve
JPH09273835A (en) * 1996-04-05 1997-10-21 Tgk Co Ltd Expansion valve
JPH10122706A (en) * 1996-10-15 1998-05-15 Fuji Koki Corp Expansion valve
JP2001141335A (en) * 1999-01-13 2001-05-25 Tgk Co Ltd Expansion valve

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4986467U (en) * 1972-11-14 1974-07-26
JPH08210734A (en) * 1995-02-07 1996-08-20 Nippondenso Co Ltd Temperature type expansion valve
JPH09273835A (en) * 1996-04-05 1997-10-21 Tgk Co Ltd Expansion valve
JPH10122706A (en) * 1996-10-15 1998-05-15 Fuji Koki Corp Expansion valve
JP2001141335A (en) * 1999-01-13 2001-05-25 Tgk Co Ltd Expansion valve

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7980482B2 (en) 2007-08-17 2011-07-19 Automotive Components Holdings, Llc Thermostatic expansion valve having a restricted flow passage for noise attenuation
JP2017198373A (en) * 2016-04-26 2017-11-02 株式会社不二工機 Expansion valve
CN108332459A (en) * 2017-01-18 2018-07-27 株式会社Tgk Expansion valve

Also Published As

Publication number Publication date
JP4081295B2 (en) 2008-04-23

Similar Documents

Publication Publication Date Title
JPH11182983A (en) Expansion valve integrated with solenoid valve
JPH10253199A (en) Thermal expansion valve
JP3995828B2 (en) Temperature expansion valve
US20080185452A1 (en) Expansion valve
JP2002054861A (en) Thermostatic expansion valve
JP2001201212A (en) Temperature expansion valve
JP3949417B2 (en) Expansion valve
JPH1089810A (en) Expansion valve
JPH0926235A (en) Expansion valve
KR100572763B1 (en) Expansion valve
JPH10288424A (en) Temperature type expansion valve
JP2002310538A (en) Temperature type expansion valve
KR20050054842A (en) Expansion valve
JP2003322435A (en) Expansion valve
JPH11223425A (en) Expansion valve
JP3249483B2 (en) Composite solenoid valve and control method of composite solenoid valve
JP2001241808A (en) Expansion valve
JP2006292185A (en) Expansion device and refrigerating cycle
JP2000304381A (en) Temperature expansion valve
JP3476619B2 (en) Expansion valve
JPH10122706A (en) Expansion valve
JP2003090648A (en) Expansion valve
JP2003065634A (en) Expansion valve
JP4743926B2 (en) Expansion valve
JPH08210734A (en) Temperature type expansion valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070913

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071219

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4081295

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140215

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees