JP2017198373A - Expansion valve - Google Patents

Expansion valve Download PDF

Info

Publication number
JP2017198373A
JP2017198373A JP2016088047A JP2016088047A JP2017198373A JP 2017198373 A JP2017198373 A JP 2017198373A JP 2016088047 A JP2016088047 A JP 2016088047A JP 2016088047 A JP2016088047 A JP 2016088047A JP 2017198373 A JP2017198373 A JP 2017198373A
Authority
JP
Japan
Prior art keywords
valve
valve member
hole
expansion
expansion valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016088047A
Other languages
Japanese (ja)
Other versions
JP6846875B2 (en
Inventor
潤哉 早川
Junya Hayakawa
潤哉 早川
横田 浩
Hiroshi Yokota
浩 横田
欣也 奥津
Kinya Okutsu
欣也 奥津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Original Assignee
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp filed Critical Fujikoki Corp
Priority to JP2016088047A priority Critical patent/JP6846875B2/en
Publication of JP2017198373A publication Critical patent/JP2017198373A/en
Application granted granted Critical
Publication of JP6846875B2 publication Critical patent/JP6846875B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an expansion valve that can obtain both of large flow rate mode characteristics at start and steady flow rate mode characteristics during a steady operation.SOLUTION: An expansion valve includes: a valve body 11; a first valve member having a through hole at the center thereof and opened/closed by coming into contact with a valve seat 25; a second valve member 40 opened/closed by coming into contact with the through hole of the first valve member; a support member 42 for supporting the second valve member; a first coil spring 44 for supporting the support member; a second coil spring interposed between the first valve member and the support member; and a valve rod 60 mounted to a power element 12 to drive the first valve member and the second valve member.The valve rod is disposed so that an end on the valve chamber 24 side thereof is inserted into the through hole and an end surface of the valve rod comes into contact with the second valve member.SELECTED DRAWING: Figure 1

Description

本発明は、冷凍サイクルに用いられる感温機構内蔵型の膨張弁に係わり、特には、弁本体にパワーエレメントが取り付けられた膨張弁に関する。   The present invention relates to a temperature sensing mechanism built-in type expansion valve used in a refrigeration cycle, and more particularly to an expansion valve having a power element attached to a valve body.

従来、自動車に搭載される空調装置等に用いる冷凍サイクルについては、設置スペースや配管作業を省略するために、冷媒の通過量を温度に応じて調整する感温機構内蔵型の温度膨張弁が使用されている。このような膨張弁の弁本体は、高圧の冷媒が導入される入口ポートと入口ポートに連通する弁室とを有するとともに、弁本体の頂部には、パワーエレメントと称する弁部材の駆動機構が装備される。
弁室内に配設される球状の弁部材は、弁室に開口する弁孔の弁座に対向し、パワーエレメントにより駆動される弁棒により操作されて、弁座との間の絞り通路の開度を制御する。
また、弁孔を通った冷媒は、出口ポートから蒸発器側へ送られる。蒸発器から圧縮機側へ戻る冷媒は、弁本体に設けられた戻り通路を通過する。
Conventionally, for refrigeration cycles used in air conditioners installed in automobiles, a temperature expansion valve with a built-in temperature sensing mechanism that adjusts the refrigerant flow rate according to the temperature is used to save installation space and piping work. Has been. The valve body of such an expansion valve has an inlet port into which high-pressure refrigerant is introduced and a valve chamber communicating with the inlet port, and a valve member drive mechanism called a power element is provided on the top of the valve body. Is done.
A spherical valve member disposed in the valve chamber is opposed to the valve seat in the valve hole that opens to the valve chamber, and is operated by a valve rod driven by a power element to open a throttle passage between the valve seat and the valve seat. Control the degree.
Moreover, the refrigerant | coolant which passed the valve hole is sent to an evaporator side from an exit port. The refrigerant returning from the evaporator to the compressor side passes through a return passage provided in the valve body.

パワーエレメントは、圧力作動室を形成する上蓋部材と圧力を受けて弾性変形する薄板のダイアフラムと円盤状の受け部材で構成され、3つの部材を重ね合わせて円周部をTIG溶接手段などにより接合して形成される。また、ダイアフラムと受け部材との間にはストッパ部材が挟まれる。
そして、上蓋部材とダイアフラムで形成される圧力作動室には作動ガスが封入される。このとき、圧力作動室に作動ガスを封入するために、上蓋部材の頂部に穴を設け、この穴から作動ガスを封入した後に鋼球等で穴を塞ぎプロジェクション溶接手段などによって圧力作動室を封止する。
The power element is composed of an upper lid member that forms a pressure working chamber, a thin diaphragm that is elastically deformed under pressure, and a disk-shaped receiving member. The three members are overlapped and the circumference is joined by TIG welding means, etc. Formed. A stopper member is sandwiched between the diaphragm and the receiving member.
A working gas is sealed in a pressure working chamber formed by the upper lid member and the diaphragm. At this time, in order to enclose the working gas in the pressure working chamber, a hole is provided in the top of the upper lid member, and after filling the working gas from this hole, the hole is closed with a steel ball or the like, and the pressure working chamber is sealed by projection welding means or the like. Stop.

上記のような従来の感温機構内蔵型の温度膨張弁として、膨張弁の弁本体の頂部に形成された開口部とパワーエレメントの底部とにそれぞれ雄ねじと雌ねじを形成し、これらをねじ締めして固定したものが知られている(例えば、特許文献1参照)。   As a conventional temperature expansion valve with a built-in temperature sensing mechanism as described above, a male screw and a female screw are formed on the opening formed at the top of the valve body of the expansion valve and the bottom of the power element, respectively, and these are tightened. Are known (for example, see Patent Document 1).

特開2005−164208号公報JP-A-2005-164208

一般的な空調装置の起動時において、熱交換量を高めるために冷媒をできるだけ多く供給する必要があるが、定常運転に移行すると、室内の温度変化に応じて細かな温度制御が必要となるため、膨張弁には大流量よりも微細な流量制御を行うことが求められる。
しかしながら、起動時の制御特性に合わせようとした場合、例えば、特許文献1に記載されている膨張弁において、弁孔に形成された弁座の開口面積を大きくすることにより、膨張弁の流量を大きくすることができる。
一方、弁座の開口面積を大きくすると、相対的に弁体のサイズも大きくなってしまい、弁体のリフト量に対する流量変化量も大きくなってしまうため、定常運転に移行した後での膨張弁の微細な流量制御を行うことが難しくなるという問題があった。
When starting up a general air conditioner, it is necessary to supply as much refrigerant as possible to increase the amount of heat exchange. However, when shifting to steady operation, fine temperature control is required according to the temperature change in the room. The expansion valve is required to perform finer flow control than a large flow rate.
However, when trying to match the control characteristics at the time of startup, for example, in the expansion valve described in Patent Document 1, the flow rate of the expansion valve is increased by increasing the opening area of the valve seat formed in the valve hole. Can be bigger.
On the other hand, when the opening area of the valve seat is increased, the size of the valve body is also relatively increased, and the flow rate change amount with respect to the lift amount of the valve body is also increased. There is a problem that it is difficult to perform fine flow rate control.

そこで本発明の目的は、起動時における大流量モード特性と定常運転時における定常流量モード特性とを両立できる膨張弁を提供することにある。   Accordingly, an object of the present invention is to provide an expansion valve that can achieve both a large flow rate mode characteristic during startup and a steady flow mode characteristic during steady operation.

上記目的を達成するために、本発明による膨張弁は、上蓋部材と、受け部材と、前記上蓋部材及び前記受け部材の間に挟まれるダイアフラムと、を含むパワーエレメントと、入口ポートと、前記入口ポートに連通する弁室と、前記弁室に連通する弁孔と、前記弁孔に連通する出口ポートと、前記弁孔の前記弁室側の開口部に形成された弁座と、パワーエレメント取付部と、を含む弁本体と、中央部に貫通穴を有し、前記弁座に接触して開閉する第1の弁部材と、前記第1の弁部材の前記貫通穴に接触して開閉する第2の弁部材と、前記第2の弁部材を支持する支持部材と、前記支持部材を支持する第1のコイルスプリングと、前記第1の弁部材と前記支持部材との間に介在する第2のコイルスプリングと、前記パワーエレメントに取り付けられて、前記第1の弁部材及び前記第2の弁部材を駆動する弁棒と、を備え、前記弁棒は、前記弁室側の端部が前記貫通穴に挿入されるように配置されるとともに、その端面が前記第2の弁部材に接触することを特徴とする。   To achieve the above object, an expansion valve according to the present invention includes a power element including an upper lid member, a receiving member, and a diaphragm sandwiched between the upper lid member and the receiving member, an inlet port, and the inlet. A valve chamber communicating with the port; a valve hole communicating with the valve chamber; an outlet port communicating with the valve hole; a valve seat formed at an opening of the valve hole on the valve chamber side; and a power element mounting A valve body including a first portion, a first valve member having a through hole in a central portion thereof, opening and closing in contact with the valve seat, and opening and closing in contact with the through hole of the first valve member A second valve member; a support member that supports the second valve member; a first coil spring that supports the support member; and a first member interposed between the first valve member and the support member. 2 coil springs and attached to the power element And a valve rod that drives the first valve member and the second valve member, and the valve rod is disposed such that an end portion on the valve chamber side is inserted into the through hole. And the end surface contacts the said 2nd valve member, It is characterized by the above-mentioned.

本発明による膨張弁の一例において、前記第1の弁部材は円筒状の部材であって、その上面に向かうテーパ面が外周面に形成されている。
また、前記第1の弁部材は、下面の外周部に段差部を有し、前記第2のコイルスプリングは、その一端が前記第1の弁部材の前記段差部に配置される。
In an example of the expansion valve according to the present invention, the first valve member is a cylindrical member, and a tapered surface toward the upper surface thereof is formed on the outer peripheral surface.
The first valve member has a stepped portion on the outer peripheral portion of the lower surface, and one end of the second coil spring is disposed on the stepped portion of the first valve member.

また、本発明による膨張弁の他の一例において、前記第2の弁部材は、前記第2のコイルスプリングの内側に配置されてもよい。
さらに、前記弁棒の前記弁室側の端部には、小径部及び段部が形成されており、前記段部が前記第1の弁部材の上面と接触するか、あるいは前記端面に向けて縮径するテーパ状の側面が形成され、前記テーパ状の側面が前記第1の弁部材の前記貫通穴の開口端と接触するように構成されていてもよい。
In another example of the expansion valve according to the present invention, the second valve member may be disposed inside the second coil spring.
Furthermore, a small-diameter portion and a step portion are formed at an end portion of the valve stem on the valve chamber side, and the step portion contacts the upper surface of the first valve member or faces the end surface. A tapered side surface having a reduced diameter may be formed, and the tapered side surface may be configured to contact an opening end of the through hole of the first valve member.

本発明の膨張弁によれば、起動時における大流量モード特性と定常運転時における定常流量モード特性とを両立できる膨張弁を提供することができる。
また、第2の弁部材のサイズを大きくする必要がないため、これを支持する支持部材や第1のコイルスプリングあるいは弁室についても従来型のものをそのまま流用することが可能となり、モード切り替えに伴う仕様変更等によるコストアップを抑制できる。
According to the expansion valve of the present invention, it is possible to provide an expansion valve that can achieve both a large flow rate mode characteristic during startup and a steady flow mode characteristic during steady operation.
In addition, since it is not necessary to increase the size of the second valve member, the conventional support member, the first coil spring, or the valve chamber that supports the second valve member can be used as it is. Cost increase due to accompanying specification changes can be suppressed.

本発明の代表的な一例による膨張弁を示す縦断面図である。It is a longitudinal section showing an expansion valve by a typical example of the present invention. 図1に示す膨張弁の弁構造体の詳細を示す部分断面図である。It is a fragmentary sectional view which shows the detail of the valve structure of the expansion valve shown in FIG. 本発明の代表的な一例による第1の弁部材の概略を示す図であって、図3(a)は上面図であり、図3(b)は中心を通る面による断面図である。FIGS. 3A and 3B are diagrams schematically illustrating a first valve member according to a typical example of the present invention, in which FIG. 3A is a top view and FIG. 3B is a cross-sectional view of a plane passing through the center. 本発明の代表的な一例による弁棒の一端の概略を示す断面図である。It is sectional drawing which shows the outline of the end of the valve stem by a typical example of this invention. 図2に示す膨張弁の弁構造体の定常流量モード状態を示す部分断面図である。It is a fragmentary sectional view which shows the steady flow mode state of the valve structure of the expansion valve shown in FIG. 図2に示す膨張弁の弁構造体の大流量モード状態を示す部分断面図である。It is a fragmentary sectional view which shows the large flow rate mode state of the valve structure of the expansion valve shown in FIG. 本発明の膨張弁による流量特性の一例を示すグラフである。It is a graph which shows an example of the flow characteristic by the expansion valve of the present invention. 本発明による膨張弁における弁構造体の変形例の詳細を示す部分断面図である。It is a fragmentary sectional view which shows the detail of the modification of the valve structure in the expansion valve by this invention.

図1は、本発明の代表的な一例による膨張弁を示す縦断面図である。
図1に示すように、膨張弁10は、弁本体11、パワーエレメント70、弁構造体100、調整ねじ50及び弁棒60を備えている。
FIG. 1 is a longitudinal sectional view showing an expansion valve according to a typical example of the present invention.
As shown in FIG. 1, the expansion valve 10 includes a valve body 11, a power element 70, a valve structure 100, an adjustment screw 50, and a valve stem 60.

膨張弁10の弁本体11は、例えばアルミ合金製であって、図1に示すX方向を押出方向として、アルミ合金等を押出成形し、これに機械加工を施すことによって得ることができる。
弁本体11は、上面部に形成されて雌ねじを有するパワーエレメント取付部12と、高圧の冷媒が導入される入口ポート20と、冷媒の出口ポート28と、冷媒の戻り通路30と、弁本体11を図1のX方向に貫通する2つの穴(図示せず)と、弁本体11を他の部品に取り付けるための取付穴(あるいは取付用雌ねじ)80と、を有する。
The valve body 11 of the expansion valve 10 is made of, for example, an aluminum alloy, and can be obtained by extruding an aluminum alloy or the like with the X direction shown in FIG.
The valve body 11 includes a power element mounting portion 12 formed on the upper surface portion and having an internal thread, an inlet port 20 into which a high-pressure refrigerant is introduced, a refrigerant outlet port 28, a refrigerant return passage 30, and the valve body 11. 1 and two holes (not shown) penetrating in the X direction of FIG. 1 and mounting holes (or female threads for mounting) 80 for mounting the valve body 11 to other components.

弁本体11の下部には、下端部に開口する雌ねじ穴11aが形成されており、当該雌ねじ穴11aの開口部分をプラグ50で封鎖することにより弁室24が形成されている。また、弁室24には、側方から小径穴20aを介して入口ポート20が連通している。
一方、弁本体11における弁室24の上方には、出口ポート28が形成されている。この出口ポート28は、弁孔26を介して弁室24の上端部に連通しており、当該弁孔26の弁室24側には、弁座25が形成されている。
A female screw hole 11 a that opens to the lower end is formed in the lower part of the valve body 11, and the valve chamber 24 is formed by sealing the opening of the female screw hole 11 a with a plug 50. Further, the inlet port 20 communicates with the valve chamber 24 from the side through a small diameter hole 20a.
On the other hand, an outlet port 28 is formed above the valve chamber 24 in the valve body 11. The outlet port 28 communicates with the upper end portion of the valve chamber 24 through the valve hole 26, and a valve seat 25 is formed on the valve chamber 24 side of the valve hole 26.

プラグ50は、弁本体11の下端部に開口する雌ねじ穴11aに螺合する態様で取り付けられ、上記凹部52と対向する面に形成されている六角穴53に工具を差し込んで回転させることにより、ねじ込み量を調整することができる。
また、プラグ50の外周部にはシール部材54が設けられ、これによって弁室24がシールされている。
The plug 50 is attached in such a manner that it is screwed into the female screw hole 11a opened at the lower end of the valve body 11, and a tool is inserted into the hexagonal hole 53 formed on the surface facing the concave portion 52 and rotated. The screwing amount can be adjusted.
Further, a seal member 54 is provided on the outer peripheral portion of the plug 50, thereby sealing the valve chamber 24.

弁本体11における出口ポート28のさらに上方には、戻り通路30が、弁本体11を図1におけるX方向に貫通するように形成されている。
本発明の膨張弁10を流通する冷媒は、入口ポート20から流入し、弁孔26を通過し、出口ポート28から送り出された後、蒸発器(図示せず)へ送られ、その後冷媒は蒸発器から圧縮機(図示せず)へ戻る。
そして、蒸発器から圧縮機に戻る冷媒は、図1において戻り通路30の左側から入って右側に抜けるように通過する。
A return passage 30 is formed further above the outlet port 28 in the valve body 11 so as to penetrate the valve body 11 in the X direction in FIG.
The refrigerant flowing through the expansion valve 10 of the present invention flows in from the inlet port 20, passes through the valve hole 26, is sent out from the outlet port 28, is sent to an evaporator (not shown), and then the refrigerant evaporates. Return from compressor to compressor (not shown).
The refrigerant returning from the evaporator to the compressor passes from the left side of the return passage 30 in FIG.

弁本体11における戻り通路30のさらに上方には、後述するパワーエレメント70を取り付けるパワーエレメント取付部12が形成されている。
パワーエレメント取付部12は、弁本体11の上端において弁本体11の上面に円形状に開口しその内壁面に雌ねじを有する有底の円筒状穴として形成される。
また、パワーエレメント取付部12の中央部には戻り通路30に至る連通穴31が形成され、後述する弁棒60が挿通される。
A power element attachment portion 12 for attaching a power element 70 described later is formed further above the return passage 30 in the valve body 11.
The power element attachment portion 12 is formed as a bottomed cylindrical hole having a circular opening on the upper surface of the valve body 11 at the upper end of the valve body 11 and having an internal thread on the inner wall surface thereof.
Further, a communication hole 31 reaching the return passage 30 is formed in the central portion of the power element mounting portion 12, and a later-described valve rod 60 is inserted therethrough.

パワーエレメント70は、例えばステンレス鋼等で形成された上蓋部材71と、中央部に貫通口を備えた受け部材72と、これら上蓋部材71及び受け部材72の間に挟み込まれるダイアフラム73と、このダイアフラム73及び受け部材72の間に配置されたストッパ部材90等から構成されている。
そして、上蓋部材71、ダイアフラム73及び受け部材72を重ね合わせた端部を周溶接することにより、これらは一体化されている。
The power element 70 includes an upper lid member 71 formed of, for example, stainless steel, a receiving member 72 having a through-hole in the center, a diaphragm 73 sandwiched between the upper lid member 71 and the receiving member 72, and the diaphragm 73 and a stopper member 90 disposed between the receiving member 72 and the receiving member 72.
And the end part which piled up the upper cover member 71, the diaphragm 73, and the receiving member 72 is circumferential-welded, and these are integrated.

上蓋部材71とダイアフラム73との間には、圧力作動室75が形成され、この圧力作動室75内に作動ガスが封入された後、封止栓76で封止される。
受け部材72の下部は円筒状でその周囲には雄ねじ72aが形成され、上述したパワーエレメント取付部12の雌ねじと螺合することにより、パワーエレメント取付部12に取り付けられる。
このとき、パワーエレメント70と弁本体11との間には、パッキン35が介装される。
A pressure working chamber 75 is formed between the upper lid member 71 and the diaphragm 73. After the working gas is sealed in the pressure working chamber 75, the pressure working chamber 75 is sealed with a sealing plug 76.
The lower portion of the receiving member 72 is cylindrical, and a male screw 72a is formed around the lower portion. The screw 72a is attached to the power element mounting portion 12 by being screwed with the female screw of the power element mounting portion 12 described above.
At this time, the packing 35 is interposed between the power element 70 and the valve body 11.

出口ポート28と戻り通路30との間には、通し穴29が形成されている。そして、弁孔26と通し穴29と連通穴31とは、それぞれ中心が同一直線上になるように配置されている。
また、これら弁孔26、通し穴29及び連通穴31のそれぞれに挿通される態様で弁棒60が設けられている。
A through hole 29 is formed between the outlet port 28 and the return passage 30. And the valve hole 26, the through-hole 29, and the communication hole 31 are arrange | positioned so that a center may respectively be on the same straight line.
Further, a valve rod 60 is provided in such a manner as to be inserted into each of the valve hole 26, the through hole 29, and the communication hole 31.

弁棒60の上端側は、パワーエレメント70のストッパ部材90の下面に形成された受け部92に当接し、その下端側は、第1の弁部材110及び第2の弁部材40と接触するように配置される。
このような配置とすることにより、図1に示す膨張弁10は、パワーエレメント70の圧力作動室75における内圧の変動に応じて変形したダイアフラム73の動きを受け、ストッパ部材90が上下動し、当該ストッパ部材90の移動が弁棒60を介して弁構造体100の第1の弁部材110及び第2の弁部材40に伝達され、膨張弁としての役割を果たすことができる。
また、通し穴29には、弁棒60の外周面に摺動抵抗を付加するばね部材66が設けられており、弁棒60と第1の弁部材110及び第2の弁部材40との振動を防止する。
The upper end side of the valve stem 60 is in contact with a receiving portion 92 formed on the lower surface of the stopper member 90 of the power element 70, and the lower end side thereof is in contact with the first valve member 110 and the second valve member 40. Placed in.
With such an arrangement, the expansion valve 10 shown in FIG. 1 receives the movement of the diaphragm 73 deformed according to the fluctuation of the internal pressure in the pressure working chamber 75 of the power element 70, and the stopper member 90 moves up and down. The movement of the stopper member 90 is transmitted to the first valve member 110 and the second valve member 40 of the valve structure 100 via the valve rod 60, and can serve as an expansion valve.
The through hole 29 is provided with a spring member 66 that adds sliding resistance to the outer peripheral surface of the valve stem 60, and vibrations between the valve stem 60 and the first valve member 110 and the second valve member 40. To prevent.

図2は、図1に示す膨張弁の弁構造体の詳細を示す部分断面図である。なお、図2は、膨張弁が全閉状態の場合を示している。
図2に示すように、弁室24と出口ポート28との間には、弁座25を有する弁孔(オリフィス)26が形成されている。
FIG. 2 is a partial cross-sectional view showing details of the valve structure of the expansion valve shown in FIG. FIG. 2 shows a case where the expansion valve is fully closed.
As shown in FIG. 2, a valve hole (orifice) 26 having a valve seat 25 is formed between the valve chamber 24 and the outlet port 28.

弁室24内には、上記弁座25に当接あるいは離間することにより、冷媒の流れる弁孔26を開閉する弁構造体100が収容されている。
弁構造体100は、中央部に貫通穴を有しかつ弁座25に接触して開閉する第1の弁部材110と、第1の弁部材110の貫通穴に接触して開閉する第2の弁部材40と、第2の弁部材40を支持する支持部材42と、支持部材42を支持する第1のコイルスプリング44と、第1の弁部材110と支持部材42との間に介在する第2のコイルスプリング120と、からなる。
The valve chamber 24 houses a valve structure 100 that opens and closes the valve hole 26 through which the refrigerant flows by contacting or separating from the valve seat 25.
The valve structure 100 includes a first valve member 110 having a through hole at the center and opening and closing in contact with the valve seat 25, and a second valve opening and closing in contact with the through hole of the first valve member 110. The valve member 40, the support member 42 that supports the second valve member 40, the first coil spring 44 that supports the support member 42, and the first valve member 110 and the support member 42 that are interposed between the first valve member 110 and the support member 42. 2 coil springs 120.

支持部材42は、第2の弁部材40を支持するための円錐状のくぼみを備えた上面42aと側面に突出するフランジ部42bとを備えており、当該フランジ部42bの下面が第1のコイルスプリング44の一端を受ける構造となっている。
第1のコイルスプリング44は、支持部材42に設けられたフランジ部42bの下面とプラグ50に形成された凹部52との間に収容されており、これによって、第2の弁部材40は支持部材42を介して弁座25の位置する側に向けて付勢されている。
The support member 42 includes an upper surface 42a having a conical recess for supporting the second valve member 40, and a flange portion 42b protruding to the side surface, and the lower surface of the flange portion 42b is the first coil. The structure is such that one end of the spring 44 is received.
The first coil spring 44 is accommodated between the lower surface of the flange portion 42b provided in the support member 42 and the recess 52 formed in the plug 50, whereby the second valve member 40 is supported by the support member. The valve seat 25 is biased toward the side where the valve seat 25 is located.

第1の弁部材110は、円筒状の部材であって、全閉状態でその外周面が弁座25に接触するとともに、中央部に形成された貫通穴の開口端面(図3の符号113参照)が第2の弁部材40と接触するように構成されている。
また、第1の弁部材110の下面と支持部材42のフランジ部42bの上面との間には、第2のコイルスプリング120が介装されており、第2のコイルスプリング120は、第1の弁部材110を弁座25に向けて付勢している。
そして、プラグ50のねじ込み量を変化させて弁座25と凹部52の底面との距離を調整することにより、第1のコイルスプリング44及び第2のコイルスプリング120のばね力を調整することができる。
The first valve member 110 is a cylindrical member, and its outer peripheral surface is in contact with the valve seat 25 in a fully closed state, and an open end surface of a through hole formed in the center (see reference numeral 113 in FIG. 3). ) Is in contact with the second valve member 40.
Further, a second coil spring 120 is interposed between the lower surface of the first valve member 110 and the upper surface of the flange portion 42b of the support member 42, and the second coil spring 120 is connected to the first coil member 120 by the first coil member 120. The valve member 110 is biased toward the valve seat 25.
The spring force of the first coil spring 44 and the second coil spring 120 can be adjusted by changing the screwing amount of the plug 50 to adjust the distance between the valve seat 25 and the bottom surface of the recess 52. .

第2の弁部材40はボール状の部材であって、上記第2のコイルスプリング120の内側で支持部材42の上面42aに載置され、全閉状態で第1の弁部材110の貫通穴の開口端面113と接触する。
そして、弁棒60の弁室24側の端面が第2の弁部材40に接触するように、弁棒60が第1の弁部材110の貫通穴を挿通するように配置される。
ここで、図2に示すように、第1の弁部材110と第2の弁部材40とが当接した状態で、第1の弁部材110の上面から第2の弁部材40までの高さ方向の距離をH1とすると、全閉状態での弁棒60の挿入深さ(押し込み深さ)Lは、L=H1となる。
The second valve member 40 is a ball-shaped member, and is placed on the upper surface 42a of the support member 42 inside the second coil spring 120. When the second valve member 40 is fully closed, the second valve member 40 is formed in the through hole of the first valve member 110. Contact with the open end face 113.
The valve rod 60 is disposed so as to pass through the through hole of the first valve member 110 such that the end surface of the valve rod 60 on the valve chamber 24 side contacts the second valve member 40.
Here, as shown in FIG. 2, the height from the upper surface of the first valve member 110 to the second valve member 40 in a state where the first valve member 110 and the second valve member 40 are in contact with each other. If the distance in the direction is H1, the insertion depth (pushing depth) L of the valve stem 60 in the fully closed state is L = H1.

図3は、本発明の代表的な一例による第1の弁部材の概略を示す図であって、図3(a)は上面図であり、図3(b)は中心を通る面による断面図である。
上述のとおり、第1の弁部材110は、円筒状の部材であって、その外周面には上面に向かうテーパ面111が形成されている。
3A and 3B are views schematically showing a first valve member according to a typical example of the present invention, in which FIG. 3A is a top view and FIG. 3B is a cross-sectional view taken along a plane passing through the center. It is.
As above-mentioned, the 1st valve member 110 is a cylindrical member, Comprising: The taper surface 111 which goes to an upper surface is formed in the outer peripheral surface.

第1の弁部材110の中央部には、冷媒の通路となる貫通穴112が形成されており、その下面側の端部には、第2の弁部材40と接触する拡径テーパ状の開口端面113を備えている。
また、拡径テーパ状の開口端面113の上端部には、等間隔に4つの切欠部114が形成されている。
A through hole 112 serving as a refrigerant passage is formed in the central portion of the first valve member 110, and a diameter-expanded tapered opening that comes into contact with the second valve member 40 is formed at an end portion on the lower surface side thereof. An end face 113 is provided.
In addition, four notches 114 are formed at equal intervals at the upper end of the opening end face 113 having an enlarged diameter tapered shape.

第1の弁部材110の下面側には、縮径した段差部115が全周にわたって形成されている。
この段差部115は、図2等に示した第2のコイルスプリング120の上端を受ける受け部となる。
On the lower surface side of the first valve member 110, a stepped portion 115 having a reduced diameter is formed over the entire circumference.
The step portion 115 serves as a receiving portion that receives the upper end of the second coil spring 120 shown in FIG.

図4は、本発明の代表的な一例による弁棒の一端の概略を示す断面図である。
図4に示すように、本発明による膨張弁に適用される弁棒60は、図1に示す弁室24側に位置する端部において、縮径した小径部62を備えている。
これにより、小径部62の端面62aと段部60aとが形成されるとともに、小径部62は第1の弁部材110の貫通穴112に挿通され、その端面62aが第2の弁部材40に接触する。
FIG. 4 is a cross-sectional view schematically showing one end of a valve stem according to a typical example of the present invention.
As shown in FIG. 4, the valve rod 60 applied to the expansion valve according to the present invention includes a reduced diameter portion 62 at the end located on the valve chamber 24 side shown in FIG. 1.
As a result, the end surface 62a and the stepped portion 60a of the small diameter portion 62 are formed, and the small diameter portion 62 is inserted through the through hole 112 of the first valve member 110, and the end surface 62a contacts the second valve member 40. To do.

ここで、図3に示す第1の弁部材110における貫通穴112の内径をD1、弁棒60の小径部62の直径をD2、弁棒60自体の直径をD3とすると、これら3者の間には、「D2<D1<D3」の関係が成立するように形成される。
また、小径部62の突出する長さH2は、図2に示した距離H1よりも十分に大となるように形成される。
Here, when the inner diameter of the through hole 112 in the first valve member 110 shown in FIG. 3 is D1, the diameter of the small diameter portion 62 of the valve stem 60 is D2, and the diameter of the valve stem 60 itself is D3, the three Is formed so that the relationship of “D2 <D1 <D3” is established.
Further, the protruding length H2 of the small diameter portion 62 is formed to be sufficiently larger than the distance H1 shown in FIG.

本発明による膨張弁において、図1に示したパワーエレメント70のダイアフラム73の変動に応じて、ストッパ部材90に取り付けられた弁棒60が押し下げられると、当該弁棒60の弁室24側の端部が第1の弁部材110及び第2の弁部材40を押し下げる。
これにより、弁孔26の一部が開いて弁室24から出口ポート28へと冷媒が流出する。このときの第1の弁部材110と第2の弁部材40との開閉動作について、以下の図5及び図6を用いて説明する。
In the expansion valve according to the present invention, when the valve rod 60 attached to the stopper member 90 is pushed down in accordance with the variation of the diaphragm 73 of the power element 70 shown in FIG. 1, the end of the valve rod 60 on the valve chamber 24 side. The part pushes down the first valve member 110 and the second valve member 40.
As a result, a part of the valve hole 26 is opened and the refrigerant flows out from the valve chamber 24 to the outlet port 28. The opening / closing operation | movement with the 1st valve member 110 and the 2nd valve member 40 at this time is demonstrated using the following FIG.5 and FIG.6.

図5は、図2に示す膨張弁の弁構造体の定常流量モード状態を示す部分断面図である。
図5に示すように、定常流量モード状態において、弁棒60の先端の小径部62は、第1の弁部材110の貫通穴112に挿通され、その端面62aが第2の弁部材40を押し下げる。
このとき、弁棒60の小径部62の挿入深さLは、「H1<L<H2」となるように設定される。
FIG. 5 is a partial cross-sectional view showing a steady flow mode state of the valve structure of the expansion valve shown in FIG.
As shown in FIG. 5, in the steady flow mode state, the small diameter portion 62 at the tip of the valve rod 60 is inserted into the through hole 112 of the first valve member 110, and the end surface 62 a pushes down the second valve member 40. .
At this time, the insertion depth L of the small diameter portion 62 of the valve stem 60 is set to satisfy “H1 <L <H2”.

定常流量モード状態では、弁棒60と第1の弁部材110とは非接触であり、小径部62が第2の弁部材40のみを押し下げることとなる。
このため、第1の弁部材110のテーパ面111と弁座25との接触が維持された状態で、第1の弁部材110の開口端面113と第2の弁部材40との間には第1のギャップG1が形成される。
In the steady flow mode state, the valve rod 60 and the first valve member 110 are not in contact with each other, and the small diameter portion 62 pushes down only the second valve member 40.
For this reason, the contact between the tapered surface 111 of the first valve member 110 and the valve seat 25 is maintained, and the first valve member 110 has a first valve member 110 between the opening end surface 113 and the second valve member 40. 1 gap G1 is formed.

これにより、図5に示す定常流量モード状態では、弁座25と第1の弁部材110との間は閉弁され、第1の弁部材110と第2の弁部材40との間は開弁された状態となる。
このとき、上記の挿入深さLを「H1<L<H2」の間で調整することにより、第1のギャップG1も調整することができるため、弁棒60の動きにより流量の微細な調整が可能となる。
また、第1の弁部材110の上端に切欠部114が形成されているため、第1の弁部材110の上面と弁棒60の段部60aとの間の流量が増加し、貫通穴112を通過する冷媒の流れがスムーズになる。
Accordingly, in the steady flow mode state shown in FIG. 5, the valve seat 25 and the first valve member 110 are closed, and the first valve member 110 and the second valve member 40 are opened. It will be in the state.
At this time, the first gap G1 can also be adjusted by adjusting the insertion depth L between “H1 <L <H2”, so that the flow rate can be finely adjusted by the movement of the valve stem 60. It becomes possible.
Further, since the notch 114 is formed at the upper end of the first valve member 110, the flow rate between the upper surface of the first valve member 110 and the stepped portion 60a of the valve stem 60 increases, and the through hole 112 is formed. The flow of refrigerant passing through becomes smooth.

図6は、図2に示す膨張弁の弁構造体の大流量モード状態を示す部分断面図である。
図6に示すように、大流量モード状態において、弁棒60の先端の小径部62は、図5に示す位置から、弁棒60の段部60aが第1の弁部材110の上面と当接して第1の弁部材110も押し下げる位置まで駆動される。
このとき、弁棒60の小径部62の挿入深さLは、「H2<L」となるように設定される。
FIG. 6 is a partial cross-sectional view showing a large flow mode state of the valve structure of the expansion valve shown in FIG.
As shown in FIG. 6, in the large flow rate mode state, the small diameter portion 62 at the tip of the valve stem 60 has the stepped portion 60a of the valve stem 60 in contact with the upper surface of the first valve member 110 from the position shown in FIG. Thus, the first valve member 110 is also driven to a position where it is pushed down.
At this time, the insertion depth L of the small diameter portion 62 of the valve stem 60 is set to satisfy “H2 <L”.

大流量モード状態では、第1の弁部材110と第2の弁部材40との間の第1のギャップG1に加えて、弁座25と第1の弁部材110との間にも第2のギャップG2が形成される。
これにより、図6に示す大流量モード状態では、弁座25と第1の弁部材110との間、及び第1の弁部材110と第2の弁部材40との間のいずれも開弁された状態となる。
このとき、上記の挿入深さLを「H2<L」の範囲で調整することにより、第2のギャップG2を調整することができるため、従来のボール形状の弁体での開閉に比べて、より大流量の冷媒を流すことが可能となる。
In the large flow rate mode state, in addition to the first gap G1 between the first valve member 110 and the second valve member 40, the second gap is also present between the valve seat 25 and the first valve member 110. A gap G2 is formed.
Thereby, in the large flow rate mode state shown in FIG. 6, both the valve seat 25 and the first valve member 110 and between the first valve member 110 and the second valve member 40 are opened. It becomes the state.
At this time, since the second gap G2 can be adjusted by adjusting the insertion depth L in the range of “H2 <L”, compared to opening and closing with a conventional ball-shaped valve body, It becomes possible to flow a refrigerant having a larger flow rate.

図7は、本発明の膨張弁による流量特性の一例を示すグラフである。ここで、図7のグラフにおいては、横軸に「リフト量」、すなわち図2に示す全閉状態を基準とする弁棒60の押し下げ量を採用している。
また、図7のグラフにおいて、二点鎖線は、従来の小流量特性による膨張弁のリフト量と流量との関係を示し、破線は、従来の大流量特性による膨張弁のリフト量と流量との関係を示している。
FIG. 7 is a graph showing an example of a flow rate characteristic by the expansion valve of the present invention. Here, in the graph of FIG. 7, the “lift amount”, that is, the push-down amount of the valve stem 60 based on the fully closed state shown in FIG. 2 is adopted on the horizontal axis.
In the graph of FIG. 7, the two-dot chain line indicates the relationship between the lift amount and the flow rate of the expansion valve according to the conventional small flow rate characteristic, and the broken line indicates the lift amount and the flow rate of the expansion valve according to the conventional large flow rate characteristic. Showing the relationship.

図7に示すように、本発明による膨張弁は、空調装置等の起動時にリフト量が「H2<L」となる領域R2の範囲に調整することにより、図6に示すように、第1の弁部材110と第2の弁部材40との間、及び弁座25と第1の弁部材110との間がいずれも開弁する「大流量モード」による特性が得られる。
このとき、第1の弁部材110の外径及びテーパ面111の傾斜角度等を適宜選択することにより、当該テーパ面111が当接する弁座25の開口径を大きくすることが可能となり、結果として、従来のボール形状の弁部材を用いた場合に比べてより大流量の制御を行うことが可能となる。
As shown in FIG. 7, the expansion valve according to the present invention adjusts the lift amount to the range of the region R2 where the lift amount becomes “H2 <L” when starting the air conditioner or the like, as shown in FIG. The characteristic of the “large flow rate mode” in which the valve member 110 and the second valve member 40 and the valve seat 25 and the first valve member 110 are both opened is obtained.
At this time, by appropriately selecting the outer diameter of the first valve member 110, the inclination angle of the tapered surface 111, etc., it becomes possible to increase the opening diameter of the valve seat 25 with which the tapered surface 111 abuts. Thus, it is possible to control a larger flow rate as compared with the case where a conventional ball-shaped valve member is used.

一方、空調装置等の動作が安定した定常運転時には、リフト量が「H1<L<H2」となる領域R1の範囲に調整することにより、図5に示すように、第1の弁部材110の開口端面113と第2の弁部材40との間のみが開弁する「定常流量モード」による特性が得られる。
このとき、第1の弁部材110と第2の弁部材40との接触は、見かけ上で従来型の膨張弁の弁座と弁部材との関係と等価となるため、第2の弁部材40のサイズは従来型とほぼ同一のものを使用することができる。
On the other hand, at the time of steady operation where the operation of the air conditioner or the like is stable, the lift amount is adjusted to the range of the region R1 where “H1 <L <H2”, so that the first valve member 110 of the first valve member 110 is adjusted as shown in FIG. The characteristic by the “steady flow mode” in which only the opening end surface 113 and the second valve member 40 are opened is obtained.
At this time, the contact between the first valve member 110 and the second valve member 40 is apparently equivalent to the relationship between the valve seat and the valve member of the conventional expansion valve. The same size as that of the conventional type can be used.

上記に示す構成を備えることにより、本発明による膨張弁によれば、弁座と第1の弁部材との間の開閉を主とする大流量モードによる特性と、第1の弁部材と第2の弁部材との間の開閉による定常流量モードによる特性とを、弁棒の押し込み深さに応じたリフト量を調整することにより切り替えて併用することが可能となる。
また、第2の弁部材のサイズを大きくする必要がないため、これを支持する支持部材や第1のコイルスプリングあるいは弁室についても従来型のものをそのまま流用することが可能となり、モード切り替えに伴う仕様変更等によるコストアップを抑制できる。
With the configuration shown above, according to the expansion valve of the present invention, the characteristics of the large flow rate mode mainly for opening and closing between the valve seat and the first valve member, the first valve member and the second valve member are provided. It is possible to switch and use the characteristic of the steady flow rate mode by opening and closing with the valve member by adjusting the lift amount according to the push-in depth of the valve rod.
In addition, since it is not necessary to increase the size of the second valve member, the conventional support member, the first coil spring, or the valve chamber that supports the second valve member can be used as it is. Cost increase due to accompanying specification changes can be suppressed.

図8は、本発明による膨張弁における弁構造体の変形例の詳細を示す部分断面図である。
なお、図8では、膨張弁を大流量モードで使用している状態を示しており、図1〜図6で示したものと同一の構成を用いている場合には、同一の符号を付して再度の説明を省略する。
FIG. 8 is a partial cross-sectional view showing details of a modification of the valve structure in the expansion valve according to the present invention.
FIG. 8 shows a state in which the expansion valve is used in the large flow rate mode. When the same configuration as that shown in FIGS. 1 to 6 is used, the same reference numeral is given. Will not be described again.

図8に示すように、本発明の変形例による膨張弁において、弁棒60の弁室24側の端部には、縮径した小径部62と当該小径部62に至る傾斜面60cとが形成されている。
そして、小径部62の端面62aが第2の弁部材40に当接して押し下げるとともに、傾斜面60cが第1の弁部材110の貫通穴112の上端に当接して押し下げる。
As shown in FIG. 8, in the expansion valve according to the modification of the present invention, a reduced diameter small diameter portion 62 and an inclined surface 60 c reaching the small diameter portion 62 are formed at the end of the valve rod 60 on the valve chamber 24 side. Has been.
Then, the end surface 62a of the small diameter portion 62 comes into contact with the second valve member 40 and is pushed down, and the inclined surface 60c comes into contact with the upper end of the through hole 112 of the first valve member 110 and pushes down.

このような構成により、上記の効果に加えて、小径部62の根元が連続的に太くなる形状のため、弁棒60の先端の強度が向上するとともに、小径部62が直立する場合に対して加工が容易になる。
また、傾斜面60cが滑らかに拡径する表面として形成されるため、第1の弁部材110の貫通穴112を通過する冷媒を澱むことなく滑らかに流すことができる。
With such a configuration, in addition to the above effect, the shape of the root of the small diameter portion 62 is continuously thickened, so that the strength of the tip of the valve stem 60 is improved and the small diameter portion 62 stands upright. Processing becomes easy.
In addition, since the inclined surface 60c is formed as a surface that smoothly expands in diameter, the refrigerant that passes through the through hole 112 of the first valve member 110 can flow smoothly without stagnation.

以上、本発明による膨張弁についてその代表的な例に基づき説明したが、本発明は上記の具体例に限定されるものではなく、種々の改変を施すことができる。
例えば、第2の弁部材としてボール形状の部材を用いた場合を例示したが、第1の弁部材に形成された貫通穴に当接して閉鎖できるものであれば、例えば円錐形状や円錐台形状等の他の形状のものを採用してもよい。
また、第2の弁部材と支持部材とは、別体として形成されていてもよいが、一体物として形成されてもよい。
As described above, the expansion valve according to the present invention has been described based on typical examples thereof, but the present invention is not limited to the above specific examples, and various modifications can be made.
For example, the case where a ball-shaped member is used as the second valve member is illustrated, but if it can be closed by contacting a through hole formed in the first valve member, for example, a conical shape or a truncated cone shape Other shapes such as the above may be adopted.
Further, the second valve member and the support member may be formed as separate bodies, but may be formed as an integrated object.

さらに、上記具体例では、パワーエレメントを弁本体の上端にねじ込みによって取り付けた場合を例示したが、これ以外に、弁本体の上部に円筒部を形成し、この円筒部の内側にパワーエレメントを挿入した状態で、該円筒部を内側カシメ加工することにより、パワーエレメントを取り付ける構成を用いてもよい。
その他にも、本発明の要旨を逸脱しない範囲で上記実施例に種々の改変を施すことも可能である。
Furthermore, in the above specific example, the case where the power element is attached to the upper end of the valve body by screwing is illustrated, but besides this, a cylindrical part is formed on the upper part of the valve body, and the power element is inserted inside this cylindrical part. In this state, a configuration in which the power element is attached may be used by caulking the cylindrical portion.
In addition, various modifications can be made to the above-described embodiment without departing from the gist of the present invention.

10 膨張弁
11 弁本体
12 パワーエレメント取付部
20 入口ポート
24 弁室
25 弁座
26 弁孔
28 出口ポート
29 通し穴
30 戻り通路
31 連通穴
40 第2の弁部材
42 支持部材
44 第1のコイルスプリング
50 プラグ
54 シール部材
60 弁棒
60a 段部
62 小径部
62a 端面
70 パワーエレメント
71 上蓋部材
72 受け部材
73 ダイアフラム
75 圧力作動室
90 ストッパ部材
100 弁構造体
110 第1の弁部材
111 テーパ面
112 貫通穴
113 開口端面
114 切欠部
115 段差部
120 第2のコイルスプリング
DESCRIPTION OF SYMBOLS 10 Expansion valve 11 Valve main body 12 Power element attaching part 20 Inlet port 24 Valve chamber 25 Valve seat 26 Valve hole 28 Outlet port 29 Through hole 30 Return passage 31 Communication hole 40 2nd valve member 42 Support member 44 1st coil spring 50 Plug 54 Seal member 60 Valve rod 60a Step portion 62 Small diameter portion 62a End surface 70 Power element 71 Upper lid member 72 Receiving member 73 Diaphragm 75 Pressure operating chamber 90 Stopper member 100 Valve structure 110 First valve member 111 Tapered surface 112 Through hole 113 Open end face 114 Notch 115 Step part 120 Second coil spring

Claims (6)

上蓋部材と、受け部材と、前記上蓋部材及び前記受け部材の間に挟まれるダイアフラムと、を含むパワーエレメントと、
入口ポートと、前記入口ポートに連通する弁室と、前記弁室に連通する弁孔と、前記弁孔に連通する出口ポートと、前記弁孔の前記弁室側の開口部に形成された弁座と、パワーエレメント取付部と、を含む弁本体と、
中央部に貫通穴を有し、前記弁座に接触して開閉する第1の弁部材と、
前記第1の弁部材の前記貫通穴に接触して開閉する第2の弁部材と、
前記第2の弁部材を支持する支持部材と、
前記支持部材を支持する第1のコイルスプリングと、
前記第1の弁部材と前記支持部材との間に介在する第2のコイルスプリングと、
前記パワーエレメントに取り付けられて、前記第1の弁部材及び前記第2の弁部材を駆動する弁棒と、
を備え、
前記弁棒は、前記弁室側の端部が前記貫通穴に挿入されるように配置されるとともに、その端面が前記第2の弁部材に接触する
ことを特徴とする膨張弁。
A power element including an upper lid member, a receiving member, and a diaphragm sandwiched between the upper lid member and the receiving member;
An inlet port, a valve chamber communicating with the inlet port, a valve hole communicating with the valve chamber, an outlet port communicating with the valve hole, and a valve formed at an opening of the valve hole on the valve chamber side A valve body including a seat and a power element mounting portion;
A first valve member having a through hole in a central portion and opening and closing in contact with the valve seat;
A second valve member that opens and closes in contact with the through hole of the first valve member;
A support member for supporting the second valve member;
A first coil spring that supports the support member;
A second coil spring interposed between the first valve member and the support member;
A valve stem attached to the power element for driving the first valve member and the second valve member;
With
The said valve stem is arrange | positioned so that the edge part by the side of the said valve chamber may be inserted in the said through-hole, and the end surface contacts the said 2nd valve member, The expansion valve characterized by the above-mentioned.
前記第1の弁部材は円筒状の部材であって、その上面に向かうテーパ面が外周面に形成されている
ことを特徴とする請求項1に記載の膨張弁。
2. The expansion valve according to claim 1, wherein the first valve member is a cylindrical member, and a tapered surface toward an upper surface thereof is formed on an outer peripheral surface.
前記第1の弁部材は、下面の外周部に段差部を有し、
前記第2のコイルスプリングは、その一端が前記第1の弁部材の前記段差部に配置される
ことを特徴とする請求項1又は2に記載の膨張弁。
The first valve member has a step portion on the outer peripheral portion of the lower surface,
The expansion valve according to claim 1 or 2, wherein one end of the second coil spring is disposed in the step portion of the first valve member.
前記第2の弁部材は、前記第2のコイルスプリングの内側に配置される
ことを特徴とする請求項1〜3のいずれか一項に記載の膨張弁。
The expansion valve according to any one of claims 1 to 3, wherein the second valve member is disposed inside the second coil spring.
前記弁棒の前記弁室側の端部には、小径部及び段部が形成されており、前記段部が前記第1の弁部材の上面と接触する
ことを特徴とする請求項1〜4のいずれか一項に記載の膨張弁。
A small diameter portion and a step portion are formed at an end portion of the valve stem on the valve chamber side, and the step portion is in contact with the upper surface of the first valve member. The expansion valve according to any one of the above.
前記弁棒の前記弁室側の端部には、前記端面に向けて縮径するテーパ状の側面が形成されており、前記テーパ状の側面が前記第1の弁部材の前記貫通穴の開口端と接触する
ことを特徴とする請求項1〜4のいずれか一項に記載の膨張弁。
A tapered side surface that is reduced in diameter toward the end surface is formed at an end of the valve stem on the valve chamber side, and the tapered side surface is an opening of the through hole of the first valve member. The expansion valve according to any one of claims 1 to 4, wherein the expansion valve is in contact with an end.
JP2016088047A 2016-04-26 2016-04-26 Expansion valve Active JP6846875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016088047A JP6846875B2 (en) 2016-04-26 2016-04-26 Expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016088047A JP6846875B2 (en) 2016-04-26 2016-04-26 Expansion valve

Publications (2)

Publication Number Publication Date
JP2017198373A true JP2017198373A (en) 2017-11-02
JP6846875B2 JP6846875B2 (en) 2021-03-24

Family

ID=60239125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016088047A Active JP6846875B2 (en) 2016-04-26 2016-04-26 Expansion valve

Country Status (1)

Country Link
JP (1) JP6846875B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4067777A1 (en) 2021-03-29 2022-10-05 Fujikoki Corporation Power element and expansion valve used therein

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2805039A (en) * 1953-05-28 1957-09-03 Henry W Angelery Statically and dynamically balanced pressure actuated valve
JPS49115724U (en) * 1973-01-30 1974-10-03
JPS61202055A (en) * 1985-03-01 1986-09-06 日産自動車株式会社 Automatic expansion valve
JP2003322435A (en) * 2002-04-30 2003-11-14 Fuji Koki Corp Expansion valve
JP2008076031A (en) * 2006-09-25 2008-04-03 Denso Corp Expansion valve
JP2008215797A (en) * 2007-02-07 2008-09-18 Tgk Co Ltd Expansion valve
JP2010112616A (en) * 2008-11-06 2010-05-20 Tgk Co Ltd Thermal expansion valve
JP2010203618A (en) * 2010-05-01 2010-09-16 Japan Steel Works Ltd:The Fluid pressure on/off valve
JP2012197990A (en) * 2011-03-22 2012-10-18 Fuji Koki Corp Expansion valve
JP2014020457A (en) * 2012-07-18 2014-02-03 Rinnai Corp Electric flow rate regulating valve

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2805039A (en) * 1953-05-28 1957-09-03 Henry W Angelery Statically and dynamically balanced pressure actuated valve
JPS49115724U (en) * 1973-01-30 1974-10-03
JPS61202055A (en) * 1985-03-01 1986-09-06 日産自動車株式会社 Automatic expansion valve
JP2003322435A (en) * 2002-04-30 2003-11-14 Fuji Koki Corp Expansion valve
JP2008076031A (en) * 2006-09-25 2008-04-03 Denso Corp Expansion valve
JP2008215797A (en) * 2007-02-07 2008-09-18 Tgk Co Ltd Expansion valve
JP2010112616A (en) * 2008-11-06 2010-05-20 Tgk Co Ltd Thermal expansion valve
JP2010203618A (en) * 2010-05-01 2010-09-16 Japan Steel Works Ltd:The Fluid pressure on/off valve
JP2012197990A (en) * 2011-03-22 2012-10-18 Fuji Koki Corp Expansion valve
JP2014020457A (en) * 2012-07-18 2014-02-03 Rinnai Corp Electric flow rate regulating valve

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4067777A1 (en) 2021-03-29 2022-10-05 Fujikoki Corporation Power element and expansion valve used therein

Also Published As

Publication number Publication date
JP6846875B2 (en) 2021-03-24

Similar Documents

Publication Publication Date Title
JP5696093B2 (en) Motorized valve
US7373788B2 (en) Expansion valve
JP5971871B2 (en) Aperture device
US10208867B2 (en) Throttling device and refrigeration cycle
JP2017198387A (en) Expansion valve
EP2267347B1 (en) Diaphragm-actuated fluid control valve
JP2012197990A (en) Expansion valve
US20180010705A1 (en) Throttle device and refrigerating cycle
JP2008138812A (en) Differential pressure valve
JP6522023B2 (en) Motorized valve
JP2018021717A (en) Expansion valve
WO2019181409A1 (en) Power element and expansion valve having same
JP2015206541A (en) throttle device
JP6846875B2 (en) Expansion valve
JP6359593B2 (en) Motorized valve
US20040007015A1 (en) Expansion valve
KR20050054842A (en) Expansion valve
US10837683B2 (en) Throttling device and refrigeration cycle
JP2001012824A (en) Control valve
WO2018030115A1 (en) Expansion valve
JP6734595B2 (en) Expansion valve
JP6788887B2 (en) Expansion valve
JP2019060498A (en) Motor-operated valve
JP5342951B2 (en) Motorized valve
JP2005249273A (en) Thermal expansion valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210302

R150 Certificate of patent or registration of utility model

Ref document number: 6846875

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250