JPH1083719A - Transparent conductive film - Google Patents

Transparent conductive film

Info

Publication number
JPH1083719A
JPH1083719A JP25740696A JP25740696A JPH1083719A JP H1083719 A JPH1083719 A JP H1083719A JP 25740696 A JP25740696 A JP 25740696A JP 25740696 A JP25740696 A JP 25740696A JP H1083719 A JPH1083719 A JP H1083719A
Authority
JP
Japan
Prior art keywords
transparent conductive
conductive film
film
atomic
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25740696A
Other languages
Japanese (ja)
Other versions
JP3163015B2 (en
Inventor
Tadaji Minami
内 嗣 南
Shinzo Takada
田 新 三 高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP25740696A priority Critical patent/JP3163015B2/en
Publication of JPH1083719A publication Critical patent/JPH1083719A/en
Application granted granted Critical
Publication of JP3163015B2 publication Critical patent/JP3163015B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a transparent conductive film having a high visible ray transmittance and easy controllability for the etching speed based upon a change of the metal component composition and provide a target material for use in manufacturing the film, which can not be achieved with a conventional Sn- added Zn-In-O or Zn2 In2 O5 oxide transparent conductive film either amorphous or crystalline. SOLUTION: A composite metal oxide film containing In, Sn, and Zn forms at least one sort of In4 Sn3 O12 crystal or fine crystals or amorphous substance composed of In, Sn, and Zn, where the Sn content as given by Sn×100/(In+Sn) should range from 40 to 60 atomic % while the Zn content given by Zn×100/(In+Zn) range from 10 to 90 atomic %, preferably from 30 to 70 atomic %.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は透明導電膜及びそれを製
造するために使用される焼結体に関する。
The present invention relates to a transparent conductive film and a sintered body used for producing the same.

【0002】[0002]

【従来の技術】各種ディスプレイ装置や薄膜太陽電池の
透明電極、あるいは将来莫大な需要が見込まれる紫外線
遮断・赤外線反射特性に優れた省エネルギー建築用窓硝
子コーティング材として、可視光透過率が高く、低抵抗
な特性を有する透明導電膜が欠かせない。現在最も広く
利用されている透明導電膜としては、金属酸化物薄膜が
主であり、高い化学的安定性を有する酸化錫SnO2
(Fまたはアンチモン(Sb)を添加したものが主とし
て利用されている。)、酸化インジウム(In23)、
優れた電気的・光学的特性を有する錫添加酸化インジウ
ム[In23−SnO2−以下ITOという]が知られ
ている。最近では、申請者らによって亜鉛スタンネート
(ZnSnO3)やIn4Sn312、あるいはSn添加
Zn2In25のような新しい多元系複合金属酸化物を
用いた透明導電膜の開発が進められている。これは透明
導電膜の性能を低下させることなく、あるいはその性能
の向上を図りつつ、高価な希少金属であるInの使用量
を極力低減するためである。
2. Description of the Related Art As a transparent electrode for various display devices and thin-film solar cells, or as a window glass coating material for energy-saving buildings having excellent ultraviolet blocking / infrared reflecting properties expected to be enormous in the future, it has a high visible light transmittance and a low visible light transmittance. A transparent conductive film having resistance characteristics is indispensable. Currently, the most widely used transparent conductive film is mainly a metal oxide thin film, and a tin oxide SnO 2 type (F or antimony (Sb)) having high chemical stability is mainly used. ), Indium oxide (In 2 O 3 ),
BACKGROUND ART Tin-doped indium oxide [In 2 O 3 -SnO 2 -hereinafter referred to as ITO] having excellent electrical and optical characteristics is known. Recently, the applicants have been developing a transparent conductive film using a new multi-component composite metal oxide such as zinc stannate (ZnSnO 3 ), In 4 Sn 3 O 12 , or Sn-added Zn 2 In 2 O 5. Have been. This is because the amount of In, which is an expensive rare metal, is reduced as much as possible without deteriorating the performance of the transparent conductive film or while improving the performance.

【0003】[0003]

【発明が解決しようとする問題点】しかしながら、膜中
に含まれるSn量が多くなるにつれ通常の酸によるエッ
チングが次第に困難となり、パターニング処理に支障を
来すという問題があった。他方、透明導電膜に対し、近
年多様な用途が開発されるに及んで従来の透明導電膜材
料ではこれらに対応しきれなくなってきた。例えば、ア
ナログ入力用透明ペンタッチパネルの用途では、従来の
ように必ずしも低抵抗率を必要とせず、むしろ大面積に
わたって均一で適度な抵抗率と、高い可視光透過率が求
められる。さらに膜の電気的・光学的性能を低下させる
ことなく酸・アルカリ等に対する薬品耐性を自由に制御
できる透明導電膜の提供が要望されているが、従来の透
明導電膜ではこのような多様化する用途に対応すること
ができないという問題があった。
However, as the amount of Sn contained in the film increases, ordinary etching with an acid gradually becomes difficult, which causes a problem in the patterning process. On the other hand, as the transparent conductive film has been developed for various uses in recent years, the conventional transparent conductive film material has become unable to cope with these. For example, in the application of a transparent pen touch panel for analog input, a low resistivity is not always required as in the past, but rather a uniform and appropriate resistivity over a large area and a high visible light transmittance are required. Further, there is a demand for the provision of a transparent conductive film capable of freely controlling chemical resistance to acids, alkalis, and the like without deteriorating the electrical and optical performance of the film. There was a problem that it could not be adapted to the application.

【0004】[0004]

【問題点を解決するための手段】上記問題点を解決する
ため、In、SnおよびZnを含む複合金属酸化物膜
が、少なくとも1種のIn4Sn312結晶相を形成し、
Sn×100/(In+Sn)で示されるSn量が40
〜60原子%であり、Zn×100/(In+Zn)で
示されるZn量が10〜90原子%、好ましくは30〜
70原子%含有する該酸化物膜を形成した透明導電膜を
提供するものである。ここで、Zn量が10%以下、9
0%以上では本発明の特徴が発揮出来ない。本発明に成
る透明導電膜は、従来知られているSn添加Zn−In
−O系酸化物[特願平7ー91327あるいは特開平6
ー318406]の組成とは大きく異なり、全く予想を
越えた組成領域と機能をもつという特徴を有する。本発
明によって、従来の非晶質や結晶質のSn添加Zn−I
n−OやZn2In25酸化物透明導電膜では得られな
い高い可視光透過率と成分組成を変えることによるエッ
チング速度の容易な制御を可能にした。本発明では、上
記のような特徴をいかんなく発揮するための新しい透明
導電膜、及び該膜を製造するために使用されるタ−ゲッ
ト材を提供することを目的としている。
[Means for Solving the Problems] To solve the above problems, a composite metal oxide film containing In, Sn and Zn forms at least one kind of In 4 Sn 3 O 12 crystal phase,
The amount of Sn represented by Sn × 100 / (In + Sn) is 40
-60 atomic%, and the amount of Zn represented by Zn × 100 / (In + Zn) is 10-90 atomic%, preferably 30-90 atomic%.
An object of the present invention is to provide a transparent conductive film on which the oxide film containing 70 atomic% is formed. Here, the Zn content is 10% or less,
If it is 0% or more, the features of the present invention cannot be exhibited. The transparent conductive film according to the present invention is made of a conventionally known Sn-added Zn-In.
-O-based oxide [Japanese Patent Application No. Hei 7-91327 or Japanese Unexamined Patent Application Publication No.
318406], and has a feature and a composition region that is completely unexpected. According to the present invention, the conventional amorphous or crystalline Sn-added Zn-I
It is possible to easily control the etching rate by changing the visible light transmittance and the component composition, which cannot be obtained with the n-O or Zn 2 In 2 O 5 oxide transparent conductive film. An object of the present invention is to provide a new transparent conductive film for fully exhibiting the above-mentioned features, and a target material used for manufacturing the film.

【0005】具体的には、In23−SnO2−ZnO
系複合金属酸化物において、該金属成分組成として、S
n×100/(In+Sn)で示されるSn量が40〜
60原子%であり、Zn/(In+Zn)で示されるZ
n量が10〜90、好ましくは30〜70原子%の範囲
にある混合粉末、もしくは必要に応じて焼成、あるいは
必要に応じて成型・焼結したものをタ−ゲットに用い、
例えば、スパッタ法により、基体としてガラスのような
セラミック質基板あるいはプラスチックのような有機質
基板上に上記組成範囲にある該複合金属酸化物膜を形成
することによって本発明の目的を達成することができ
る。加えて、該酸化物におけるSnに対してVII族元素
であるFを、F/(Sn+F)で示される原子比で0.
02(2%)以下の範囲で添加することは低抵抗率化に
寄与する。
Specifically, In 2 O 3 —SnO 2 —ZnO
In the composite metal oxide, the metal component composition includes S
The Sn amount represented by n × 100 / (In + Sn) is 40 to
Z at 60 atomic% and expressed as Zn / (In + Zn)
A mixed powder having an n amount in the range of 10 to 90, preferably 30 to 70 atomic%, or fired as required, or molded and sintered as required, is used as a target,
For example, the object of the present invention can be achieved by forming the composite metal oxide film having the above composition range on a ceramic substrate such as glass or an organic substrate such as plastic by a sputtering method. . In addition, F, which is a Group VII element with respect to Sn in the oxide, is added at an atomic ratio of F / (Sn + F) of 0.1.
Addition in the range of 02 (2%) or less contributes to lowering the resistivity.

【0006】本発明になる該透明導電膜の製造法として
は、上記した方法のみならずレーザアブレーション法、
真空蒸着法、化学気相結晶成長(CVD)法、ゾルーゲ
ル法、分子線エピタキシャル成長法等公知の任意の膜作
製法が利用できる。
The method for producing the transparent conductive film according to the present invention includes not only the above-described method but also a laser ablation method,
Any known film forming method such as a vacuum deposition method, a chemical vapor crystal growth (CVD) method, a sol-gel method, and a molecular beam epitaxial growth method can be used.

【0007】[0007]

【作 用】本発明の目的に適う上記組成範囲内の膜を
該基体上に前述したような公知の膜作製法により形成す
る際、酸素空孔や格子間原子等の真性格子欠陥による内
因性ドナ−、及びVI族元素の一部がVII族元素で置換す
る外因性ドナ−の導入によるキャリアの生成が可能であ
る。本発明になる該酸化物膜は、非晶質、もしくはIn
4Sn312、In4Sn312とIn23、In4Sn3
12とSnO2、In4Sn312とZnO、In4Sn3
12とZn2In25、あるいはこれらの1種以上を組み
合わせた混相から成る結晶もしくは微結晶質であり上述
のメカニズムによる高いキャリア生成を可能とし、加え
て本発明になる該透明導電膜は、含まれるZn量を変え
ることによって望みのエッチング速度が容易に得られる
という顕著な作用効果があるため各種のアナログ入力透
明タッチパネル、透明低抗パネル、あるいは透明タッチ
スイッチ等への利用に最適である。以下、本発明を実施
例により説明する。
When forming a film having the above composition range suitable for the purpose of the present invention on the substrate by the known film forming method as described above, intrinsic film due to intrinsic lattice defects such as oxygen vacancies and interstitial atoms. Carriers can be generated by introducing donors and exogenous donors in which a part of group VI elements are substituted with group VII elements. The oxide film according to the present invention is amorphous or
4 Sn 3 O 12 , In 4 Sn 3 O 12 and In 2 O 3 , In 4 Sn 3 O
12 and SnO 2 , In 4 Sn 3 O 12 and ZnO, In 4 Sn 3 O
12 and Zn 2 In 2 O 5 , or a crystal or microcrystalline material composed of a mixed phase obtained by combining one or more of them, enables high carrier generation by the above-described mechanism, and furthermore, the transparent conductive film according to the present invention Since the desired etching rate can be easily obtained by changing the amount of Zn contained, it is most suitable for various analog input transparent touch panels, transparent low resistance panels, transparent touch switches, and the like. . Hereinafter, the present invention will be described with reference to examples.

【0008】[0008]

【実施例 1】In23、SnO2およびZnO原料粉
末を用いて、金属成分組成、すなわちIn、Sn、Zn
がそれぞれ15、50、35原子%になるように調製し
た混合粉をアルゴン(Ar)ガス中、1000℃で5時
間焼成した焼成粉を直径80mmのステンレス製皿に詰
め、スパッタ用粉末ターゲットを作製した。スパッタガ
スにはAr+4%酸素(O2)を用いた。スパッタガス
圧を0.2Paに設定し、ターゲット面に平行に保持さ
れた室温のガラス基板上に、直流投入電力40Wでスパ
ッタを行ない、厚さ約300nmの膜を作製した。該膜
を1モルの希塩酸に浸漬した結果、図1に示すように、
上記組成に相当するZn/(In+Zn)原
Example 1 A metal component composition, that is, In, Sn, Zn was prepared using In 2 O 3 , SnO 2 and ZnO raw material powder.
Of the mixed powder prepared so as to be 15, 50, and 35 at% respectively in an argon (Ar) gas at 1000 ° C. for 5 hours, and then packed in a stainless steel dish having a diameter of 80 mm to produce a powder target for sputtering. did. Ar + 4% oxygen (O 2 ) was used as a sputtering gas. The sputtering gas pressure was set to 0.2 Pa, and sputtering was performed on a glass substrate at room temperature held in parallel with the target surface with a DC input power of 40 W to produce a film having a thickness of about 300 nm. As a result of immersing the film in 1 mol of dilute hydrochloric acid, as shown in FIG.
Zn / (In + Zn) source corresponding to the above composition

【図1】子比が70%で約180nm/minのエッチ
ング速度が得られた。尚、この際SnのInに対する添
加量は50原子%一定とした。一方、膜厚を20nmに
なるように作製したIn、Sn、Znそれぞれ25、2
5、50原子%から成る該膜では、上記した厚い膜と同
じエッチング速度を得るInに対する該Znの添加量は
約55原子%であった。いずれの厚さの膜も平均可視光
透過率は90%以上を示した。さらに両膜ともシート抵
抗は約1kΩ/□であった。また、作製した膜をx線回
折により分析した結果、いずれの膜も微結晶もしくは非
晶質であった。。尚、基板としてポリエチレンテレフタ
レート(PET)フイルムや硬質ポリカーボネート板に
形成されたPETフイルム上に該膜を形成した場合でも
上記とほぼ同じ結果が得られた。さらに基板温度を30
0℃程度に上げて成膜した場合では、得られた膜にはI
4Sn312結晶相が弱いながらも含まれていることが
X線回折測定の結果から判明した。
FIG. 1 shows that an etching rate of about 180 nm / min was obtained at a child ratio of 70%. In this case, the addition amount of Sn to In was fixed at 50 atomic%. On the other hand, In, Sn, and Zn prepared to have a film thickness of 20 nm,
In the film consisting of 5, 50 at%, the addition amount of Zn to In which obtains the same etching rate as the thick film described above was about 55 at%. The average visible light transmittance of the films having any thickness was 90% or more. Further, both films had a sheet resistance of about 1 kΩ / □. Further, as a result of analyzing the produced films by x-ray diffraction, all the films were microcrystalline or amorphous. . In addition, when the film was formed on a polyethylene terephthalate (PET) film or a PET film formed on a hard polycarbonate plate as a substrate, almost the same results as described above were obtained. Further, when the substrate temperature is 30
When the film was formed at a temperature of about 0 ° C.,
It was found from the result of X-ray diffraction measurement that the n 4 Sn 3 O 12 crystal phase was contained although it was weak.

【0009】[0009]

【実施例 2】実施例1において使用したスパッタタ−
ゲットを用い高周波マグネトロンスパッタ法により30
0℃に加熱されたガラス基板上に、金属成分組成とし
て、In、Sn、Znがそれぞれ20、50、30原子
%から成る厚さ約25nmの複合金属酸化物膜を作製し
た。得られたエッチング速度は最大500nm/min
に達した。他の電気的・光学的特性は実施例1とほぼ同
様であった。尚、Snに対して、SnF2を用いて、F
を2原子%添加して得られた膜ではそのシート抵抗は2
00Ω/□と実施例1の結果に比べかなり低いになっ
た。また、該膜はIn4Sn312とIn23の混相であ
ることがX線回折測定の結果、判明した。しかし、基板
温度を室温にして成膜した場合では結晶相は殆ど確認さ
れず非晶質様であった。
Embodiment 2 Sputterer used in Embodiment 1
Using a high frequency magnetron sputtering method
On a glass substrate heated to 0 ° C., a composite metal oxide film having a thickness of about 25 nm and made of 20, 50, and 30 atomic% of In, Sn, and Zn, respectively, was formed as a metal component composition. The obtained etching rate is up to 500 nm / min.
Reached. Other electrical and optical characteristics were almost the same as in Example 1. Incidentally, with respect to Sn, with SnF 2, F
Of the film obtained by adding 2 atomic% of
00 Ω / □, which was considerably lower than the result of Example 1. X-ray diffraction measurement revealed that the film was a mixed phase of In 4 Sn 3 O 12 and In 2 O 3 . However, when the film was formed at a substrate temperature of room temperature, almost no crystalline phase was observed and the film was amorphous.

【0010】[0010]

【実施例 3】実施例1で用いたスパッタターゲットと
同じ組成を有する焼結体ぺレットを用いてレーザアブレ
ーション法により厚さ320nmの複合金属酸化物膜を
作製した。得られた膜の組成はエレクトロンマイクロプ
ローブアナライザ(EPMA)により分析を行なったと
ころターゲット組成とほぼ同じであることがわかった。
電気的・光学的特性やエッチング特性は実施例1の場合
と同様であった。
Example 3 A composite metal oxide film having a thickness of 320 nm was formed by a laser ablation method using a sintered pellet having the same composition as the sputter target used in Example 1. When the composition of the obtained film was analyzed by an electron microprobe analyzer (EPMA), it was found that the composition was almost the same as the target composition.
The electrical / optical characteristics and etching characteristics were the same as in Example 1.

【0011】[0011]

【実施例 4】大気圧CVD法により、In原料として
インジウムアセチルアセトネ−ト、Sn原料としてSn
アセテート、Zn原料としてZnアセチルアセトネー
ト、酸素原料としてH2Oを用い、全ての原料を加熱さ
れたステンレス製容器に充填し、ステンレス配管を通じ
て原料ガスをキャリアガスとともに、石英リアクタ内に
セットされ350℃に加熱されているガラス基板に向け
て供給し実施例2と同じ金属成分組成から成る複合金属
酸化物膜を該ガラス基板上に作製した。尚、原料温度
は、それぞれ85℃、150℃、73℃、並びにキャリ
アガス流量は、それぞれ500CCM、20CCM、2.6×
10-3mol/minであった。作製した膜は厚さ33
0nm、エッチング速度は320nm/minであっ
た。また抵抗率は2.6×10-3Ωcm、平均可視光透
過率は88%以上であった。また、該膜をX線回折によ
り分析を行なったところ、In4Sn312が弱いながら
も検出された。
Embodiment 4 By atmospheric pressure CVD, indium acetylacetonate was used as the In material and Sn was used as the Sn material.
Using acetate, Zn acetylacetonate as a Zn raw material, and H 2 O as an oxygen raw material, all raw materials were filled in a heated stainless steel container, and the raw material gas was set together with a carrier gas through a stainless steel pipe in a quartz reactor. A composite metal oxide film having the same metal component composition as that of Example 2 was supplied to the glass substrate heated to ° C., and was formed on the glass substrate. The raw material temperatures were 85 ° C., 150 ° C., and 73 ° C., respectively, and the carrier gas flow rates were 500 CCM, 20 CCM, and 2.6 ×, respectively.
It was 10 −3 mol / min. The prepared film has a thickness of 33
0 nm and the etching rate was 320 nm / min. The resistivity was 2.6 × 10 −3 Ωcm, and the average visible light transmittance was 88% or more. When the film was analyzed by X-ray diffraction, In 4 Sn 3 O 12 was detected although it was weak.

【0012】本発明になる透明導電膜は、前記実施例の
みに限定されるものではなく、種々の公知の膜作製法が
利用できることは言うまでもない。
The transparent conductive film according to the present invention is not limited to the above-described embodiment, and it goes without saying that various known film forming methods can be used.

【発明の効果】本発明によって、従来の非晶質や結晶質
のSn添加Zn−In−OやZn2In25酸化物透明
導電膜では得られない高い可視光透過率と、In−Sn
−Zn−O系におけるZnのInに対する原子比を変え
ることにより容易に該複合金属酸化物膜のエッチング速
度を容易に制御できるという顕著な効果が得られた。こ
のように含まれるZn量を変えることによって望みのエ
ッチング速度が容易に得られるという顕著な効果がある
ため各種のアナログ入力透明タッチパネル、透明低抗パ
ネル、あるいは透明タッチスイッチ等への利用に最適で
ある。
According to the present invention, a high visible light transmittance which cannot be obtained by the conventional amorphous or crystalline Sn-added Zn-In-O or Zn 2 In 2 O 5 oxide transparent conductive film, Sn
The remarkable effect that the etching rate of the composite metal oxide film can be easily controlled by changing the atomic ratio of Zn to In in the -Zn-O system was obtained. Since the desired etching rate can be easily obtained by changing the amount of Zn contained in this way, it is most suitable for use in various analog input transparent touch panels, transparent low resistance panels, transparent touch switches, and the like. is there.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Zn/(In+Zn)原子比に対するエッチン
グ速度の膜厚依存性。
FIG. 1 shows the dependence of the etching rate on the film thickness with respect to the atomic ratio of Zn / (In + Zn).

【符号の説明】[Explanation of symbols]

1・・・・・膜厚20nm 2・・・・・膜
厚300nm
1 ... thickness 20nm 2 ... thickness 300nm

Claims (7)

【整理番号】 ET80817D 【特許請求の範囲】[Reference number] ET80817D [Claims] 【請求項 1】基体上に、インジウム(In)、錫(S
n)および亜鉛(Zn)から成る複合金属酸化物膜を形
成して成ることを特徴とする透明導電膜。
(1) Indium (In), tin (S)
A transparent conductive film formed by forming a composite metal oxide film comprising n) and zinc (Zn).
【請求項 2】前記請求項1記載の複合金属酸化物が少
なくとも1種のIn4Sn312を含むことを特徴とする
請求項1記載の透明導電膜。
2. The transparent conductive film according to claim 1, wherein the composite metal oxide according to claim 1 contains at least one kind of In 4 Sn 3 O 12 .
【請求項 3】前記請求項1記載の複合金属酸化物が微
結晶もしくは非晶質であることを特徴とする請求項1記
載の透明導電膜。
3. The transparent conductive film according to claim 1, wherein the composite metal oxide according to claim 1 is microcrystalline or amorphous.
【請求項 4】前記請求項1記載のSn量として、In
に対する原子比、すなわちSn/(In+Sn)で示さ
れるSnが0.40〜0.60含有して成ることを特徴
とする請求項1、2または3記載の透明導電膜。
4. The method according to claim 1, wherein the amount of Sn is In.
4. The transparent conductive film according to claim 1, wherein the content of Sn represented by Sn / (In + Sn) is 0.40 to 0.60.
【請求項 5】前記請求項1記載のZn量として、In
に対する原子比、すなわちZn/(In+Zn)で示さ
れるZnが0.10〜0.90、好ましくは0.30〜
0.70含有して成ることを特徴とする請求項1、2、
3または4記載の透明導電膜。
5. The method according to claim 1, wherein the amount of Zn is In.
The atomic ratio to Zn, that is, Zn represented by Zn / (In + Zn) is 0.10 to 0.90, preferably 0.30 to 0.90.
3. The composition according to claim 1, which comprises 0.70.
5. The transparent conductive film according to 3 or 4.
【請求項 6】前記請求項1記載のSnに対してフッ素
(F)を、F/(Sn+F)で表される原子比で0.0
2以下の範囲で添加して成ることを特徴とする請求項
1、2、3、4または5記載の透明導電膜。
6. The method according to claim 1, wherein fluorine (F) is added to Sn in an atomic ratio represented by F / (Sn + F) of 0.0.
6. The transparent conductive film according to claim 1, wherein the transparent conductive film is added in a range of 2 or less.
【請求項 7】前記請求項1〜5または6記載の透明導
電膜を製造するために使用されるIn23−SnO2
ZnO系焼結体。
7. An In 2 O 3 —SnO 2 — used for producing the transparent conductive film according to claim 1.
ZnO-based sintered body.
JP25740696A 1996-09-06 1996-09-06 Transparent conductive film Expired - Fee Related JP3163015B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25740696A JP3163015B2 (en) 1996-09-06 1996-09-06 Transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25740696A JP3163015B2 (en) 1996-09-06 1996-09-06 Transparent conductive film

Publications (2)

Publication Number Publication Date
JPH1083719A true JPH1083719A (en) 1998-03-31
JP3163015B2 JP3163015B2 (en) 2001-05-08

Family

ID=17305943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25740696A Expired - Fee Related JP3163015B2 (en) 1996-09-06 1996-09-06 Transparent conductive film

Country Status (1)

Country Link
JP (1) JP3163015B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1033355A1 (en) * 1998-08-31 2000-09-06 Idemitsu Kosan Company Limited Target for transparent electroconductive film, transparent electroconductive material, transparent electroconductive glass and transparent electroconductive film
JP2002196348A (en) * 1999-06-11 2002-07-12 Matsushita Electric Ind Co Ltd Liquid crystal display device and method for producing the same
US6533965B1 (en) * 1999-11-26 2003-03-18 Alps Electric Co., Ltd Transparent electrically conductive oxide film for an electronic apparatus and related method
JP2005022953A (en) * 2003-04-01 2005-01-27 Hitachi Maxell Ltd Complex indium oxide particle and its manufacturing method, and conductive paint, conductive coating film and conductive sheet
WO2007037191A1 (en) * 2005-09-27 2007-04-05 Idemitsu Kosan Co., Ltd. Sputtering target, transparent conductive film, and transparent electrode for touch panel
JP2007115431A (en) * 2005-10-18 2007-05-10 Idemitsu Kosan Co Ltd Transparent conductive film, transparent electrode, and electrode base plate and manufacturing method of the same
JP2007119289A (en) * 2005-10-27 2007-05-17 Idemitsu Kosan Co Ltd Oxide particle, sintered compact and their producing methods
WO2007074628A1 (en) * 2005-12-26 2007-07-05 Idemitsu Kosan Co., Ltd. Transparent electrode film and electronic device
US7476343B2 (en) 2006-02-24 2009-01-13 Sumitomo Metal Mining Co., Ltd. Sintered body target for transparent conductive film fabrication, transparent conductive film fabricated by using the same, and transparent conductive base material comprising this conductive film formed thereon
JP4560149B2 (en) * 1999-03-05 2010-10-13 出光興産株式会社 Transparent conductive material, transparent conductive glass and transparent conductive film
US8080182B2 (en) 2006-02-08 2011-12-20 Sumitomo Metal Mining Co., Ltd. Oxide sintered body and an oxide film obtained by using it, and a transparent base material containing it
US8232552B2 (en) 2007-03-26 2012-07-31 Idemitsu Kosan Co., Ltd. Noncrystalline oxide semiconductor thin film, process for producing the noncrystalline oxide semiconductor thin film, process for producing thin-film transistor, field-effect-transistor, light emitting device, display device, and sputtering target
KR101301662B1 (en) * 2006-03-15 2013-08-29 스미토모 긴조쿠 고잔 가부시키가이샤 Oxide Sintered Body, Manufacturing Method therefor, Manufacturing Method for Transparent Conductive Film Using the Same, and Resultant Transparent Conductive Film
US8524123B2 (en) 2005-09-01 2013-09-03 Idemitsu Kosan Co., Ltd. Sputtering target, transparent conductive film and transparent electrode

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1033355A4 (en) * 1998-08-31 2010-12-01 Idemitsu Kosan Co Target for transparent electroconductive film, transparent electroconductive material, transparent electroconductive glass and transparent electroconductive film
EP1033355A1 (en) * 1998-08-31 2000-09-06 Idemitsu Kosan Company Limited Target for transparent electroconductive film, transparent electroconductive material, transparent electroconductive glass and transparent electroconductive film
EP2610229A3 (en) * 1998-08-31 2015-02-18 Idemitsu Kosan Co., Ltd. Transparent electroconductive glass coated with transparent electroconductive film containing IZTO
EP2610229A2 (en) * 1998-08-31 2013-07-03 Idemitsu Kosan Co., Ltd. Transparent electroconductive glass coated with transparent electroconductive film containing IZTO
JP4560149B2 (en) * 1999-03-05 2010-10-13 出光興産株式会社 Transparent conductive material, transparent conductive glass and transparent conductive film
JP2002196348A (en) * 1999-06-11 2002-07-12 Matsushita Electric Ind Co Ltd Liquid crystal display device and method for producing the same
US6533965B1 (en) * 1999-11-26 2003-03-18 Alps Electric Co., Ltd Transparent electrically conductive oxide film for an electronic apparatus and related method
JP2005022953A (en) * 2003-04-01 2005-01-27 Hitachi Maxell Ltd Complex indium oxide particle and its manufacturing method, and conductive paint, conductive coating film and conductive sheet
US8524123B2 (en) 2005-09-01 2013-09-03 Idemitsu Kosan Co., Ltd. Sputtering target, transparent conductive film and transparent electrode
US8920683B2 (en) 2005-09-01 2014-12-30 Idemitsu Kosan Co., Ltd. Sputtering target, transparent conductive film and transparent electrode
WO2007037191A1 (en) * 2005-09-27 2007-04-05 Idemitsu Kosan Co., Ltd. Sputtering target, transparent conductive film, and transparent electrode for touch panel
KR101314946B1 (en) * 2005-09-27 2013-10-04 이데미쓰 고산 가부시키가이샤 Sputtering target, transparent conductive film, and transparent electrode for touch panel
TWI400346B (en) * 2005-09-27 2013-07-01 Idemitsu Kosan Co Sputtering target, transparent conductive film and touch panel with transparent electrode
US8304359B2 (en) 2005-09-27 2012-11-06 Idemitsu Kosan Co., Ltd. Sputtering target, transparent conductive film, and transparent electrode for touch panel
JP5188182B2 (en) * 2005-09-27 2013-04-24 出光興産株式会社 Sputtering target, transparent conductive film, and transparent electrode for touch panel
JP2007115431A (en) * 2005-10-18 2007-05-10 Idemitsu Kosan Co Ltd Transparent conductive film, transparent electrode, and electrode base plate and manufacturing method of the same
JP2007119289A (en) * 2005-10-27 2007-05-17 Idemitsu Kosan Co Ltd Oxide particle, sintered compact and their producing methods
TWI398706B (en) * 2005-12-26 2013-06-11 Idemitsu Kosan Co Transparent electrode film and electronic equipment
EP1967898A4 (en) * 2005-12-26 2008-12-24 Idemitsu Kosan Co Transparent electrode film and electronic device
EP1967898A1 (en) * 2005-12-26 2008-09-10 Idemitsu Kosan Co., Ltd. Transparent electrode film and electronic device
JP2007173165A (en) * 2005-12-26 2007-07-05 Idemitsu Kosan Co Ltd Transparent electrode membrane and electronic apparatus
WO2007074628A1 (en) * 2005-12-26 2007-07-05 Idemitsu Kosan Co., Ltd. Transparent electrode film and electronic device
US8080182B2 (en) 2006-02-08 2011-12-20 Sumitomo Metal Mining Co., Ltd. Oxide sintered body and an oxide film obtained by using it, and a transparent base material containing it
US7641818B2 (en) 2006-02-24 2010-01-05 Sumitomo Metal Mining Co., Ltd. Ga-In-O amorphous oxide transparent conductive film, and transparent conductive base material comprising this conductive film formed thereon
US7476343B2 (en) 2006-02-24 2009-01-13 Sumitomo Metal Mining Co., Ltd. Sintered body target for transparent conductive film fabrication, transparent conductive film fabricated by using the same, and transparent conductive base material comprising this conductive film formed thereon
KR101301662B1 (en) * 2006-03-15 2013-08-29 스미토모 긴조쿠 고잔 가부시키가이샤 Oxide Sintered Body, Manufacturing Method therefor, Manufacturing Method for Transparent Conductive Film Using the Same, and Resultant Transparent Conductive Film
US8232552B2 (en) 2007-03-26 2012-07-31 Idemitsu Kosan Co., Ltd. Noncrystalline oxide semiconductor thin film, process for producing the noncrystalline oxide semiconductor thin film, process for producing thin-film transistor, field-effect-transistor, light emitting device, display device, and sputtering target

Also Published As

Publication number Publication date
JP3163015B2 (en) 2001-05-08

Similar Documents

Publication Publication Date Title
Lewis et al. Applications and processing of transparent conducting oxides
Enoki et al. The Electrical and Optical Properties of the ZnO‐SnO2 Thin Films Prepared by RF Magnetron Sputtering
JP3163015B2 (en) Transparent conductive film
Minami et al. New multicomponent transparent conducting oxide films for transparent electrodes of flat panel displays
JPH05334924A (en) Manufacture of transparent conductive film
JP4805648B2 (en) Semiconductor thin film and manufacturing method thereof
CN107074662B (en) Metal oxide thin film, method for depositing metal oxide thin film, and apparatus including metal oxide thin film
JPH09259640A (en) Transparent conductive film
JP3616128B2 (en) Method for producing transparent conductive film
JPH056766B2 (en)
JPH06290641A (en) Noncrystal transparent conductive membrane
CN103617831B (en) Preparing aluminum-doped zinc oxide transparent conducting films of a kind of high mobility and preparation method thereof
JPH08264021A (en) Transparent conductive film
JP2002075062A (en) Transparent conductive film
JPH08264022A (en) Transparent conductive film
JP2001121641A (en) Transparent conductive laminate
JP2004050643A (en) Thin film laminated body
JP3511337B2 (en) Transparent conductive laminate and method for producing the same
JPH0344465A (en) Production of sputtering target for electrically conductive transparent ito film
Aliyu et al. High quality indium tin oxide (ITO) film growth by controlling pressure in RF magnetron sputtering
JP2002075061A (en) Transparent conductive film
Kek et al. Effects of pressure and substrate temperature on the growth of Al-doped ZnO films by pulsed laser deposition
JPH0756131A (en) Production of transparent conductive film
JPS61136954A (en) Indium oxide sintered body
JPH0641723A (en) Electric conductive transparent film

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080223

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090223

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090223

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20110223

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20120223

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20130223

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140223

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140223

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20140223

LAPS Cancellation because of no payment of annual fees