JPH108283A - Liquid permeation type gas diffusion cathode structural body - Google Patents

Liquid permeation type gas diffusion cathode structural body

Info

Publication number
JPH108283A
JPH108283A JP8179986A JP17998696A JPH108283A JP H108283 A JPH108283 A JP H108283A JP 8179986 A JP8179986 A JP 8179986A JP 17998696 A JP17998696 A JP 17998696A JP H108283 A JPH108283 A JP H108283A
Authority
JP
Japan
Prior art keywords
gas diffusion
cathode
diffusion cathode
metal
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8179986A
Other languages
Japanese (ja)
Other versions
JP4029944B2 (en
Inventor
Takayuki Shimamune
孝之 島宗
Masashi Tanaka
正志 田中
Takahiro Ashida
高弘 芦田
Shuhei Wakita
修平 脇田
Yoshinori Nishiki
善則 錦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd filed Critical Permelec Electrode Ltd
Priority to JP17998696A priority Critical patent/JP4029944B2/en
Publication of JPH108283A publication Critical patent/JPH108283A/en
Application granted granted Critical
Publication of JP4029944B2 publication Critical patent/JP4029944B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable stable electrolysis for a long term even under severe conditions by disposing a metal mesh body between a gas diffusion cathode and a cathode power feeding body. SOLUTION: A metal mesh body 7 is interposed between a power feeding body 8 and a gas diffusion cathode 6 in such a manner that the mesh body 7 is in contact with the cathode 6 and that a cathode liquid generating on the cathode 6 and passing through the mesh to the cathode room touches the metal mesh body 7. Thereby, the metal mesh body 7 diffuses the cathode liquid in a three-dimensional direction, namely, the mesh body 7 has a function to diffuse the liquid not only in the parallel direction to the surface of the gas diffusion cathode 6 but in the direction to the power feeding body 8. Therefore, clogging of the gas diffusion cathode 6 or changes of the cathode surface into hydrophilic one which are caused when the cathode liquid is held on the surface of the gas diffusion cathode can be prevented. Thus, stable electrolysis can be performed for a long term without deteriorating the function of the gas diffusion cathode 6.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、効率良く電解生成物を
除去できるガス拡散陰極構造体に関し、より詳細にはソ
ーダ電解に好ましく使用でき、生成する苛性ソーダをそ
の表面から容易に除去できるガス拡散陰極構造体に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas diffusion cathode structure capable of efficiently removing an electrolytic product, and more particularly to a gas diffusion cathode structure which can be preferably used for soda electrolysis and can easily remove caustic soda from its surface. The present invention relates to a cathode structure.

【0002】[0002]

【従来技術とその問題点】クロルアルカリ電解を代表と
する電解工業は素材産業として重要な役割を果たしてい
る。このような重要な役割を持つもののクロルアルカリ
電解に要する消費エネルギーが大きく、日本のようにエ
ネルギーコストが高い国ではその省エネルギー化が大き
な問題となる。例えばクロルアルカリ電解では環境問題
の解決とともに省エネルギー化を達成するために、水銀
法から隔膜法を経てイオン交換膜法へと転換され、約25
年で約40%の省エネルギー化を達成してきた。しかしこ
の省エネルギー化でも不十分で、エネルギーである電力
コストが全製造費の50%を占めているが、現行の方法を
使用する限りこれ以上の電力節約は不可能なところまで
来ている。より以上の省エネルギー化を達成するために
は電極反応を修正する等の抜本的な変化を行なわなけれ
ばならない。その例として燃料電池等で採用されている
ガス拡散電極の使用は現在考えられる中で最も可能性が
高く、電力節約が大きい手段である。
2. Description of the Related Art Electrolysis industry represented by chloralkali electrolysis plays an important role as a material industry. Although having such an important role, the energy consumption required for chloralkali electrolysis is large, and energy saving is a major problem in countries with high energy costs such as Japan. For example, in chlor-alkali electrolysis, in order to solve environmental problems and achieve energy saving, the mercury method was switched to the ion exchange membrane method via the diaphragm method, and about 25%.
Annual energy savings of about 40% have been achieved. However, even this energy saving is not enough, and the power cost, which is energy, accounts for 50% of the total manufacturing cost. However, no further power saving is possible if the current method is used. In order to achieve more energy savings, drastic changes must be made, such as correcting the electrode reaction. As an example, the use of a gas diffusion electrode employed in a fuel cell or the like is the most likely and possible means of saving electric power.

【0003】従来の金属電極を使用する陽極反応が、
陽極としてガス拡散電極を使用すると陽極反応に変換
される。 2NaCl+2H2 0→Cl2 +2NaOH+H2 O =2.21V 2NaCl+ 1/2O2 +H2 O→Cl2 +2NaOH EO =0.96V つまり金属電極をガス拡散電極に変換することにより、
電位が2.21Vから0.96Vに減少し、理論的には約65%の
省エネルギー化が可能になる。従ってこのガス拡散電極
の使用によるクロルアルカリの実用化に向けて種々の検
討が成されている。ガス拡散電極の構造は一般に半疎水
(撥水)型と言われるもので、表面に白金等の触媒が担
持された親水性の反応層と撥水性のガス拡散層を接合し
た構造を有している。反応層及びガス拡散層ともバイン
ダーとして撥水性のポリテトラフルオロエチレン(PT
FE)樹脂を使用し、このPTFE樹脂の特性を利用し
てガス拡散層ではその割合を多くし、反応層では少なく
して両層を構成している。
The anodic reaction using a conventional metal electrode is
When a gas diffusion electrode is used as an anode, it is converted into an anodic reaction. The 2NaCl + 2H 2 0 → Cl 2 + 2NaOH + H 2 E O = 2.21V 2NaCl + 1 / 2O 2 + H 2 O → Cl 2 + 2NaOH E O = 0.96V clogging metal electrodes by converting the gas diffusion electrode,
The potential is reduced from 2.21 V to 0.96 V, and theoretically about 65% energy saving is possible. Therefore, various studies have been made toward the practical use of chloroalkali by using this gas diffusion electrode. The structure of the gas diffusion electrode is generally called a semi-hydrophobic (water-repellent) type, and has a structure in which a hydrophilic reaction layer carrying a catalyst such as platinum on the surface and a water-repellent gas diffusion layer are joined. I have. Water-repellent polytetrafluoroethylene (PT) is used as a binder for both the reaction layer and gas diffusion layer.
FE) resin is used, and by using the characteristics of the PTFE resin, the ratio is increased in the gas diffusion layer and reduced in the reaction layer to form both layers.

【0004】このようなガス拡散電極をクロルアルカリ
電解に使用すると幾つかの問題点が生ずる。例えば高濃
度の苛性ソーダ中では撥水材であるPTFE樹脂が親水
化して撥水性を失い易くなる。これを防止するために前
記ガス拡散層のガス室側に薄い多孔性のPTFEシート
を貼ることが試みられている。又このガス拡散電極に酸
素や空気を供給しながら電解を進行させるが、副反応と
して一部過酸化水素が生成しそれが構成材料である炭素
を腐食して炭酸ソーダを生成することがある。アルカリ
溶液中では前記炭酸ソーダは沈澱してガス拡散層を閉塞
したり表面を親水化したりしてガス拡散電極の機能を劣
化させることがある。この炭酸ソーダが生成しなくても
炭素表面に触媒を担持するのみで該触媒による炭素腐食
が生ずることも観察されている。
[0004] The use of such gas diffusion electrodes for chloralkali electrolysis has several problems. For example, in high-concentration caustic soda, PTFE resin as a water-repellent material becomes hydrophilic and easily loses water repellency. In order to prevent this, it has been attempted to attach a thin porous PTFE sheet to the gas diffusion layer on the gas chamber side. Electrolysis proceeds while supplying oxygen and air to the gas diffusion electrode. However, hydrogen peroxide is partially generated as a side reaction, which may corrode carbon as a constituent material to generate sodium carbonate. In an alkaline solution, the sodium carbonate precipitates and may block the gas diffusion layer or make the surface hydrophilic, thereby deteriorating the function of the gas diffusion electrode. It has also been observed that even if this sodium carbonate is not generated, only the catalyst is supported on the carbon surface, and that the catalyst causes carbon corrosion.

【0005】このような欠点を解消するために従来は、
使用する炭素の選択やその作製法及び炭素と樹脂との混
合比をコントロールすることが検討されている。しかし
ながらこれらの方法は根本的な解決法とはならず、炭素
の腐食を遅らせることはできても、腐食を停止すること
はできない。炭素を使用しなければこのような腐食の問
題は起きないため、炭素の代わりに金属である銀を使用
することが試みられている。ところがこの金属を使用す
るガス拡散電極は炭素を構成材料とするガス拡散電極と
異なり焼結法で製造され、その製造方法が極めて複雑に
なり、更に金属を使用するガス拡散電極では親水性部分
と疎水性部分を制御しにくいという問題点がある。
[0005] Conventionally, in order to eliminate such disadvantages,
Studies have been made on the selection of carbon to be used, the production method thereof, and the control of the mixing ratio of carbon and resin. However, these methods are not fundamental solutions, and can only stop the corrosion of carbon but cannot stop it. Since such a corrosion problem does not occur unless carbon is used, an attempt has been made to use silver, which is a metal, instead of carbon. However, the gas diffusion electrode using this metal is manufactured by a sintering method unlike the gas diffusion electrode using carbon as a constituent material, and the manufacturing method becomes extremely complicated.In addition, the gas diffusion electrode using a metal has a hydrophilic portion. There is a problem that it is difficult to control the hydrophobic portion.

【0006】これらの問題点の解決法としてかつ更に電
解電圧を低下させる方法として、ガス拡散電極をイオン
交換膜に密着又は接着して実質的に陰極室をなくしてし
まう、換言すると陰極室をガス室として構成する方法が
提案されている。この方法を採用した電解槽を使用して
クロルアルカリ電解を行なうと、生成する苛性ソーダは
反応層及びガス拡散層を通って陰極室であるガス室に到
達する。この方法は陰極液が存在しないためガス室の高
さ方向の圧力差の影響がなくなり大型化しても圧力分布
を考える必要がないこと、陰極液が実質的に存在しない
ため電気抵抗が最小になり電解電圧を最小に維持できる
という利点を有する一方、前記した生成する苛性ソーダ
のガス室方向への透過を促進するためにガス拡散層の貫
通孔の大きさ及び分布を制御しなければならない。しか
もガス室側に取り出された苛性ソーダが前記ガス拡散層
の貫通孔を閉塞し易く、閉塞が生ずると電解の円滑な進
行に支障を来たし、実験室レベルではさほど問題にはな
らないが、実用槽などの大型電解槽では前記閉塞による
電流分布の不均一や電解電圧の上昇といった問題が起こ
り易く、前記貫通孔の閉塞が電解槽の大型化を達成する
ための最大に障害となっている。又通常の食塩電解以外
にも芒硝電解等のソーダ電解でも同様の問題点が指摘さ
れている。
As a solution to these problems and as a method for further reducing the electrolysis voltage, a gas diffusion electrode is adhered to or adhered to an ion exchange membrane to substantially eliminate the cathode chamber. A method of configuring a room has been proposed. When chlor-alkali electrolysis is performed using an electrolytic cell employing this method, the generated caustic soda reaches the gas chamber, which is the cathode chamber, through the reaction layer and the gas diffusion layer. In this method, since there is no catholyte, the influence of the pressure difference in the height direction of the gas chamber is eliminated and it is not necessary to consider the pressure distribution even when the size is increased, and the electric resistance is minimized because the catholyte is substantially absent. While having the advantage that the electrolysis voltage can be kept to a minimum, the size and distribution of the through holes in the gas diffusion layer must be controlled in order to promote the permeation of the generated caustic soda toward the gas chamber. Moreover, the caustic soda taken out to the gas chamber side easily blocks the through hole of the gas diffusion layer, and if the blockage occurs, the smooth progress of the electrolysis is hindered. In such a large electrolytic cell, problems such as non-uniform current distribution and an increase in electrolytic voltage due to the blockage are likely to occur, and the blockage of the through-hole is the biggest obstacle to achieving a large-sized electrolytic cell. Similar problems have been pointed out in soda electrolysis such as sodium sulfate electrolysis in addition to ordinary salt electrolysis.

【0007】[0007]

【発明の目的】本発明は、前述の従来技術の問題点、つ
まりガス拡散電極を食塩電解や芒硝電解等の電気化学反
応に実用的なレベルで使用できないという欠点を解消
し、アルカリ中等の過酷な条件下でも長期間安定で食塩
電解等に実質的に使用可能な液透過型ガス拡散陰極構造
体を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, that is, the drawback that the gas diffusion electrode cannot be used at a practical level for electrochemical reactions such as salt electrolysis and sodium sulfate electrolysis. It is an object of the present invention to provide a liquid-permeable gas diffusion cathode structure that is stable for a long period of time even under various conditions and can be substantially used for salt electrolysis and the like.

【0008】[0008]

【問題点を解決するための手段】本発明に係わる液透過
型ガス拡散陰極は、陽極室及び陰極ガス室を区画するイ
オン交換膜に接触したガス拡散陰極、前記ガス拡散陰極
に接触した金属網状体、及び該金属網状体に接続され該
網状体を通して前記ガス拡散陰極に給電するための給電
体を含んで成ることを特徴とする液透過型ガス拡散陰極
構造体である。
The liquid-permeable gas diffusion cathode according to the present invention comprises a gas diffusion cathode in contact with an ion-exchange membrane defining an anode chamber and a cathode gas chamber, and a metal mesh in contact with the gas diffusion cathode. A liquid-permeable gas diffusion cathode structure comprising: a body; and a power supply connected to the metal network and configured to supply power to the gas diffusion cathode through the network.

【0009】以下本発明を詳細に説明する。本発明で
は、ガス拡散陰極を使用する食塩電解や芒硝電解等のソ
ーダ電解や他の電解反応においてガス室を構成する陰極
室側に取り出される苛性ソーダ等の陰極生成物を前記ガ
ス拡散陰極のガス拡散陰極の表面から迅速に除去してガ
ス拡散陰極の閉塞や親水性化に起因する電解条件の不安
定化を抑制し、長期間使用しても安定した条件で電解を
行ない得るガス拡散陰極構造体を提供できる。ガス拡散
陰極の表面から得られる苛性ソーダ溶液を離脱させるこ
とは、前記ガス拡散陰極表面を撥水化することによりつ
まり液の濡れ性を悪くすることにより円滑に行ない得る
と考えられる。
Hereinafter, the present invention will be described in detail. In the present invention, in a soda electrolysis such as salt electrolysis and sodium sulfate electrolysis using a gas diffusion cathode or other electrolysis reaction, a cathode product such as caustic soda taken out to a cathode chamber side constituting a gas chamber is subjected to gas diffusion of the gas diffusion cathode. A gas diffusion cathode structure that can be quickly removed from the surface of the cathode to suppress instability of electrolysis conditions due to blockage and hydrophilicity of the gas diffusion cathode, and to perform electrolysis under stable conditions even after long-term use Can be provided. It is considered that releasing the caustic soda solution obtained from the surface of the gas diffusion cathode can be performed smoothly by making the surface of the gas diffusion cathode water-repellent, that is, by deteriorating the wettability of the liquid.

【0010】しかし単にガス拡散陰極の表面を撥水化す
るのみでは表面の濡れ性の低下は達成できるものの、ガ
ス拡散陰極を透過してガス室側に達する溶液が水玉状の
液滴としてガス拡散陰極表面に残り、この液滴はかなり
大きくならないと表面から離脱しないという問題点があ
る。通常ガス拡散陰極のイオン交換膜と反対面には前記
ガス拡散陰極に通電するための給電体が接続されてい
る。本発明ではこの給電体とガス拡散陰極との間に該ガ
ス拡散陰極と接触するように金属網状体を挟み込み、ガ
ス拡散陰極で生成し該ガス拡散陰極を透過して陰極室側
に達する陰極液を前記金属網状体に接触させるようにす
る。この陰極液は金属網状体がないと液滴としてガス拡
散陰極表面に残りやすくなるのに対し、前記金属網状体
は前記陰極液を三次元的に拡散させ、つまり該金属網状
体中で前記ガス拡散陰極表面と平行方向に拡散させるだ
けでなく、前記給電体方向へも前記陰極液を拡散させる
機能を有し、該陰極液が前記ガス拡散陰極表面に保持さ
れることにより生ずる前述したガス拡散陰極の閉塞や該
ガス拡散陰極の表面の親水化等を防止し、ガス拡散陰極
の機能を劣化させることなく長期間安定した電解を行な
うことを可能にする。
However, although the surface wettability of the surface of the gas diffusion cathode can be reduced only by making the surface of the gas diffusion cathode water-repellent, the solution that has passed through the gas diffusion cathode and reaches the gas chamber side is formed as a polka-dot droplet. There is a problem that the droplet remains on the surface of the cathode and does not separate from the surface unless the droplet becomes considerably large. Usually, a power supply for supplying electricity to the gas diffusion cathode is connected to the surface of the gas diffusion cathode opposite to the ion exchange membrane. In the present invention, a metal mesh is sandwiched between the power supply and the gas diffusion cathode so as to be in contact with the gas diffusion cathode, and the catholyte is generated by the gas diffusion cathode, passes through the gas diffusion cathode and reaches the cathode chamber side. Is brought into contact with the metal mesh. This catholyte is likely to remain on the gas diffusion cathode surface as droplets without a metal network, whereas the metal network diffuses the catholyte three-dimensionally, i.e., the gas in the metal network. The above-described gas diffusion caused by the catholyte having a function of diffusing the catholyte solution not only in the direction parallel to the surface of the diffusion cathode but also in the direction of the power feeder, and the catholyte solution is held on the surface of the gas diffusion cathode. This prevents the cathode from being clogged or the surface of the gas diffusion cathode from becoming hydrophilic, and enables long-term stable electrolysis without deteriorating the function of the gas diffusion cathode.

【0011】前記金属網状体は陰極液をガス拡散陰極表
面から迅速に拡散させ除去することにより、酸素や空気
等の陰極ガスの供給及び生成ガスの取り出しも円滑に行
ない得るようにする。更に前記金属網状体が弾性を有し
ていると、該弾性によりガス拡散陰極をイオン交換膜方
向に押圧して前記ガス拡散陰極をイオン交換膜に均一に
密着させるため、より低電圧での電解が可能になる。本
発明で使用する網状体は金属製であることが必要であ
る。これは給電体とガス拡散陰極を電気的に接続するた
め、及び本発明のガス拡散陰極が食塩電解による苛性ソ
ーダ等の腐食性の陰極液製造に使用されることが多いた
めである。いわゆるソーダ電解では通常30〜40%程度の
苛性ソーダが得られ、その中には10〜100 ppm 程度の食
塩が混入し、この種の溶液は腐食性が強く、多くの金属
を腐食させる。特に電解中の前記網状体は陰極液と接触
する箇所では陰分極状態になく、より腐食を受けやすい
状態にある。そのため、前記網状体は耐食性の高い金属
例えばニッケルや銀を使用することが好ましく、更に耐
食性の高いこれらの金属の合金を使用することが望まし
い。又銅などの比較的腐食性の低い金属や合金の表面に
厚付けニッケル又は銀メッキした複合体の使用も可能で
ある。
The metal mesh rapidly diffuses and removes the catholyte from the gas diffusion cathode surface so that the supply of the cathode gas such as oxygen and air and the removal of the produced gas can be performed smoothly. Further, when the metal net has elasticity, the gas diffusion cathode is pressed in the direction of the ion exchange membrane by the elasticity so that the gas diffusion cathode is uniformly adhered to the ion exchange membrane. Becomes possible. The mesh used in the present invention needs to be made of metal. This is because the power supply and the gas diffusion cathode are electrically connected, and the gas diffusion cathode of the present invention is often used for producing corrosive catholyte such as caustic soda by salt electrolysis. In so-called soda electrolysis, about 30 to 40% of caustic soda is usually obtained, and about 10 to 100 ppm of sodium chloride is mixed therein. Such a solution is highly corrosive and corrodes many metals. In particular, the reticulated body during electrolysis is not in a negatively polarized state at a position in contact with the catholyte, and is more susceptible to corrosion. Therefore, it is preferable to use a metal having high corrosion resistance, for example, nickel or silver, and it is preferable to use an alloy of these metals having high corrosion resistance. It is also possible to use a composite in which a relatively low-corrosive metal or alloy such as copper is plated with nickel or silver on the surface.

【0012】前記網状体は、金属ワイヤを編んで網状と
した形状とすることが望ましく、例えば0.02〜0.2 mm程
度の径のワイヤを編み、これを重ね合わせて又は三次元
状に編み込んで網状体を構成する。この他に、複数の長
寸のワイヤを互いにランダムに絡み合わせてフェルト状
の網状体を構成することもできるが、この場合にはワイ
ヤ間に間隙を形成することが比較的困難で表面の濡れ性
を良くしてもワイヤ間に液が詰まってガス流通を妨げる
ことがある。従って該フェルト状の網状体を使用する際
には、径が0.1 〜0.2 mmと比較的太いワイヤを使用し
て、前記網状体の充填密度を例えば10%未満程度と低く
して前記ワイヤ間の液詰まりを防止することが好まし
い。
The net is preferably formed by knitting a metal wire into a net shape. For example, a net having a diameter of about 0.02 to 0.2 mm is knitted, and the net is superposed or three-dimensionally knitted. Is configured. In addition, a plurality of long wires can be randomly entangled with each other to form a felt-like net, but in this case, it is relatively difficult to form a gap between the wires and the surface is wet. Even if the properties are improved, the liquid may be clogged between the wires and hinder the gas flow. Therefore, when using the felt-like net, a relatively thick wire having a diameter of 0.1 to 0.2 mm is used, the packing density of the net is reduced to, for example, less than about 10%, and the distance between the wires is reduced. It is preferable to prevent liquid clogging.

【0013】網状体の最適の形態は表面に凹凸を付した
弾性を付与した編みメッシュの積層体であり、この場合
にはメッシュの目開きが0.5 〜1mm程度で見掛け厚さ0.
5 〜2mm程度のメッシュを5〜20層積層したものが良
い。メッシュの目開きや見掛け厚さは三次元状網状体の
場合も同様である。なお前述した積層体や三次元体等の
他に、金属フォームも本発明の網状体として使用可能で
ある。しかし金属フォームは比較的弾性が弱いため、比
較的目開きが大きく線径の太いものを選択するようにす
る。この最適形状の網状体を含めて前記網状体の見掛け
厚さは特に限定されないが、圧力を加えない自然状態で
5〜10mm、設置された状態で1〜3mm程度が望ましい範
囲である。
The most preferred form of the mesh is a laminate of a knitted mesh having an uneven surface and elasticity. In this case, the mesh has an opening of about 0.5 to 1 mm and an apparent thickness of about 0.1 mm.
It is preferable that 5 to 20 layers of mesh of about 5 to 2 mm are laminated. The mesh size and apparent thickness are the same in the case of a three-dimensional mesh. In addition to the above-described laminate and three-dimensional body, a metal foam can also be used as the net of the present invention. However, since the metal foam has relatively low elasticity, a metal foam having a relatively large aperture and a large wire diameter is selected. The apparent thickness of the reticulated body including the reticulated body having the optimum shape is not particularly limited, but is preferably in a range of 5 to 10 mm in a natural state where no pressure is applied and about 1 to 3 mm in an installed state.

【0014】これらの網状体を構成する金属や金属合金
は通常苛性ソーダやその他の水溶液に対して十分な濡れ
性を有するが、該濡れ性が不十分で金属等の表面に液滴
が形成される場合は前記網状体を空気中などの酸化性雰
囲気で高温処理して前記網状体の表面に酸化物を形成し
て改質し、前記濡れ性を改善することができる。前記網
状体は、ガス拡散陰極と給電体の間に挿入して前記ガス
拡散陰極全体に圧力を掛けて一体化することにより、前
記ガス拡散陰極と給電体に接続された状態で所定位置に
固定される。
The metal or metal alloy constituting these nets usually has sufficient wettability with caustic soda or other aqueous solutions, but the wettability is insufficient and droplets are formed on the surface of the metal or the like. In this case, the reticulated body may be treated at a high temperature in an oxidizing atmosphere such as air to form an oxide on the surface of the reticulated body, thereby improving the wettability. The reticulated body is inserted between the gas diffusion cathode and the power supply, and is pressure-applied to the entire gas diffusion cathode to be integrated to be fixed at a predetermined position while being connected to the gas diffusion cathode and the power supply. Is done.

【0015】この状態で両極間に通電すると、ガス拡散
陰極で苛性ソーダ等の陰極生成物が生成し、この苛性ソ
ーダ等が前記ガス拡散陰極を透過してガス拡散陰極表面
に達する。この苛性ソーダ等は該表面に位置する網状体
に接触し、かつ網状体のワイヤ等に沿って三次元的に広
がり、容易にガス拡散陰極表面から離脱する。従って前
記ガス拡散陰極表面には最小限の苛性ソーダ等のみが存
在して、ガス拡散陰極の貫通孔を閉塞することがなく、
ガスの供給及び脱離も容易に行なうことができ、更に前
記網状体が設置時の圧力により圧縮されて弾性を有し、
この弾性により前記ガス拡散陰極をイオン交換膜方向に
押圧してガス拡散陰極とイオン交換膜を均一に密着させ
るため、低電圧での電解を可能にする。
In this state, when electricity is applied between the two electrodes, a cathode product such as caustic soda is generated at the gas diffusion cathode, and the caustic soda passes through the gas diffusion cathode and reaches the gas diffusion cathode surface. The caustic soda or the like comes into contact with the mesh located on the surface, spreads three-dimensionally along the wire of the mesh, etc., and easily separates from the gas diffusion cathode surface. Therefore, only a minimal amount of caustic soda or the like is present on the gas diffusion cathode surface, without blocking the through holes of the gas diffusion cathode,
Supply and desorption of gas can also be easily performed, and the reticulated body is compressed by the pressure at the time of installation and has elasticity,
Due to this elasticity, the gas diffusion cathode is pressed in the direction of the ion exchange membrane to uniformly adhere the gas diffusion cathode to the ion exchange membrane, so that electrolysis at a low voltage is possible.

【0016】添付図面は、本発明に係わる2室型ソーダ
電解用電解槽を例示するもので、図1はその概略縦断面
図、図2は図1の要部拡大図である。電解槽本体1は、
イオン交換膜2により陽極室3と陰極室(ガス室)4に
区画され、前記イオン交換膜2の陽極室3側にはメッシ
ュ状の不溶性陽極5が密着し、該イオン交換膜2の陰極
室4側にはガス拡散陰極6が密着している。該ガス拡散
陰極6の陰極室4側には、金属ワイヤを三次元的に編ん
で成る金属網状体7が位置し、該網状体7には陰極集電
体8が接続されている。なお9は陽極室底板に形成され
た陽極液導入口、10は陽極室天板に形成された陽極液及
びガス取出口、11は陰極室天板に形成された酸素含有ガ
ス導入口、12は陰極室底板に形成された苛性ソーダ取出
口である。この電解槽本体1の陽極室3に陽極液例えば
食塩水を供給しかつ陰極室4に酸素含有ガスを供給しな
がら両電極5、6間に通電すると、イオン交換膜2の陰
極室4側表面で苛性ソーダが生成し、この苛性ソーダは
ガス拡散陰極6を透過して金属網状体7表面に達する。
この金属網状体7は三次元的広がりを有するため、前記
苛性ソーダは液滴とならず、前記金属網状体7のワイヤ
等に沿って前記金属網状体表面から離脱し、前記ガス拡
散陰極6の表面に苛性ソーダが留まることがなく、ガス
の供給及び取り出しを円滑に行なうことができ、ガス拡
散陰極の閉塞も防止できる。なお添付図面では2室型ソ
ーダ電解用電解槽を示したが、本発明は3室型ソーダ電
解用電解槽等にも適用可能である。
The accompanying drawings illustrate a two-chamber type electrolytic cell for soda electrolysis according to the present invention. FIG. 1 is a schematic longitudinal sectional view, and FIG. 2 is an enlarged view of a main part of FIG. The electrolytic cell body 1 is
An ion exchange membrane 2 separates an anode chamber 3 and a cathode chamber (gas chamber) 4. A mesh-shaped insoluble anode 5 is in close contact with the ion exchange membrane 2 on the anode chamber 3 side, and the cathode chamber of the ion exchange membrane 2 is formed. A gas diffusion cathode 6 is in close contact with the fourth side. On the cathode chamber 4 side of the gas diffusion cathode 6, a metal net 7 formed by three-dimensionally knitting a metal wire is located, and a cathode current collector 8 is connected to the net 7. Reference numeral 9 denotes an anolyte inlet formed in the bottom plate of the anode compartment, 10 denotes an anolyte and gas outlet formed in the top plate of the anode compartment, 11 denotes an oxygen-containing gas inlet formed in the top plate of the cathode compartment, and 12 denotes a gas inlet. A caustic soda outlet formed in the cathode chamber bottom plate. When an anolyte, for example, a saline solution is supplied to the anode chamber 3 of the electrolytic cell main body 1 and an oxygen-containing gas is supplied to the cathode chamber 4 and a current is supplied between the two electrodes 5 and 6, the surface of the ion exchange membrane 2 on the side of the cathode chamber 4 To form caustic soda, which passes through the gas diffusion cathode 6 and reaches the surface of the metal mesh 7.
Since the metal network 7 has a three-dimensional spread, the caustic soda does not form droplets, but separates from the surface of the metal network along the wires and the like of the metal network 7 and the surface of the gas diffusion cathode 6. Caustic soda does not remain in the gas, the gas can be supplied and taken out smoothly, and the gas diffusion cathode can be prevented from being clogged. Although the attached drawings show a two-chamber electrolytic cell for soda electrolysis, the present invention is also applicable to a three-chamber electrolytic cell for soda electrolysis.

【0017】[0017]

【実施例】次に本発明に係わるガス拡散陰極及び該電極
を使用する電解の実施例を記載するが、該実施例は本発
明を限定するものではない。
Next, examples of the gas diffusion cathode and electrolysis using the electrode according to the present invention will be described, but the examples do not limit the present invention.

【0018】[0018]

【実施例1】厚さ1mmのエルテック社製の空孔率90%の
ニッケルフォームをプレスにより0.2 mm厚に潰しこれを
基体とした。平均粒径30μmのニッケル粉と、フッ素樹
脂の水分散剤であるデュポン社製のPTFE分散剤J30
をニッケルとPTFEが体積比で1:1となるように混
合したスラリーを前記基体に含浸させた。この基体の片
面に、平均粒径0.1 μmの銀粉末を前述のPTFE分散
剤J30に銀:PTFE=9:1となるように分散して調
製したペーストを銀が20g/m2となるように塗布し、こ
れを0.2 kg/cm2の圧力下で300 ℃、15分間加熱焼結し
て、液透過性のガス拡散陰極本体とした。
EXAMPLE 1 A nickel foam having a porosity of 90% manufactured by Eltec Co., Ltd. and having a thickness of 1 mm was crushed to a thickness of 0.2 mm by a press and used as a substrate. Nickel powder having an average particle size of 30 μm, and a PTFE dispersant J30 manufactured by DuPont, which is an aqueous dispersant for a fluororesin.
Was mixed with nickel and PTFE in a volume ratio of 1: 1 to impregnate the substrate. A paste prepared by dispersing silver powder having an average particle size of 0.1 μm in the above-mentioned PTFE dispersant J30 so that silver: PTFE = 9: 1 was applied to one surface of the substrate so that silver was 20 g / m 2. This was applied, and this was heated and sintered at 300 ° C. for 15 minutes under a pressure of 0.2 kg / cm 2 to obtain a liquid-permeable gas diffusion cathode main body.

【0019】この陰極の電極物質側を、デュポン社製の
イオン交換膜ナフィオン90209 に密着させ、前記ガス拡
散陰極のイオン交換膜の反対側には、線径0.1 mmで目開
きが10mm、凹凸が6〜7mm程度のメッシュを積層した見
掛け厚さ10mmのニッケル製の金属網状体を位置させ、該
網状体の前記陰極とは反対側に線径1mmのニッケル製の
給電体を接続した。前記イオン交換膜の陽極室側にはチ
タンメッシュに酸化ルテニウムと酸化タンタルから成る
混合物を被覆した不溶性陽極を密着させ、前記陰極給電
体と不溶性陽極間に圧力を掛けて固定し、電解面積が高
さ25cm×幅10cmのソーダ電解用電解槽を構成した。なお
網状体の充填率は55%、設置後の見掛け厚さは2〜3mm
であった。この電解槽の陽極室に180 g/リットルの食
塩水を、陰極室に酸素濃度を90%とした酸素富化空気を
水層に通して湿潤化したガスを理論量の120 %供給しな
がら温度90℃、電流密度30A/dm2 で電解を行なった。初
期槽電圧は2.06Vであり、陰極室から濃度32%の苛性ソ
ーダが得られた。陰極室の給電体裏面には僅かな苛性ソ
ーダの液滴が見られたが、大部分は網状体を通して下方
に取り除かれていた。30日の連続運転後の槽電圧は2.08
Vであり、液除去は円滑に行なわれていた。
The electrode material side of the cathode is brought into close contact with an ion-exchange membrane Nafion 90209 manufactured by DuPont. On the opposite side of the ion-exchange membrane of the gas diffusion cathode, a wire diameter of 0.1 mm, an aperture of 10 mm, and irregularities are formed. A nickel metal net having an apparent thickness of 10 mm and a mesh of about 6 to 7 mm laminated thereon was positioned, and a nickel power feeder having a wire diameter of 1 mm was connected to the net opposite to the cathode. An insoluble anode coated with a mixture of ruthenium oxide and tantalum oxide is closely adhered to a titanium mesh on the anode chamber side of the ion exchange membrane, and pressure is applied and fixed between the cathode power supply and the insoluble anode to increase the electrolytic area. An electrolytic cell for soda electrolysis having a length of 25 cm and a width of 10 cm was constructed. The filling rate of the mesh is 55%, and the apparent thickness after installation is 2-3mm
Met. The anode chamber of this electrolytic cell was supplied with 180 g / liter of a saline solution, and the cathode chamber was supplied with oxygen-enriched air having an oxygen concentration of 90% through an aqueous layer to supply a moistened gas at 120% of the theoretical amount. Electrolysis was performed at 90 ° C. and a current density of 30 A / dm 2 . The initial cell voltage was 2.06 V, and 32% caustic soda was obtained from the cathode chamber. A few drops of caustic soda were found on the back of the feeder in the cathode compartment, but most had been removed downward through the mesh. Tank voltage after continuous operation for 30 days is 2.08
V, and the liquid removal was performed smoothly.

【0020】[0020]

【比較例1】金属網状体を設置しなかったこと以外は実
施例1と同じ電解槽を組み立て、同一条件で苛性ソーダ
の電解生成を行なった。初期の槽電圧は2.48Vであった
が、1時間後には電圧が2.8 Vまで上昇し、僅かな水素
発生が見られたので電解を中止した。陰極給電体から見
ると、ガス拡散陰極の裏面一面に陰極液である苛性ソー
ダの液滴が付着していることが観察された。陰極液除去
が円滑に行なわれず、十分な酸素供給ができなかったた
め、槽電圧が上昇したものと推測できる。
Comparative Example 1 The same electrolytic cell as in Example 1 was assembled except that the metal net was not installed, and electrolytic production of caustic soda was performed under the same conditions. The initial cell voltage was 2.48 V, but after 1 hour, the voltage rose to 2.8 V, and slight hydrogen evolution was observed, so the electrolysis was stopped. From the viewpoint of the cathode power supply, it was observed that caustic soda droplets, which are catholyte, adhered to the entire back surface of the gas diffusion cathode. Since the catholyte removal was not performed smoothly and sufficient oxygen could not be supplied, it can be assumed that the cell voltage increased.

【0021】[0021]

【実施例2】給電体とガス拡散陰極間に銀の厚付けメッ
キを行なったステンレススチール製の網状体を挟んだこ
と以外は実施例1と同一の電解槽を構成した。前記網状
体は線径0.15mmのSUS310S で形成した見掛け厚さ10mmの
三次元編み物を450 ℃で2時間加熱酸化して表面を親水
化したものであり、電解槽組み立て後の見掛け厚さは3
mmであった。陽極室への食塩水供給量を200 g/リット
ルとしたこと及び酸素富化空気を湿潤化しなかったこと
以外は実施例1と同一条件で電解を行なった。初期槽電
圧は2.20Vであり、陰極室から濃度40〜42%の苛性ソー
ダが得られた。100 日の連続運転後も槽電圧には変化は
なかった。
Example 2 The same electrolytic cell as in Example 1 was constructed except that a stainless steel net-plated silver was plated between a power supply and a gas diffusion cathode. The reticulated body is formed by heating and oxidizing a three-dimensional knitted fabric having an apparent thickness of 10 mm, formed of SUS310S having a wire diameter of 0.15 mm, at 450 ° C. for 2 hours and hydrophilizing the surface.
mm. Electrolysis was performed under the same conditions as in Example 1 except that the amount of the saline solution supplied to the anode chamber was 200 g / liter and the oxygen-enriched air was not wetted. The initial cell voltage was 2.20 V, and 40-42% caustic soda was obtained from the cathode compartment. There was no change in cell voltage after 100 days of continuous operation.

【0022】[0022]

【実施例3】網状体表面に銀の厚付けメッキを行なって
いないステンレススチール製の網状体を使用したこと以
外は実施例2と同一の電解槽を構成し、同一条件で電解
を行なったところ、約100 日経過すると僅かではあるが
前記網状体表面に腐食が見られるようになった。これは
電解液に含まれる微量の塩素根によるものと推測でき
る。
Example 3 The same electrolytic cell as in Example 2 was constructed except that a stainless steel net having no silver plating applied to the surface of the net was used, and electrolysis was performed under the same conditions. After a lapse of about 100 days, a slight amount of corrosion began to appear on the surface of the mesh. This is presumed to be due to a trace amount of chlorine contained in the electrolyte.

【0023】[0023]

【比較例2】ステンレススチール製の網状体を設置しな
かったこと以外は実施例2と同じ電解槽を組み立て、同
一条件で苛性ソーダの電解生成を行なった。初期の槽電
圧は2.55Vであり、最高電圧を2.8 Vに設定して電解を
継続したところ、30分後に電流密度が10A/dm2 となって
しまい水素発生が見られたので電解を中止した。
Comparative Example 2 The same electrolytic cell as in Example 2 was assembled except that the stainless steel mesh was not installed, and electrolytic production of caustic soda was performed under the same conditions. The initial cell voltage was 2.55 V, and when the electrolysis was continued with the maximum voltage set to 2.8 V, the electrolysis was stopped because the current density became 10 A / dm 2 after 30 minutes and hydrogen generation was observed. .

【0024】[0024]

【発明の効果】本発明のガス拡散陰極は、陽極室及び陰
極ガス室を区画するイオン交換膜に接触したガス拡散陰
極、前記ガス拡散陰極に接触した金属網状体、及び該金
属網状体に接続され該網状体を通して前記ガス拡散陰極
に給電するための給電体を含んで成ることを特徴とする
液透過型ガス拡散陰極構造体である。このガス拡散陰極
構造体は、ガス拡散陰極で生成し透過する苛性ソーダ等
が該ガス拡散陰極表面に位置する三次元構造を有する金
属網状体に接触して該網状体を介して前記ガス拡散陰極
から三次元的に広がってその表面から離脱する。従って
前記苛性ソーダ等によりガス拡散陰極が貫通孔を閉塞し
電解条件を不安定にすることがなく、従来のガス拡散陰
極を使用するソーダ電解等と異なり、長期間運転を継続
してもガス拡散陰極の表面に苛性ソーダ等が留まること
がなく、生成した苛性ソーダ等を直ちに陰極室側から取
り出すことができる。更にこれによりガスの供給及び取
り出しを円滑に行なうことが可能になり、槽電圧の低下
を達成できる。
The gas diffusion cathode according to the present invention comprises a gas diffusion cathode in contact with an ion exchange membrane defining an anode chamber and a cathode gas chamber, a metal mesh in contact with the gas diffusion cathode, and a connection to the metal mesh. And a feeder for feeding power to the gas diffusion cathode through the mesh. The gas diffusion cathode structure is such that caustic soda and the like generated and transmitted by the gas diffusion cathode come into contact with a metal network having a three-dimensional structure located on the gas diffusion cathode surface and from the gas diffusion cathode through the network. Spreads three-dimensionally and detaches from its surface. Therefore, the gas diffusion cathode does not block the through-holes due to the caustic soda or the like, thereby making the electrolysis conditions unstable, and unlike the conventional soda electrolysis using the gas diffusion cathode, the gas diffusion cathode can be used even if the operation is continued for a long time. The caustic soda and the like do not remain on the surface of the metal, and the generated caustic soda and the like can be immediately taken out from the cathode chamber side. Further, this makes it possible to smoothly supply and take out the gas, and it is possible to reduce the cell voltage.

【0025】電解槽を大型化する際には前述したガス拡
散陰極表面からの液離脱が重大な問題点となりやすく、
この問題点解決が電解槽大型化のネックになることが多
い。本発明によると電解槽を大型化しても、金属網状体
をそれに対応するように大型化するのみで大量の液離脱
を円滑に行なうことができる。又本発明に係わるガス拡
散陰極で使用される金属網状体は弾性を有していること
が望ましく、該弾性によりガス拡散陰極をイオン交換膜
に均一に密着させ、より以上の槽電圧の低下を達成でき
る。金属網状体の形態としては、金属ワイヤの網を積層
したものや金属ワイヤを三次元的に編んだもの、あるい
は金属フォーム等があり、いずれの形態でもガス拡散陰
極表面から生成する苛性ソーダ等を容易かつ円滑に除去
できる。
When the size of the electrolytic cell is increased, separation of the liquid from the gas diffusion cathode surface described above tends to be a serious problem.
Solving this problem often becomes a bottleneck in increasing the size of the electrolytic cell. According to the present invention, even if the size of the electrolytic cell is increased, a large amount of liquid can be smoothly separated simply by increasing the size of the metal mesh to correspond to the size. Further, the metal mesh used in the gas diffusion cathode according to the present invention preferably has elasticity, and the elasticity makes the gas diffusion cathode uniformly adhere to the ion exchange membrane, thereby further reducing the cell voltage. Can be achieved. Examples of the form of the metal net include a layered metal wire mesh, a three-dimensional knitted metal wire, and a metal foam.Either form can easily remove caustic soda generated from the gas diffusion cathode surface. And it can be removed smoothly.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わるソーダ電解用電解槽を例示する
概略縦断面図。
FIG. 1 is a schematic longitudinal sectional view illustrating an electrolytic cell for soda electrolysis according to the present invention.

【図2】図2は図1の要部拡大図。FIG. 2 is an enlarged view of a main part of FIG. 1;

【符号の説明】[Explanation of symbols]

1・・・電解槽本体 2・・・イオン交換膜 3・・・
陽極室 4・・・陰極室(ガス室) 5・・・不溶性陽
極 6・・・ガス拡散陰極 7・・・金属網状体 8・
・・陰極給電体 9・・・陽極液導入口 10・・・陽極
液及びガス取出口 11・・・酸素含有ガス導入口 12・
・・苛性ソーダ取出口
1 ・ ・ ・ Electrolyzer main body 2 ・ ・ ・ Ion exchange membrane 3 ・ ・ ・
Anode chamber 4 ・ ・ ・ Cathode chamber (gas chamber) 5 ・ ・ ・ Insoluble anode 6 ・ ・ ・ Gas diffusion cathode 7 ・ ・ ・ Metal net 8.
·· Cathode feeder 9 ··· Anolyte inlet 10 ··· Anode solution and gas outlet 11 ··· Oxygen-containing gas inlet 12
..Caustic soda outlet

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年8月1日[Submission date] August 1, 1996

【手続補正1】[Procedure amendment 1]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】全図[Correction target item name] All figures

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図1】 FIG.

【図2】 FIG. 2

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 陽極室及び陰極ガス室を区画するイオン
交換膜に接触したガス拡散陰極、前記ガス拡散陰極に接
触した金属網状体、及び該金属網状体に接続され該網状
体を通して前記ガス拡散陰極に給電するための給電体を
含んで成ることを特徴とする液透過型ガス拡散陰極構造
体。
1. A gas diffusion cathode in contact with an ion exchange membrane defining an anode chamber and a cathode gas chamber, a metal mesh contacting the gas diffusion cathode, and the gas diffusion connected to the metal mesh through the mesh. A liquid-permeable gas diffusion cathode structure comprising a power supply for supplying power to a cathode.
【請求項2】 金属網状体が弾性を有し該弾性によりガ
ス拡散陰極をイオン交換膜に均一に密着させた請求項1
に記載のガス拡散陰極構造体。
2. The gas diffusion cathode according to claim 1, wherein the metal mesh has elasticity and the gas diffusion cathode is uniformly adhered to the ion exchange membrane by the elasticity.
3. The gas diffusion cathode structure according to item 1.
【請求項3】 金属網状体が金属ワイヤの網を積層した
ものである請求項1に記載のガス拡散陰極構造体。
3. The gas diffusion cathode structure according to claim 1, wherein the metal mesh is formed by laminating a mesh of metal wires.
【請求項4】 金属網状体が金属ワイヤを三次元的に編
んだものである請求項1に記載のガス拡散陰極構造体。
4. The gas diffusion cathode structure according to claim 1, wherein the metal mesh is a three-dimensional braided metal wire.
【請求項5】 金属網状体が金属フォームである請求項
1に記載のガス拡散陰極構造体。
5. The gas diffusion cathode structure according to claim 1, wherein the metal network is a metal foam.
JP17998696A 1996-06-20 1996-06-20 Liquid-permeable gas diffusion cathode structure Expired - Lifetime JP4029944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17998696A JP4029944B2 (en) 1996-06-20 1996-06-20 Liquid-permeable gas diffusion cathode structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17998696A JP4029944B2 (en) 1996-06-20 1996-06-20 Liquid-permeable gas diffusion cathode structure

Publications (2)

Publication Number Publication Date
JPH108283A true JPH108283A (en) 1998-01-13
JP4029944B2 JP4029944B2 (en) 2008-01-09

Family

ID=16075466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17998696A Expired - Lifetime JP4029944B2 (en) 1996-06-20 1996-06-20 Liquid-permeable gas diffusion cathode structure

Country Status (1)

Country Link
JP (1) JP4029944B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6368473B1 (en) 1998-08-25 2002-04-09 Nagakazu Furuya Soda electrolytic cell provided with gas diffusion electrode
KR100510093B1 (en) * 2003-04-23 2005-08-24 한창용 An anode for electrolysis of water and an electrolytic cell comprising the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6368473B1 (en) 1998-08-25 2002-04-09 Nagakazu Furuya Soda electrolytic cell provided with gas diffusion electrode
KR100510093B1 (en) * 2003-04-23 2005-08-24 한창용 An anode for electrolysis of water and an electrolytic cell comprising the same

Also Published As

Publication number Publication date
JP4029944B2 (en) 2008-01-09

Similar Documents

Publication Publication Date Title
JP3553775B2 (en) Electrolyzer using gas diffusion electrode
EP1033419B1 (en) Soda electrolytic cell provided with gas diffusion electrode
EP0636051B1 (en) Apparatus comprising a water ionizing electrode and process of use of said apparatus
JP5031336B2 (en) Oxygen gas diffusion cathode for salt electrolysis
JP2003041388A (en) Electrolysis cell with ion exchange membrane and electrolysis method
JPS6143436B2 (en)
JPH05214573A (en) Gas-depolarizable electrode structure and process and apparatus for performing electrochemical reaction by using same
JPH08333693A (en) Electrolytic cell
US5693213A (en) Electrolytic process of salt water
JPH08283978A (en) Production of gas diffusion electrode
JPH07278864A (en) Gas diffusion electrode
JP3621784B2 (en) Liquid-permeable gas diffusion electrode
JP3655975B2 (en) Gas diffusion cathode and salt water electrolytic cell using the gas diffusion cathode
JP4029944B2 (en) Liquid-permeable gas diffusion cathode structure
JP3625633B2 (en) Gas diffusion electrode structure and manufacturing method thereof
JP4115686B2 (en) Electrode structure and electrolysis method using the structure
JP3553781B2 (en) Electrolysis method using gas diffusion cathode
JPH10140383A (en) Electrode feeder, its production and electrolytic cell for producing hydrogen peroxide
JP3645703B2 (en) Gas diffusion electrode structure
JP3677120B2 (en) Liquid-permeable gas diffusion cathode
JPH09302493A (en) Gas diffusion cathode for electrolysis of soda, its manufacture and electrolytic vessel for electrolyzing soda using the cathode
JP4297694B2 (en) Ion exchange membrane electrolytic cell using gas diffusion cathode and operation method thereof
JP3625520B2 (en) Gas diffusion electrode
JP2000119889A (en) Cathode structure and reactivation method
JP2002249889A (en) Operation starting method of electrolysis vessel

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040927

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050928

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051108

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20051209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071010

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term