JP2002249889A - Operation starting method of electrolysis vessel - Google Patents

Operation starting method of electrolysis vessel

Info

Publication number
JP2002249889A
JP2002249889A JP2001046587A JP2001046587A JP2002249889A JP 2002249889 A JP2002249889 A JP 2002249889A JP 2001046587 A JP2001046587 A JP 2001046587A JP 2001046587 A JP2001046587 A JP 2001046587A JP 2002249889 A JP2002249889 A JP 2002249889A
Authority
JP
Japan
Prior art keywords
exchange membrane
chamber
electrolytic cell
gas
alkali metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001046587A
Other languages
Japanese (ja)
Other versions
JP3536054B2 (en
Inventor
Kenji Nonomura
健二 野々村
Koji Saiki
幸治 斎木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASS FOR PROGRESS OF NEW CH
ASSOCIATION FOR PROGRESS OF NEW CHEMISTRY
Original Assignee
ASS FOR PROGRESS OF NEW CH
ASSOCIATION FOR PROGRESS OF NEW CHEMISTRY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASS FOR PROGRESS OF NEW CH, ASSOCIATION FOR PROGRESS OF NEW CHEMISTRY filed Critical ASS FOR PROGRESS OF NEW CH
Priority to JP2001046587A priority Critical patent/JP3536054B2/en
Publication of JP2002249889A publication Critical patent/JP2002249889A/en
Application granted granted Critical
Publication of JP3536054B2 publication Critical patent/JP3536054B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To effectively enable the starting of an operation of ion exchange membrane electrolysis vessel having a gas diffusion electrode. SOLUTION: In this operation starting method in ion exchange membrane electrolysis vessel for electrolysis of halogenated alkali metal aqueous solution, the gas diffusion electrode is arranged in a cathode chamber of the ion exchange membrane electrolysis vessel which is divided to an anode chamber and the cathode chamber by cation exchange membrane and a hydrophilic liquid permeation layer is disposed between the cation exchange membrane and the gas diffusion electrode. Therein further, the anode chamber is filled with halogenated alkali metal aqueous solution, at the same time, the hydrophilic liquid permeation layer is filled with alkali metal hydroxide aqueous solution, thereafter, oxygen-containing gas is supplied into a gas chamber and the energizing is started.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガス拡散電極を使
用した塩化ナトリウム等のアルカリ金属ハロゲン化物水
溶液のイオン交換膜電解槽の運転開始方法に関し、とく
に運転開始時の通電開始時から大きな電流密度で運転す
ることが可能な電解槽の運転開始方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for starting operation of an ion exchange membrane electrolytic cell of an aqueous solution of an alkali metal halide such as sodium chloride using a gas diffusion electrode. The present invention relates to a method for starting the operation of an electrolytic cell that can be operated with a battery.

【0002】[0002]

【従来の技術】重要な産業資材である水酸化ナトリウム
および塩素は、塩化ナトリウム水溶液の電気分解によっ
て製造されている。これらの電気分解による製造におい
て、電気分解に要する電気エネルギーが原単位の大きな
割合を占めている。そこで、現在主流であるイオン交換
膜電解槽では、陽極と陰極との電極間距離を小さくし、
陽イオン交換膜と陽極および陰極とを実質的に密着させ
て運転を行ったり、陰極として水素過電圧の小さな電極
触媒被覆を形成した電極を採用する等の方法によって電
気分解電圧を低下させることが行われている。
BACKGROUND OF THE INVENTION Sodium hydroxide and chlorine, which are important industrial materials, are produced by electrolysis of aqueous sodium chloride solution. In the production by electrolysis, the electric energy required for electrolysis accounts for a large proportion of the basic unit. Therefore, in the current mainstream ion exchange membrane electrolytic cell, the distance between the anode and the cathode is reduced,
The electrolysis voltage can be reduced by a method such as operating the cation exchange membrane and the anode and the cathode substantially in close contact with each other, or employing an electrode formed with an electrode catalyst coating having a small hydrogen overvoltage as the cathode. Have been done.

【0003】塩化ナトリウム水溶液のイオン交換膜電解
槽においては、陰極において水素の発生反応が起こる
が、水素発生電極に代えて酸素ガス拡散電極を用いた場
合には、陰極においては水素は発生せず、理論的には水
の電気分解電圧に相当する1.2Vの電気分解電圧の低
下が可能であり、実用的な電流密度の範囲において0.
9Vという極めて大きな電気分解電圧の低下が得られる
ことからガス拡散電極を陰極としたイオン交換膜電解槽
の開発が進められている。
In an ion-exchange membrane electrolytic cell of an aqueous solution of sodium chloride, a hydrogen generation reaction occurs at the cathode. However, when an oxygen gas diffusion electrode is used in place of the hydrogen generation electrode, no hydrogen is generated at the cathode. Theoretically, it is possible to lower the electrolysis voltage of 1.2 V, which is equivalent to the electrolysis voltage of water.
Since an extremely large reduction of the electrolysis voltage of 9 V can be obtained, the development of an ion exchange membrane electrolytic cell using a gas diffusion electrode as a cathode has been promoted.

【0004】ガス拡散電極を用いた従来のイオン交換膜
電解槽においては、ガス拡散電極を通じて電解液がガス
室側に漏洩することが問題となっていた。こうした問題
点を解決する方法として、イオン交換膜によって区画し
た陰極室内において、ガス拡散電極の対極と面する側に
は親水性の液体透過材を設け、ガス室に酸素含有気体を
供給すると共に、電解槽で生成したアルカリ金属水酸化
物をガス室側に取り出すことが特開平11−12469
8号公報において提案されている。このようにガス拡散
電極のガス室を陰極生成液体の取り出しを行うものとす
ることにより電解槽の構造が簡単なものとなり、商業的
な電解槽においては極めて有利なものとなる。
In a conventional ion exchange membrane electrolytic cell using a gas diffusion electrode, there has been a problem that the electrolyte leaks to the gas chamber through the gas diffusion electrode. As a method for solving such problems, in a cathode chamber partitioned by an ion exchange membrane, a hydrophilic liquid permeable material is provided on a side facing a counter electrode of a gas diffusion electrode, and an oxygen-containing gas is supplied to the gas chamber. Japanese Patent Application Laid-Open No. H11-12469 discloses that an alkali metal hydroxide generated in an electrolytic cell is taken out to a gas chamber side.
No. 8 proposes this. By using the gas chamber of the gas diffusion electrode for taking out the cathode-generated liquid in this manner, the structure of the electrolytic cell is simplified, which is extremely advantageous in a commercial electrolytic cell.

【0005】ガス拡散電極の表面に配置された親水性液
透過層は、水酸化ナトリウム水溶液等のアルカリ性電解
液を保持し、電気分解時には充分に電流が通電される状
態とされていることが必要である。ところが、電解槽の
組立後に陽極室に食塩水等を導入し、ガス拡散電極のガ
ス室に酸素含有気体あるいは水分を含む酸素含有気体を
導入して運転を開始しても、陽イオン交換膜とガス拡散
電極の間に設けた親水性液透過層には、水酸化ナトリウ
ム水溶液が充分に含浸していない。このために、充分な
電流の通電は困難であり、また含浸が不均一であると電
流の集中個所が生じて陽イオン交換膜や電極に回復しが
たい損傷が生じることがあった。
[0005] The hydrophilic liquid permeable layer disposed on the surface of the gas diffusion electrode must hold an alkaline electrolyte such as an aqueous solution of sodium hydroxide, and must be in a state where sufficient current is supplied during electrolysis. It is. However, after assembling the electrolytic cell, a saline solution or the like is introduced into the anode chamber, and an oxygen-containing gas or an oxygen-containing gas containing water is introduced into the gas chamber of the gas diffusion electrode. The hydrophilic liquid permeable layer provided between the gas diffusion electrodes is not sufficiently impregnated with the aqueous sodium hydroxide solution. For this reason, it is difficult to supply a sufficient current, and if the impregnation is not uniform, a concentrated portion of the current may occur, causing irreparable damage to the cation exchange membrane and the electrode.

【0006】小型の実験室規模の電解槽においては、親
水性液透過層を予め浸漬処理等を行って均一に含浸させ
た後に電解槽に装着することも可能であるが、通電面積
が大きく、しかも多数の単位電解槽を積層した商業的な
電解槽においては、そのような方法を採用することは困
難であった。このために、電解槽の組立後の初期通電
時、あるいは一部の電解槽の通電を停止した後等の再通
電時等の運転開始時においては、陽イオン交換膜やガス
電極に問題を生じさせないように小さな電流密度から通
電を開始し、徐々に通電電流を増加させることが不可欠
であり、特に多数の電解槽を直列に接続した状態での運
転開始時には、電解槽の特性の違い対する配慮も必要で
あり、電解槽の運転が定常状態に達するには長時間を要
した。
[0006] In a small laboratory-scale electrolytic cell, it is possible to mount the hydrophilic liquid permeable layer on the electrolytic cell after the hydrophilic liquid permeable layer is uniformly impregnated in advance by immersion treatment or the like. Moreover, in a commercial electrolytic cell in which a large number of unit electrolytic cells are stacked, it is difficult to adopt such a method. For this reason, problems occur with the cation exchange membrane and the gas electrode at the time of initial energization after assembling the electrolytic cell or at the time of starting operation such as re-energizing after stopping energization of some electrolytic cells. It is indispensable to start energization from a small current density and gradually increase the energization current so as not to cause the problem.Especially when starting operation with many electrolytic cells connected in series, consideration should be given to differences in the characteristics of electrolytic cells. And it took a long time for the operation of the electrolytic cell to reach a steady state.

【0007】[0007]

【発明が解決しようとする課題】本発明は、陽イオン交
換膜によって陽極室と陰極室に区画されたイオン交換膜
電解槽の陰極室にガス拡散電極を配置し、陽イオン交換
膜とガス拡散電極の間に親水性液透過層を設けたイオン
交換膜電解槽の運転開始時において、複雑な運転開始操
作を行うことなく、従来のイオン交換膜電解槽における
運転開始時の操作と同等の運転開始操作が可能なイオン
交換膜電解槽の運転開始方法を提供することを課題とす
るものである。
SUMMARY OF THE INVENTION According to the present invention, a gas diffusion electrode is disposed in a cathode chamber of an ion exchange membrane electrolytic cell divided into an anode chamber and a cathode chamber by a cation exchange membrane. At the start of operation of an ion-exchange membrane electrolytic cell provided with a hydrophilic liquid permeable layer between the electrodes, the same operation as the operation at the start of operation in a conventional ion-exchange membrane electrolytic cell without complicated operation start operation An object of the present invention is to provide a method for starting operation of an ion-exchange membrane electrolytic cell capable of starting operation.

【0008】[0008]

【課題を解決するための手段】本発明は、陽イオン交換
膜によって陽極室と陰極室に区画されたイオン交換膜電
解槽の陰極室にガス拡散電極を配置し、陽イオン交換膜
とガス拡散電極の間に親水性液透過層を設けたアルカリ
金属ハロゲン化物水溶液の電気分解用のイオン交換膜電
解槽における運転開始方法において、陽極室内にアルカ
リ金属ハロゲン化物水溶液を満たすと共に、親水性液透
過層をアルカリ金属水酸化物水溶液で満たした後に、ガ
ス拡散電極の陽イオン交換膜と反対側に形成したガス室
に酸素含有気体を供給して通電を開始する電解槽の運転
開始方法である。陰極室にアルカリ金属水酸化物水溶液
に満たした後に抜き出す前記の電解槽の運転開始方法で
ある。また、陰極室にアルカリ金属水酸化物水溶液を循
環して、親水性液透過層をアルカリ金属水酸化物水溶液
を満たした後に、陰極室内からアルカリ金属水酸化物水
溶液を抜き出した後に、ガス室に酸素含有気体を供給し
て通電を開始する前記の電解槽の運転開始方法である。
また、酸素含有気体が水分を含有している前記の電解槽
の運転開始方法である。
According to the present invention, a gas diffusion electrode is arranged in a cathode chamber of an ion exchange membrane electrolytic cell divided into an anode chamber and a cathode chamber by a cation exchange membrane. In the method for starting operation in an ion exchange membrane electrolytic cell for electrolysis of an alkali metal halide aqueous solution provided with a hydrophilic liquid permeable layer between electrodes, the anode chamber is filled with an alkali metal halide aqueous solution and the hydrophilic liquid permeable layer is filled. Is filled with an aqueous alkali metal hydroxide solution, and then an oxygen-containing gas is supplied to a gas chamber formed on the gas diffusion electrode on the side opposite to the cation exchange membrane to start energization. This is a method for starting operation of the electrolytic cell, wherein the cathode chamber is filled with an aqueous alkali metal hydroxide solution and then extracted. Also, after circulating the aqueous alkali metal hydroxide solution in the cathode chamber, filling the hydrophilic liquid permeable layer with the aqueous alkali metal hydroxide solution, extracting the aqueous alkali metal hydroxide solution from the cathode chamber, and then into the gas chamber. This is a method for starting operation of the electrolytic cell, in which an oxygen-containing gas is supplied to start energization.
The method for starting operation of the electrolytic cell described above, wherein the oxygen-containing gas contains water.

【0009】[0009]

【発明の実施の形態】本発明は、陽イオン交換膜によっ
て陽極室と陰極室に区画し、陰極室にガス拡散電極を設
けるとともに、陽イオン交換膜とガス拡散電極の間に親
水性液透過層を設けたイオン交換膜電解槽においては、
通電開始時に親水性液透過層にアルカリ金属水酸化物水
溶液が充分に、また均一に含浸していないために充分な
電流密度での通電が困難である点に着目したものであ
る。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, a cation exchange membrane is divided into an anode chamber and a cathode chamber, a gas diffusion electrode is provided in the cathode chamber, and a hydrophilic liquid permeates between the cation exchange membrane and the gas diffusion electrode. In an ion exchange membrane electrolytic cell provided with a layer,
Attention was paid to the fact that it is difficult to conduct electricity at a sufficient current density because the aqueous solution of an alkali metal hydroxide is not sufficiently and uniformly impregnated in the hydrophilic liquid permeable layer at the start of electricity supply.

【0010】そして、陽イオン交換膜とガス拡散電極の
間の親水性液透過層にアルカリ金属水酸化物水溶液を含
浸するか、ガス室にアルカリ金属水酸化物水溶液を供給
し、ガス室側から親水性液透過層側へ移送させて親水性
液透過層に満たした後に、アルカリ金属水酸化物水溶液
をガス室から抜き出すことによる少なくともいずれか一
方の方法によって、従来のイオン交換膜電解槽と同等の
運転開始電流によって通電開始操作が可能であることを
見出したものである。
Then, the hydrophilic liquid permeable layer between the cation exchange membrane and the gas diffusion electrode is impregnated with an alkali metal hydroxide aqueous solution, or the alkali metal hydroxide aqueous solution is supplied to the gas chamber, After being transferred to the hydrophilic liquid permeable layer side and filling the hydrophilic liquid permeable layer, at least one of the methods of extracting the aqueous alkali metal hydroxide solution from the gas chamber is equivalent to a conventional ion exchange membrane electrolytic cell. It has been found that the energization start operation can be performed by the operation start current.

【0011】以下に図面を参照して本発明を説明する。
図1は、本発明のイオン交換膜電解槽の運転開始方法を
説明する図である。本発明の電解槽1は、陽イオン交換
膜2により陽極室3と陰極室4に区画され、陽イオン交
換膜2の陽極室3側には多孔性の陽極5が配置され、陽
イオン交換膜2の陰極室4側には、親水性液透過層6が
存在し、更に親水性液透過層6の陽イオン交換膜2側と
は反対側に、ガス拡散電極からなる陰極7が設けられて
おり、陰極7は、ガス拡散電極8を多孔性の陰極支持体
9上に有している。電解槽1には、陽極室3の底部に設
けた陽極液供給口10から陽極液調整装置11において
濃度等が調整された食塩水が供給され陽極液排出口12
から、電気分解で生成した塩素と濃度が減少した淡塩水
が排出される。塩素は気液分離装置13において分離さ
れた後に、淡塩水は陽極液調整装置11へ返送されて、
所定の処理を経た後に陽極室3に供給される。
The present invention will be described below with reference to the drawings.
FIG. 1 is a diagram illustrating a method for starting operation of an ion exchange membrane electrolytic cell according to the present invention. The electrolytic cell 1 of the present invention is divided into an anode chamber 3 and a cathode chamber 4 by a cation exchange membrane 2, and a porous anode 5 is arranged on the anode chamber 3 side of the cation exchange membrane 2. 2, a hydrophilic liquid permeable layer 6 is provided on the cathode chamber 4 side, and a cathode 7 composed of a gas diffusion electrode is provided on the side of the hydrophilic liquid permeable layer 6 opposite to the cation exchange membrane 2 side. The cathode 7 has a gas diffusion electrode 8 on a porous cathode support 9. A saline solution whose concentration or the like is adjusted by an anolyte adjusting device 11 is supplied from an anolyte supply port 10 provided at the bottom of the anolyte chamber 3 to the electrolytic cell 1.
From this, chlorine generated by electrolysis and fresh salt water having a reduced concentration are discharged. After the chlorine is separated in the gas-liquid separator 13, the fresh brine is returned to the anolyte controller 11,
After passing through a predetermined process, it is supplied to the anode chamber 3.

【0012】一方、陰極室4には、ガス拡散電極8を形
成した陰極7の多孔性の陰極支持体9で形成される空間
は、ガス室14を形成しており、酸素含有気体供給口1
5から酸素含有気体調製装置16において酸素濃度、水
分含有量、温度等が所定の値に加湿された酸素含有気体
が供給される。酸素は、ガス拡散電極あるいは電解槽内
での炭酸ナトリウムの生成の原因となる二酸化炭素を除
去したものであれば、液化分離法、PSA法、気体濃縮
膜法等の任意の方法によって濃縮したものを用いること
ができ、濃度が高いものの方が電気分解電圧の低下の効
果が大きくなるので好ましい。
On the other hand, in the cathode chamber 4, a space formed by the porous cathode support 9 of the cathode 7 on which the gas diffusion electrode 8 is formed forms a gas chamber 14, and the oxygen-containing gas supply port 1 is formed.
From 5, the oxygen-containing gas is supplied to the oxygen-containing gas preparation device 16 in which the oxygen concentration, the water content, the temperature and the like are humidified to predetermined values. Oxygen is concentrated by any method such as liquefaction separation method, PSA method, and gas concentration membrane method as long as it removes carbon dioxide that causes the formation of sodium carbonate in the gas diffusion electrode or electrolytic cell. Can be used, and those having a higher concentration are preferred because the effect of lowering the electrolysis voltage is increased.

【0013】電気分解によって陽イオン交換膜2を透過
したナトリウムイオンは、陰極室において水酸化ナトリ
ウム水溶液を生成し、陰極室排出口17から余剰の酸素
含有気体と共に排出されて水酸化ナトリウム貯槽18に
集められる。酸素含有気体供給口15から酸素に伴って
供給される水分は、陰極室で生成する水酸化ナトリウム
水溶液の濃度を適正に保持するために使用されるが、陽
イオン交換膜を透過する水分のみによって電気分解を行
うことも可能である。本発明のイオン交換膜電解槽の運
転開始時には、陽極室内に食塩水を供給すると共に、同
時に水酸化ナトリウム貯槽18から水酸化ナトリウム水
溶液を熱交換器19に供給して所定の温度とした後に陰
極室排出口17から陰極室4に導入する。
The sodium ions that have passed through the cation exchange membrane 2 by electrolysis generate an aqueous solution of sodium hydroxide in the cathode chamber, and are discharged together with excess oxygen-containing gas from the cathode chamber outlet 17 to the sodium hydroxide storage tank 18. Collected. The water supplied along with oxygen from the oxygen-containing gas supply port 15 is used to properly maintain the concentration of the aqueous sodium hydroxide solution generated in the cathode chamber, but only by the water passing through the cation exchange membrane. It is also possible to carry out electrolysis. At the start of the operation of the ion exchange membrane electrolytic cell of the present invention, a saline solution is supplied into the anode chamber, and at the same time, a sodium hydroxide aqueous solution is supplied from the sodium hydroxide storage tank 18 to the heat exchanger 19 to reach a predetermined temperature. It is introduced into the cathode chamber 4 from the chamber outlet 17.

【0014】陰極室4内に導入した水酸化ナトリウム水
溶液は、多孔性の陰極支持体9によって形成されたガス
室側からガス拡散電極8の上部および下部より、親水性
液透過層6へ移送される。水酸化ナトリウム水溶液は陰
極室を満たした後に、所定の時間静置し、親水性液透過
層6を充分に含浸した後に陰極室排出口17から抜き出
しても良いが、陰極室内に供給した水酸化ナトリウム水
溶液を酸素含有気体供給口15から排出させて熱交換器
19に供給して所定の温度に調整した後に陰極室内を循
環する操作を行った後に、ガス室14内から抜き出して
も良い。
The aqueous sodium hydroxide solution introduced into the cathode chamber 4 is transferred from the upper and lower portions of the gas diffusion electrode 8 to the hydrophilic liquid permeable layer 6 from the gas chamber side formed by the porous cathode support 9. You. The aqueous sodium hydroxide solution may be allowed to stand for a predetermined period of time after filling the cathode chamber, and may be extracted from the cathode chamber outlet 17 after sufficiently impregnating the hydrophilic liquid permeable layer 6. The sodium aqueous solution may be discharged from the oxygen-containing gas supply port 15, supplied to the heat exchanger 19, adjusted to a predetermined temperature, circulated in the cathode chamber, and then extracted from the gas chamber.

【0015】以上の説明においては、運転開始時に陰極
室排出口から水酸化ナトリウム水溶液を導入し、親水性
液透過層の上下から浸透するとともに、ガス室から親水
性液透過層の上下に水酸化ナトリウム水溶液を移送し親
水性液透過層を満たす方法について述べたが、ガス拡散
電極と陽イオン交換膜との間に水酸化ナトリウム水溶液
の供給手段を設け陽イオン交換膜とガス拡散電極の間に
位置する親水性液透過層を満たしても良い。また、ガス
室側から水酸化ナトリウム水溶液を供給する方法は、水
酸化ナトリウム水溶液の供給手段等を設けるのみで良い
ので、従来のガス拡散電極を有するイオン交換膜電解槽
を改造することなく使用することができる。
In the above description, at the start of operation, an aqueous sodium hydroxide solution is introduced from the cathode chamber outlet to penetrate from above and below the hydrophilic liquid permeable layer, and from the gas chamber to above and below the hydrophilic liquid permeable layer. The method of transferring the sodium aqueous solution and filling the hydrophilic liquid permeable layer was described.However, a supply means of the sodium hydroxide aqueous solution was provided between the gas diffusion electrode and the cation exchange membrane, and the space between the cation exchange membrane and the gas diffusion electrode was provided. It may fill the hydrophilic liquid permeable layer located. Also, the method of supplying the aqueous sodium hydroxide solution from the gas chamber side can be used without modifying the conventional ion-exchange membrane electrolytic cell having the gas diffusion electrode because it is only necessary to provide a supply means of the aqueous sodium hydroxide solution. be able to.

【0016】また、運転開始時に親水性液透過層に水酸
化ナトリウム水溶液が満たされた後に、ガス室内に水酸
化ナトリウム水溶液が存在しないか、あるいは通電に支
障がない量である場合には、水酸化ナトリウム水溶液の
抜き出しの工程を経ることなく酸素含有気体を供給し電
解槽への通電を行っても良い。また、運転開始時に陰極
室に供給する水酸化ナトリウム水溶液の濃度は、28重
量%〜35重量%とすることが好ましく、より好ましく
は30重量%〜33重量%である。温度は、75℃〜9
0℃とすることが好ましい。
After the hydrophilic liquid permeable layer is filled with the aqueous sodium hydroxide solution at the start of the operation, if the aqueous sodium hydroxide solution does not exist in the gas chamber or the amount does not hinder the energization, water is added. The oxygen-containing gas may be supplied without passing through the step of extracting the aqueous sodium oxide solution to supply electricity to the electrolytic cell. Further, the concentration of the aqueous sodium hydroxide solution supplied to the cathode chamber at the start of the operation is preferably from 28% by weight to 35% by weight, more preferably from 30% by weight to 33% by weight. The temperature is between 75 ° C and 9
The temperature is preferably set to 0 ° C.

【0017】水酸化ナトリウム水溶液を陰極室内に導入
する速度は、電解槽の大きさによっても異なるが、陽イ
オン交換膜の過度の伸縮を抑制し、ピンホールが生じた
りすることがないようにするために、10分〜60分、
好ましくは、30分〜60分の時間で満たされるように
することが望ましい。また、水酸化ナトリウム水溶液を
抜き出す速さも、供給時と同様に10分〜60分、好ま
しくは30分〜60分とすることが好ましい。
The rate at which the aqueous sodium hydroxide solution is introduced into the cathode chamber varies depending on the size of the electrolytic cell. However, excessive expansion and contraction of the cation exchange membrane is suppressed so that pinholes do not occur. 10 minutes to 60 minutes,
Preferably, it is desirable to satisfy the condition in 30 minutes to 60 minutes. Also, the speed at which the aqueous sodium hydroxide solution is withdrawn is preferably 10 minutes to 60 minutes, preferably 30 minutes to 60 minutes, as in the supply.

【0018】本発明で陰極として使用するガス拡散電極
は、ステンレス、ニッケル、銀などの耐食性材料から成
る金網、エキスパンデッドメタル、粉末焼結体、金属繊
維焼結体、発泡体等の材料を、陰極支持体とすることが
できる。このような陰極支持体には電極触媒を含有した
ガス拡散電極を形成させている、電極触媒としては、白
金、パラジウム、ルテニウム、イリジウム、銀等の金属
又はそれらの酸化物を使用できる。これらの電極触媒
は、フッ化黒鉛、フッ素樹脂等の疎水性材料、フッ素樹
脂バインダーとを混練して塗布する等の方法によって形
成することができる。
The gas diffusion electrode used as the cathode in the present invention is made of a material such as a wire mesh, expanded metal, powder sintered body, metal fiber sintered body, foamed body made of a corrosion resistant material such as stainless steel, nickel and silver. And a cathode support. A gas diffusion electrode containing an electrocatalyst is formed on such a cathode support. As the electrocatalyst, metals such as platinum, palladium, ruthenium, iridium and silver or oxides thereof can be used. These electrode catalysts can be formed by a method such as kneading and applying a hydrophobic material such as fluorinated graphite or fluororesin, or a fluororesin binder.

【0019】また、本発明において陰極室に形成するガ
ス室は、酸素含有気体をガス拡散電極に均一に供給する
ことが可能な空間を形成するものであれば任意のものを
用いることができるが、ガス室を通じてガス拡散電極に
電流を供給するために、気体の流通を妨げない導電性の
網状体、多孔体、発泡体等を配置したものであっても良
い。ガス室内に導電性の網状体、多孔体等を配置するこ
とによってイオン交換膜、親水性液透過層、およびガス
拡散電極の積層体の密着性を向上させることができる。
特に、可撓性を有する材料を用いると、積層体の密着の
均一性を向上させることができる。これらの目的で使用
可能な材料としては、ニッケル、銀、あるいはこれらの
金属を被覆した銅等の材料を挙げることができる。
In the present invention, the gas chamber formed in the cathode chamber may be of any type as long as it forms a space capable of uniformly supplying an oxygen-containing gas to the gas diffusion electrode. In order to supply a current to the gas diffusion electrode through the gas chamber, a conductive mesh, a porous body, a foam, or the like which does not hinder the gas flow may be provided. By arranging a conductive network, a porous body, or the like in the gas chamber, it is possible to improve the adhesion of the ion exchange membrane, the hydrophilic liquid permeable layer, and the laminate of the gas diffusion electrodes.
In particular, when a material having flexibility is used, uniformity of close contact of the stacked body can be improved. Materials that can be used for these purposes include nickel, silver, and materials such as copper coated with these metals.

【0020】また、親水性液透過層は、耐食性を有する
金属、炭素繊維、合成樹脂等から多孔性の親水性材料を
用いることができる。好ましくは、炭素繊維、酸化ジル
コニウム、炭化ケイ素等のセラミックス、親水性化した
フッ素樹脂等を用いることができ、織布、不織布状、網
状等の構造のものを用いることができる。また、0.1
mm〜10mm程度のシート状とすることが好ましく、
弾力性があり圧力の不均一が生ずる場合には変形し圧力
の不均一を減少させる材料であることが好ましい。
For the hydrophilic liquid permeable layer, a porous hydrophilic material made of metal, carbon fiber, synthetic resin or the like having corrosion resistance can be used. Preferably, carbon fibers, ceramics such as zirconium oxide and silicon carbide, hydrophilic fluororesins, and the like can be used, and those having a structure such as a woven fabric, a nonwoven fabric, or a net can be used. Also, 0.1
It is preferable to form a sheet of about 10 mm to 10 mm,
It is preferable that the material is elastic and deforms when pressure non-uniformity occurs, thereby reducing the pressure non-uniformity.

【0021】[0021]

【実施例】以下に、実施例および比較例を示し本発明を
説明する。 実施例1 電解面が幅100mm、高さ600mmの電解槽を陽イ
オン交換膜(旭硝子製フレミオン8934)で陽極室と
陰極室に区画し、陽極室には白金族金属酸化物からなる
電極触媒被覆をチタンのエキスパンデッドメタル製基体
上に形成した不溶性電極(ペルメレック電極製)を設
け、陰極室には、陽イオン交換膜に接して、厚さ0.4
mmの炭素繊維織物(Zoltek Corp製 Pa
nex30 Low Oxidation Nitted Carbon Fabrics P
W03)を配置した。また、厚さ1mmのニッケル発泡
体(日本重化学工業株式会社製)に厚さ10μmの厚付
け銀めっきを施して陰極支持体を作製し、この陰極支持
体の表面にポリテトラフルオロエチレン水性懸濁液(三
井デュポンフロロケミカル株式会社製30J)と銀の微
細粉末(真空冶金株式会社製 500A)を1:1(体
積比)で混合、分散した水懸濁液を1平方メートル当り
500gの塗布量で塗布し、窒素雰囲気の電気炉で35
0℃で50分間加熱焼成した後、ホットプレスにより、
幅100mm、高さ600mm、厚さ0.5mmの液透
過型ガス拡散電極を製造し炭素繊維織物に接して配置し
た。このガス拡散電極を形成された陰極室のガス拡散電
極の陽イオン交換膜と反対側の内容積は240mlであ
った。
The present invention will be described below with reference to examples and comparative examples. Example 1 An electrolytic cell having an electrolysis surface having a width of 100 mm and a height of 600 mm was partitioned into an anode chamber and a cathode chamber by a cation exchange membrane (Flemion 8934 manufactured by Asahi Glass Co., Ltd.), and the anode chamber was coated with an electrode catalyst made of a platinum group metal oxide. Was provided on a titanium expanded metal substrate, and an insoluble electrode (Permelec electrode) was provided.
mm carbon fiber woven fabric (Zoltek Corp. Pa)
next30 Low Oxidation Nitted Carbon Fabrics P
W03). Further, a nickel foam having a thickness of 1 mm (manufactured by Nippon Heavy Chemical Industry Co., Ltd.) was subjected to silver plating with a thickness of 10 μm to prepare a cathode support, and a polytetrafluoroethylene aqueous suspension was prepared on the surface of the cathode support. Solution (30J, manufactured by DuPont-Mitsui Fluorochemicals Co., Ltd.) and fine powder of silver (500A, manufactured by Vacuum Metallurgy Co., Ltd.) are mixed and dispersed at a ratio of 1: 1 (volume ratio), and an aqueous suspension is applied at a coating amount of 500 g per square meter. Apply and apply 35 in an electric furnace with nitrogen atmosphere.
After firing at 0 ° C for 50 minutes,
A liquid-permeable gas diffusion electrode having a width of 100 mm, a height of 600 mm, and a thickness of 0.5 mm was manufactured and placed in contact with the carbon fiber fabric. The inner volume of the gas diffusion electrode in the cathode chamber on which the gas diffusion electrode was formed on the side opposite to the cation exchange membrane was 240 ml.

【0022】陽極室に濃度が300g/リットルの塩化
ナトリウム水溶液を供給し、陰極室の下方に設けた陰極
室排出口より陰極室に温度78℃、濃度31.8重量%
の水酸化ナトリウム水溶液を32分間をかけて満たし1
0分間保持した後に、30分間をかけて陰極液排出口か
ら抜き出した。次いで、酸素93.5容量%、残部窒素
および不活性気体からなる気体と97℃の水とを混合し
て水分含有量76容量%の酸素含有気体を調製し、陰極
室の上部に設けた酸素含有気体供給口から供給しなが
ら、1.5kA/m2 の電流密度で通電を開始し、陰極
室排出口からは水酸化ナトリウム水溶液を取り出した。
このときの電解槽電圧は、1.82Vであり、電解槽内
の温度は88℃であった。電流密度を1分間につき3
3.3A/m2 の上昇速度で上昇させて、45分後に3
kA/m2 の定常運転の電流密度に到達した。このとき
の電解槽電圧は、2.12Vであった。
An aqueous solution of sodium chloride having a concentration of 300 g / l is supplied to the anode compartment, and a temperature of 78 ° C. and a concentration of 31.8% by weight are supplied to the cathode compartment from a cathode compartment outlet provided below the cathode compartment.
Sodium hydroxide solution over 32 minutes
After holding for 0 minutes, it was withdrawn from the catholyte outlet over 30 minutes. Next, a gas consisting of 93.5% by volume of oxygen, the balance of nitrogen and an inert gas, and water at 97 ° C. were mixed to prepare an oxygen-containing gas having a water content of 76% by volume, and the oxygen provided at the top of the cathode chamber was prepared. While supplying from the containing gas supply port, energization was started at a current density of 1.5 kA / m 2, and an aqueous sodium hydroxide solution was taken out from the cathode chamber discharge port.
At this time, the electrolytic cell voltage was 1.82 V, and the temperature in the electrolytic cell was 88 ° C. Current density of 3 per minute
Raise at a rate of 3.3 A / m 2 , and after 45 minutes 3
The steady-state current density of kA / m 2 was reached. The electrolytic cell voltage at this time was 2.12V.

【0023】その後、電気分解電圧は低下傾向を示し、
運転開始より3時間経過後にほぼ安定した。この時の電
解槽電圧は、2.04Vであった。通電開始時からの電
解槽電圧の推移を図2に示す。定常運転電流に達した後
の、陽極室から排出される淡塩水濃度は210g/リッ
トル、生成した水酸化ナトリウム水溶液濃度は32.8
重量%であった。
Thereafter, the electrolysis voltage shows a tendency to decrease,
It became almost stable three hours after the start of operation. The electrolytic cell voltage at this time was 2.04V. FIG. 2 shows changes in the electrolytic cell voltage from the start of energization. After reaching the steady-state operating current, the concentration of the fresh salt water discharged from the anode chamber is 210 g / liter, and the concentration of the generated sodium hydroxide aqueous solution is 32.8.
% By weight.

【0024】比較例1 電解槽の運転開始時に水酸化ナトリウム水溶液を陰極室
に満たさなかった点を除き実施例1と同様に電気分解を
行ったところ、電解槽電圧は直ちに2.7Vを超え、電
解槽の構成部材に対しても好ましくないので通電を停止
した。
Comparative Example 1 Electrolysis was carried out in the same manner as in Example 1 except that the aqueous solution of sodium hydroxide was not filled in the cathode chamber at the start of the operation of the electrolytic cell. The electrolytic cell voltage immediately exceeded 2.7 V. The energization was stopped because it was not preferable for the components of the electrolytic cell.

【0025】比較例2 通電開始時に陰極室に水酸化ナトリウム水溶液を満たさ
ず、定常運転電流の1/18の電流密度である0.16
7kA/m2 の電流を供給した。一時的に電解槽電圧は
2.2Vを超えたが、徐々に低下して2Vよりも小さく
なった。この5分後より、1分間に16.5A/m2
上昇速度で電流の上昇を続け、95分後に定常運転電流
密度に到達した。このときの電解槽電圧は、2.39V
であった。また、運転開始より3時間経過後の電解電圧
は、2.34Vであった。この電解電圧の推移を図2に
示す。定常運転電流に達した後の陽極液濃度は212g
/リットル、生成した水酸化ナトリウム水溶液濃度は3
3.1重量%であった。運転開始から7時間後には、電
解電圧は2.05Vへと低下して安定した。
Comparative Example 2 At the start of energization, the cathode chamber was not filled with an aqueous solution of sodium hydroxide, and the current density was 0.16, which was 1/18 of the steady operating current.
A current of 7 kA / m 2 was supplied. The electrolytic cell voltage temporarily exceeded 2.2 V, but gradually decreased to less than 2 V. Five minutes later, the current continued to increase at a rate of 16.5 A / m 2 per minute, and reached a steady operating current density after 95 minutes. The electrolytic cell voltage at this time was 2.39 V
Met. The electrolysis voltage after a lapse of 3 hours from the start of operation was 2.34 V. FIG. 2 shows the transition of the electrolysis voltage. The anolyte concentration after reaching the steady operating current is 212 g
/ Liter, the concentration of the generated sodium hydroxide aqueous solution is 3
It was 3.1% by weight. Seven hours after the start of operation, the electrolysis voltage dropped to 2.05 V and stabilized.

【0026】[0026]

【発明の効果】ガス拡散電極を用いた電解槽において、
電解槽の運転開始時の通電電流を定常状態の通電電流密
度の半分程度の通電電流とすることができ、早期に定常
状態の通電電流密度で電解槽の運転が可能となる。
In the electrolytic cell using the gas diffusion electrode,
The energizing current at the start of the operation of the electrolytic cell can be approximately half the energizing current density in the steady state, and the operation of the electrolytic cell can be performed at an early stage with the energizing current density in the steady state.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明のイオン交換膜電解槽の運転開
始方法を説明する図である。
FIG. 1 is a diagram illustrating a method for starting operation of an ion exchange membrane electrolytic cell of the present invention.

【図2】図2は、本発明の実施例、比較例の電解槽電圧
の推移を説明する図である。
FIG. 2 is a diagram for explaining changes in electrolytic cell voltage in Examples of the present invention and Comparative Examples.

【符号の説明】[Explanation of symbols]

1…電解槽、2…陽イオン交換膜、3…陽極室、4…陰
極室、5…陽極、6…親水性液透過層、7…陰極、8…
ガス拡散電極、9…陰極支持体、10…陽極液供給口、
11…陽極液調整装置、12…陽極液排出口、13…気
液分離装置、14…ガス室、15…酸素含有気体供給
口、16…酸素含有気体調製装置、17…陰極室排出
口、18…水酸化ナトリウム貯槽、19…熱交換器
DESCRIPTION OF SYMBOLS 1 ... Electrolysis tank, 2 ... Cation exchange membrane, 3 ... Anode compartment, 4 ... Cathode compartment, 5 ... Anode, 6 ... Hydrophilic liquid permeable layer, 7 ... Cathode, 8 ...
Gas diffusion electrode, 9: cathode support, 10: anolyte supply port,
Reference numeral 11: anolyte adjusting device, 12: anolyte outlet, 13: gas-liquid separator, 14: gas chamber, 15: oxygen-containing gas supply port, 16: oxygen-containing gas preparation device, 17: cathode chamber outlet, 18 ... Sodium hydroxide storage tank, 19 ... Heat exchanger

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 陽イオン交換膜によって陽極室と陰極室
に区画されたイオン交換膜電解槽の陰極室にガス拡散電
極を配置し、陽イオン交換膜とガス拡散電極の間に親水
性液透過層を設けたアルカリ金属ハロゲン化物水溶液の
電気分解用のイオン交換膜電解槽における運転開始方法
において、陽極室内にアルカリ金属ハロゲン化物水溶液
を満たすと共に、親水性液透過層をアルカリ金属水酸化
物水溶液で満たした後に、ガス拡散電極の陽イオン交換
膜と反対側に形成したガス室に酸素含有気体を供給して
通電を開始することを特徴とする電解槽の運転開始方
法。
1. A gas diffusion electrode is disposed in a cathode chamber of an ion exchange membrane electrolytic cell partitioned into an anode chamber and a cathode chamber by a cation exchange membrane, and a hydrophilic liquid permeates between the cation exchange membrane and the gas diffusion electrode. In the method for starting operation in an ion exchange membrane electrolytic cell for electrolysis of an aqueous alkali metal halide solution provided with a layer, the anode chamber is filled with an aqueous alkali metal halide solution and the hydrophilic liquid permeable layer is coated with an aqueous alkali metal hydroxide solution. A method for starting operation of an electrolytic cell, characterized in that after filling, an oxygen-containing gas is supplied to a gas chamber formed on a side of the gas diffusion electrode opposite to the cation exchange membrane to start energization.
【請求項2】 陰極室にアルカリ金属水酸化物水溶液に
満たした後に抜き出すことを特徴とする請求項1記載の
電解槽の運転開始方法。
2. The method for starting operation of an electrolytic cell according to claim 1, wherein the cathode chamber is filled with an aqueous alkali metal hydroxide solution and then withdrawn.
【請求項3】 陰極室にアルカリ金属水酸化物水溶液を
循環して、親水性液透過層をアルカリ金属水酸化物水溶
液を満たした後に、陰極室内からアルカリ金属水酸化物
水溶液を抜き出した後に、ガス室に酸素含有気体を供給
して通電を開始することを特徴とする請求項1に記載の
電解槽の運転開始方法。
3. After circulating an aqueous alkali metal hydroxide solution in the cathode chamber, filling the hydrophilic liquid permeable layer with the aqueous alkali metal hydroxide solution, extracting the aqueous alkali metal hydroxide solution from the cathode chamber, The method for starting operation of an electrolytic cell according to claim 1, wherein the energization is started by supplying an oxygen-containing gas to the gas chamber.
【請求項4】 酸素含有気体が水分を含有していること
を特徴とする請求項1または3のいずれかに記載の電解
槽の運転開始方法。
4. The method according to claim 1, wherein the oxygen-containing gas contains water.
JP2001046587A 2001-02-22 2001-02-22 How to start operation of electrolytic cell Expired - Lifetime JP3536054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001046587A JP3536054B2 (en) 2001-02-22 2001-02-22 How to start operation of electrolytic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001046587A JP3536054B2 (en) 2001-02-22 2001-02-22 How to start operation of electrolytic cell

Publications (2)

Publication Number Publication Date
JP2002249889A true JP2002249889A (en) 2002-09-06
JP3536054B2 JP3536054B2 (en) 2004-06-07

Family

ID=18908185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001046587A Expired - Lifetime JP3536054B2 (en) 2001-02-22 2001-02-22 How to start operation of electrolytic cell

Country Status (1)

Country Link
JP (1) JP3536054B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007119817A (en) * 2005-10-26 2007-05-17 Permelec Electrode Ltd Gas diffusion cathode for reducing oxygen in brine electrolysis, and brine electrolysis method
CN103305864A (en) * 2012-03-15 2013-09-18 拜耳知识产权有限责任公司 Method for the electrolysis of alkali chlorides with oxygen consumption electrodes in a micro-gap arrangement
JP2013194323A (en) * 2012-03-15 2013-09-30 Bayer Intellectual Property Gmbh Electrolysis method of alkali metal chloride using oxygen-consuming electrode having orifice

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05255882A (en) * 1992-03-13 1993-10-05 Choichi Furuya Method for protecting oxygen cathode
JPH11124698A (en) * 1997-10-16 1999-05-11 Permelec Electrode Ltd Electrolytic cell using gas diffusion electrode
JPH11172480A (en) * 1997-12-08 1999-06-29 Permelec Electrode Ltd Electrolysis using gas diffusion cathode
JP2000117060A (en) * 1998-10-12 2000-04-25 Chlorine Eng Corp Ltd Treatment of ion exchange resin of electrolytic cell
JP2001026891A (en) * 1999-07-09 2001-01-30 Toagosei Co Ltd Startup method for alkali chloride electrolytic cell using gas diffusion cathode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05255882A (en) * 1992-03-13 1993-10-05 Choichi Furuya Method for protecting oxygen cathode
JPH11124698A (en) * 1997-10-16 1999-05-11 Permelec Electrode Ltd Electrolytic cell using gas diffusion electrode
JPH11172480A (en) * 1997-12-08 1999-06-29 Permelec Electrode Ltd Electrolysis using gas diffusion cathode
JP2000117060A (en) * 1998-10-12 2000-04-25 Chlorine Eng Corp Ltd Treatment of ion exchange resin of electrolytic cell
JP2001026891A (en) * 1999-07-09 2001-01-30 Toagosei Co Ltd Startup method for alkali chloride electrolytic cell using gas diffusion cathode

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007119817A (en) * 2005-10-26 2007-05-17 Permelec Electrode Ltd Gas diffusion cathode for reducing oxygen in brine electrolysis, and brine electrolysis method
CN103305864A (en) * 2012-03-15 2013-09-18 拜耳知识产权有限责任公司 Method for the electrolysis of alkali chlorides with oxygen consumption electrodes in a micro-gap arrangement
JP2013194322A (en) * 2012-03-15 2013-09-30 Bayer Intellectual Property Gmbh Electrolysis method of alkali metal chloride using oxygen-consuming electrode in micro-gap arrangement
JP2013194323A (en) * 2012-03-15 2013-09-30 Bayer Intellectual Property Gmbh Electrolysis method of alkali metal chloride using oxygen-consuming electrode having orifice
EP2639338A3 (en) * 2012-03-15 2015-06-10 Bayer Intellectual Property GmbH Method for the electrolysis of alkali chlorides with oxygen consumption electrodes in a micro-gap arrangement
EP2639339A3 (en) * 2012-03-15 2015-06-10 Bayer Intellectual Property GmbH Method for the electrolysis of alkali chlorides with oxygen consumption electrodes with openings
CN103305864B (en) * 2012-03-15 2017-08-11 科思创德国股份有限公司 The method for the oxygen-consuming electrode electrolyzing alkali metal chloride arranged with microgap
JP2018048411A (en) * 2012-03-15 2018-03-29 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングBayer Intellectual Property GmbH Electrolysis method of alkali metal chloride using oxygen consumption electrode having orifice

Also Published As

Publication number Publication date
JP3536054B2 (en) 2004-06-07

Similar Documents

Publication Publication Date Title
JP3553775B2 (en) Electrolyzer using gas diffusion electrode
CA1179630A (en) Halide electrolysis in cell with catalytic electrode bonded to hydraulically permeable membrane
JP5031336B2 (en) Oxygen gas diffusion cathode for salt electrolysis
JP2003041388A (en) Electrolysis cell with ion exchange membrane and electrolysis method
JP5178959B2 (en) Oxygen gas diffusion cathode, electrolytic cell using the same, chlorine gas production method, and sodium hydroxide production method
JP2006219694A (en) Gas diffusion electrode
EP0002787A1 (en) Composite halogen electrode, rechargeable metal-halogen energy storage cell comprising said electrode and method of use of the electrode
US5693213A (en) Electrolytic process of salt water
JPH07278864A (en) Gas diffusion electrode
JP3421021B2 (en) Electrolysis method of alkali chloride
JP2002275670A (en) Ion exchange membrane electrolytic cell and electrolysis method
JP3536054B2 (en) How to start operation of electrolytic cell
JP2015224392A (en) Oxygen-consuming electrode and method for its production
JP3553781B2 (en) Electrolysis method using gas diffusion cathode
JP3625633B2 (en) Gas diffusion electrode structure and manufacturing method thereof
JP4115686B2 (en) Electrode structure and electrolysis method using the structure
JP3645703B2 (en) Gas diffusion electrode structure
JP2001020089A (en) Protective method of alkali chloride electrolytic cell and protective device therefor
JP2007119817A (en) Gas diffusion cathode for reducing oxygen in brine electrolysis, and brine electrolysis method
JP4297694B2 (en) Ion exchange membrane electrolytic cell using gas diffusion cathode and operation method thereof
JP4029944B2 (en) Liquid-permeable gas diffusion cathode structure
JP2000178778A (en) Production of hydrogen peroxide
JPH06173061A (en) Gas electrode structure and electrolytic method using said gas electrode structure
JP2022152820A (en) Electrolytic cell of two chamber process for brine electrolysis using gas diffusion electrode, and utilization thereof
US20150017554A1 (en) Process for producing transport and storage-stable oxygen-consuming electrode

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20031215

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20031215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20031215

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040203

R150 Certificate of patent or registration of utility model

Ref document number: 3536054

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080326

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120326

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120326

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120326

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term