JPH1081610A - Production of sterilizing antispetic solution and sterilizing disinfectant - Google Patents

Production of sterilizing antispetic solution and sterilizing disinfectant

Info

Publication number
JPH1081610A
JPH1081610A JP8236080A JP23608096A JPH1081610A JP H1081610 A JPH1081610 A JP H1081610A JP 8236080 A JP8236080 A JP 8236080A JP 23608096 A JP23608096 A JP 23608096A JP H1081610 A JPH1081610 A JP H1081610A
Authority
JP
Japan
Prior art keywords
acid
disinfectant
solution
aqueous solution
acidic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8236080A
Other languages
Japanese (ja)
Other versions
JP3219698B2 (en
Inventor
Shozo Yano
鉦三 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CLEAN CHEM KK
Original Assignee
CLEAN CHEM KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CLEAN CHEM KK filed Critical CLEAN CHEM KK
Priority to JP23608096A priority Critical patent/JP3219698B2/en
Publication of JPH1081610A publication Critical patent/JPH1081610A/en
Application granted granted Critical
Publication of JP3219698B2 publication Critical patent/JP3219698B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

PROBLEM TO BE SOLVED: To extremely simply produce a sterilizing antiseptic solution having performances and properties equal to those of acidic electrolytic water at a low cost by compounding a medicine comprising a specific chlorine agent, an acidic substance or hydrogen peroxide therein. SOLUTION: This sterilizing antiseptic solution is prepared by dissolving a chlorine agent selected from the group of sodium dichloroisocyanurate, sodium hypochlorite, high test hypochlorite and chloramine T, an acidic substance or hydrogen peroxide in water. An acidic aqueous solution at pH <=5.5 having >=30ppm content of residual chlorine and >=+800mV oxidation-reduction potential(ORP) is obtained by the preparation. Citric acid, malic acid, tartaric acid, maleic acid, succinic acid, etc., are cited as the acidic substance and a powdery mixture obtained by mixing the chlorine agent powder with an organic or/and an inorganic acid in a powdery form may be used as the sterilizing and disinfectant. The sterilizing antispectic solution or sterilizing and disinfectant is used for washing of hands in medical institutions, various recreational facilities or kitchens, washing of various apparatuses or materials or equipment, washing of linen, dishcloths, clothes or footwear, cleaning of walls or floors, washing, etc., of dental impression materials.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、医療機関,各種厚
生施設,厨房,一般家庭等における手洗い、各種器材や
備品の洗浄、リネン,フキン,衣類や履物の洗浄、壁や
床の清拭、歯科用印象剤の洗浄、人工透析ラインの洗浄
等に使用される殺菌消毒液の製造方法と殺菌消毒剤に関
する。
BACKGROUND OF THE INVENTION The present invention relates to hand washing in medical institutions, various welfare facilities, kitchens, general households, etc., washing of various equipment and fixtures, washing of linen, fukin, clothes and footwear, cleaning of walls and floors, The present invention relates to a method for producing a disinfectant and a disinfectant used for washing dental impressions, artificial dialysis lines, and the like.

【0002】[0002]

【従来の技術】一般に、食塩水溶液を両極間にイオン交
換膜等の隔膜を介して電気分解すれば、陰極側には水素
の発生を伴って高PHのアルカリ電解水が生成すると共
に、陽極側には活性塩素や酸素を含む低PHの酸性電解
水が生成することが知られている。しかして、後者の酸
性電解水は、強い殺菌作用を有しており、且つ従来汎用
の消毒薬に比較して毒性が少なく、手洗い等に使用して
も肌の荒れを生じにくい上、使用済み廃水についても特
別な処理が不要であるという利点から、殺菌消毒用とし
て注目されている。そして、近年において、水道水に微
量の食塩を加えて電気分解し、陽極側に生成する酸性電
解水を取り出すように構成された電解水生成装置が種々
市販されている。
2. Description of the Related Art In general, if a saline solution is electrolyzed between both electrodes through a membrane such as an ion exchange membrane, high-pH alkaline electrolyzed water is produced on the cathode side with the generation of hydrogen, and the anode side is produced. Is known to produce low pH acidic electrolyzed water containing active chlorine and oxygen. However, the latter acidic electrolyzed water has a strong bactericidal action, is less toxic than conventional general-purpose disinfectants, is less likely to cause rough skin even when used for hand washing, and has been used. Wastewater has attracted attention for sterilization because it does not require special treatment. In recent years, various electrolyzed water generators configured to add a trace amount of sodium chloride to tap water to perform electrolysis and take out acidic electrolyzed water generated on the anode side are commercially available.

【0003】この酸性電解水には、通常の電解によって
得られるPH2.7以下、残留塩素量30〜40pp
m、酸化還元電位(以下、ORPという)+1100m
V以上の強酸性電解水と、これを電解直後に希釈する方
法等で得られるPH4.5〜5.5、残留塩素量50〜
80ppm、ORP+800〜+1000mVの弱酸性
電解水とがあり、後者の弱酸性電解水は保存安定性に優
れるという利点がある。しかして、酸性電解水の殺菌作
用は、高ORPによる微生物の生息環境破壊と、次亜塩
素酸による殺菌効果に基づくとされている。
The acidic electrolyzed water has a pH of 2.7 or less and a residual chlorine content of 30 to 40 pp obtained by ordinary electrolysis.
m, oxidation-reduction potential (hereinafter referred to as ORP) +1100 m
V or higher, strongly acidic electrolyzed water, PH 4.5 to 5.5 obtained by diluting the water immediately after electrolysis, residual chlorine amount 50 to
There is 80 ppm, ORP +800 to +1000 mV weakly acidic electrolyzed water, and the latter weakly acidic electrolyzed water has an advantage of being excellent in storage stability. The bactericidal action of acidic electrolyzed water is said to be based on the destruction of the microbial habitat by high ORP and the bactericidal effect by hypochlorous acid.

【0004】すなわち、微生物は、ORPとして通性好
気性微生物では+200〜+820mV、嫌気性微生物
では−700〜+100mV、ORP−PHの相関から
は図1で示す斜線を施した領域A内を生活圏とするが、
酸性電解水中では該領域Aをほぼ外れた高ORPの環境
となるために細胞小器官の膜電位の安定化限界を越え、
エネルギー代謝や呼吸が阻害されて生息困難になると解
されている。また、食塩の電解によって生じた塩素ガス
は、水中での化合形態が高PHほど次式の右側へ移行す
るように変化するが、 Cl2 +H2 O←→HCl+HOCl←→HCl+H+
+OCl- 酸性電解水の前記PH領域では図2に示すように大部分
が活性塩素である次亜塩素酸(HOCl)として存在す
るため、この次亜塩素酸の強い酸化力により、微生物は
蛋白質の変性(N末端アミノ基の酸化による酵素活性の
失活)を生じて死滅すると考えられている。
[0004] That is, as for the ORP, the facultative aerobic microorganism is +200 to +820 mV as the ORP, and the anaerobic microorganism is -700 to +100 mV. But
In the acidic electrolyzed water, the environment of high ORP almost deviating from the region A is exceeded, so that the membrane potential of the organelle exceeds the stabilization limit,
It is understood that energy metabolism and respiration are obstructed, making it difficult to live. Further, the chlorine gas generated by the electrolysis of the salt changes so that the compound form in water shifts to the right side of the following formula as the pH becomes higher, but Cl 2 + H 2 O ← → HCl + HOCl ← → HCl + H +
In the PH region of + OCl acidic electrolyzed water, as shown in FIG. 2, most of the water is present as hypochlorous acid (HOCl), which is active chlorine. It is thought that denaturation (inactivation of enzyme activity due to oxidation of the N-terminal amino group) occurs and death occurs.

【0005】[0005]

【発明が解決しようとする課題】上述のように、食塩水
溶液の電気分解によって陽極側に生成する酸性電解水は
殺菌消毒用として有用性の高いものと考えられるが、そ
の生成に使用される従来の電解水生成装置は、非常に高
価であることから、多量の殺菌消毒液を必要としない小
規模な施設や一般家庭等に導入するには経済的に見合わ
ず、また病院等の使用頻度が高く消費量の多い施設でも
設備コストの負担が大きいために必要箇所の全てに設置
することは困難であった。
As described above, acidic electrolyzed water generated on the anode side by electrolysis of a saline solution is considered to be highly useful for sterilization and disinfection. Is very expensive, so it is not economically feasible to introduce it into small-scale facilities or ordinary households that do not require a large amount of disinfectant, Even facilities with high consumption and high consumption have a large burden on equipment costs, so it has been difficult to install them in all necessary locations.

【0006】従って、殺菌消毒用としての酸性電解水の
利用を促進する上では、より安価な電解水生成装置の出
現が待たれるが、電解部の構成や配管、電気的及び流体
的制御等面より装置の製作コスト低減には自ずと限界が
あり、また電極寿命に伴う交換等のメンテナンスの費用
負担も避けられないため、経済性の問題は解決困難であ
り、特に使用頻度や消費量が少ない場合に対応できな
い。
Therefore, in order to promote the use of acidic electrolyzed water for sterilization and disinfection, the emergence of an inexpensive electrolyzed water generator is expected. However, the construction of the electrolysis section, piping, electrical and fluid control, and the like are required. There is naturally a limit in reducing the manufacturing cost of the device, and the cost of maintenance such as replacement due to the life of the electrode is unavoidable, so it is difficult to solve the economic problem, especially when the frequency of use and consumption are small. Can not respond to.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上述の状
況に鑑み、殺菌消毒用として有用性の高い酸性電解水を
安価に提供する目的で鋭意検討を重ねる過程で、電解水
生成装置の低価格化という考え方から発想を180度転
換し、食塩水の電気分解という方法によらずに、薬剤の
調合によって酸性電解水と同等の性能及び性状を有する
殺菌消毒液を極めて簡単に且つ安価に提供できることを
見出し、本発明をなすに至った。
SUMMARY OF THE INVENTION In view of the above-mentioned situation, the present inventors have conducted intensive studies in order to provide inexpensively acidic electrolyzed water having high utility for sterilization and disinfection. The idea was changed 180 degrees from the idea of lowering the cost of sterilization, and a sterilizing and disinfecting solution having the same performance and properties as acidic electrolyzed water could be prepared very easily and inexpensively by mixing chemicals without depending on the method of electrolysis of saline solution. And found that the present invention can be provided.

【0008】すなわち、本発明の請求項1に係る殺菌消
毒液の製造方法は、水中に、a)ジクロロイソシアヌー
ル酸ナトリウム、次亜塩素酸ナトリウム、高度サラシ
粉、クロラミンTの群より選ばれる塩素剤と、b)酸性
物質又は過酸化水素とを溶解することにより、PH5.
5以下、残留塩素量30ppm以上、ORP(酸化還元
電位)+800mV以上の酸性水溶液を調製することを
特徴とするものである。しかして、この方法によれば、
水に溶解したa成分の塩素剤に基づく残留塩素がb成分
によってPHを5.5以下に調整することによって活性
の次亜塩素酸として存在する形になり、またb成分によ
ってORP+800mV以上に設定するため、従来の食
塩水の電気分解によって生成させていた酸性電解水と同
等の性能及び性状を有する有用性の高い殺菌消毒液が容
易に且つ安価に得られることになる。なお、b成分の過
酸化水素は、a成分の塩素剤の塩素と反応して塩酸を生
成することにより、水溶液のPHを低下させる作用があ
る。
[0008] That is, the method for producing a disinfecting solution according to claim 1 of the present invention comprises the steps of: a) dissolving in water a chlorine selected from the group consisting of sodium dichloroisocyanurate, sodium hypochlorite, high-grade salami powder, and chloramine T; PH5. By dissolving an agent and b) an acidic substance or hydrogen peroxide.
The method is characterized in that an acidic aqueous solution having a residual chlorine content of 30 ppm or less and an ORP (oxidation-reduction potential) of +800 mV or more is prepared. Thus, according to this method,
By adjusting the pH to 5.5 or less by the b component, the residual chlorine based on the chlorinating agent of the a component dissolved in water becomes a form that exists as active hypochlorous acid, and is set to ORP + 800 mV or more by the b component. Therefore, a highly useful disinfectant solution having the same performance and properties as the acidic electrolyzed water generated by the conventional electrolysis of saline can be easily and inexpensively obtained. The hydrogen peroxide of the component b has an effect of lowering the pH of the aqueous solution by reacting with the chlorine of the chlorine agent of the component a to generate hydrochloric acid.

【0009】請求項2の発明では、上記請求項1の殺菌
消毒液の製造方法において、塩素剤がジクロロイソシア
ヌール酸ナトリウムである構成を採用することから、残
留塩素の安定性が高い殺菌消毒液を安価に且つ容易に調
製できる。
According to a second aspect of the present invention, in the method for producing a germicidal disinfectant according to the first aspect, since the chlorine agent is sodium dichloroisocyanurate, the disinfectant has a high stability of residual chlorine. Can be prepared inexpensively and easily.

【0010】請求項3の発明では、上記請求項1又は2
の殺菌消毒液の製造方法において、酸性水溶液を、PH
4.5〜5.5、残留塩素量50〜80ppm、酸化還
元電位+800〜1000mVに調製する構成を採用し
ているから、得られる殺菌消毒液は従来の食塩水の電気
分解によって生成させていた弱酸性電解水に相当するも
のとなる。
According to the third aspect of the present invention, the first or second aspect is provided.
The method for producing a disinfectant solution of
Since the composition is adjusted to 4.5 to 5.5, the residual chlorine amount to 50 to 80 ppm, and the oxidation-reduction potential to +800 to 1000 mV, the obtained disinfectant solution is generated by the conventional electrolysis of saline. It is equivalent to weakly acidic electrolyzed water.

【0011】請求項4の発明では、上記請求項3の殺菌
消毒液の製造方法において、前記b)成分が、クエン
酸、リンゴ酸、酒石酸、マレイン酸、コハク酸、シュウ
酸、グリコール酸、酢酸、塩酸、硫酸、硝酸、硫酸水素
ナトリウム、スルファミン酸、リン酸より選ばれる少な
くとも一種の酸性物質、もしくは過酸化水素である構成
を採用しているから、従来の食塩水の電気分解による弱
酸性電解水に相当する殺菌消毒液を容易に調製できる。
According to a fourth aspect of the present invention, in the method for producing a germicidal disinfectant according to the third aspect, the component b) is selected from the group consisting of citric acid, malic acid, tartaric acid, maleic acid, succinic acid, oxalic acid, glycolic acid, and acetic acid. Weak acid electrolysis by conventional electrolysis of salt water because it employs at least one acidic substance selected from hydrochloric acid, sulfuric acid, nitric acid, sodium hydrogen sulfate, sulfamic acid, phosphoric acid, or hydrogen peroxide A disinfectant solution corresponding to water can be easily prepared.

【0012】請求項5の発明では、上記請求項1又は2
の殺菌消毒液の製造方法において、酸性水溶液を、PH
2.7以下、残留塩素量30〜40ppm、酸化還元電
位+1100mV以上に調製する構成を採用しているこ
とから、得られる殺菌消毒液は従来の食塩水の電気分解
によって生成させていた強酸性電解水に相当するものと
なる。
According to the fifth aspect of the present invention, the first or second aspect is provided.
The method for producing a disinfectant solution of
2.7 or less, the residual chlorine amount is 30 to 40 ppm, and the oxidation-reduction potential is adjusted to +1100 mV or more. Therefore, the obtained disinfectant solution is obtained by the strong acid electrolysis generated by the conventional electrolysis of saline. It is equivalent to water.

【0013】請求項6の発明では、上記請求項5の殺菌
消毒液の製造方法において、前記a成分が、ジクロロイ
ソシアヌール酸ナトリウム、次亜塩素酸ナトリウム、高
度サラシ粉より選ばれるものであり、前記b)成分が、
マレイン酸、コハク酸、酢酸、塩酸、硫酸、硝酸、リン
酸、硫酸水素ナトリウムより選ばれる少なくとも一種の
酸性物質である構成を採用しているから、従来の食塩水
の電気分解による強酸性電解水に相当する殺菌消毒液を
容易に調製できる。
According to a sixth aspect of the present invention, in the method for producing a germicidal disinfectant according to the fifth aspect, the component a is selected from sodium dichloroisocyanurate, sodium hypochlorite, and high-grade powder. The component b) is:
Strongly acidic electrolyzed water obtained by electrolysis of conventional saline is used because it employs at least one acidic substance selected from maleic acid, succinic acid, acetic acid, hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, and sodium hydrogen sulfate. Can be easily prepared.

【0014】また本発明の請求項7に係る殺菌消毒剤
は、ジクロロイソシアヌール酸ナトリウム、高度サラシ
粉、及びクロラミンTの群より選ばれる塩素剤粉末と、
粉末形態の有機酸又は/及び無機酸との粉末混合物より
なるから、予め塩素剤粉末と有機酸又は/及び無機酸と
を所定の混合比に設定しておくことにより、単に水に溶
かすだけで前記の殺菌消毒液を簡単に調製し得る粉末形
態のパック製品として供給できる。
[0014] The germicidal disinfectant according to claim 7 of the present invention comprises a chlorine agent powder selected from the group consisting of sodium dichloroisocyanurate, high-grade salad powder, and chloramine T;
Since it is composed of a powder mixture of an organic acid and / or an inorganic acid in the form of a powder, by simply setting the chlorine agent powder and the organic acid and / or the inorganic acid in a predetermined mixing ratio in advance, it can be simply dissolved in water. The above disinfectant can be supplied as a pack product in powder form that can be easily prepared.

【0015】[0015]

【発明の実施の形態】本発明では、殺菌消毒液の製造に
際してa成分の塩素剤とb成分の酸性物質又は過酸化水
素とを単に水に溶解するだけでよいが、このとき水溶液
がPH5.5以下、残留塩素量30ppm以上、ORP
+800mV以上の酸性水溶液になるように、a,b成
分の使用量と相互の配合割合を設定する。すなわち、残
留塩素量は塩素剤の使用量に、PH及びORPはb成分
の使用量にそれぞれ依存するが、塩素剤単独の水溶液の
PHならびにb成分によるPH調整作用は各々の種類に
よって異なるため、a,b両成分の種類と組合せに応じ
て各々の使用量を前記のPH及びORPの条件を満たす
ように設定すればよい。しかして、得られる殺菌消毒液
は、従来の食塩水の電気分解によって生成させていた酸
性電解水と同等の性能及び性状を有するものとなり、優
れた殺菌消毒作用を具備する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, a chlorinating agent of component a and an acidic substance or hydrogen peroxide of component b may be simply dissolved in water when producing a disinfectant solution. 5 or less, residual chlorine amount 30 ppm or more, ORP
The amounts of the components a and b and the mixing ratio thereof are set so that an acidic aqueous solution of +800 mV or more is obtained. That is, the amount of residual chlorine depends on the amount of the chlorinating agent used, and the PH and ORP depend on the amount of the b component used, respectively. What is necessary is just to set each usage amount according to the kind and combination of both a and b components so that the above-mentioned conditions of PH and ORP may be satisfied. Thus, the obtained disinfecting solution has the same performance and properties as the acidic electrolyzed water generated by the conventional electrolysis of saline, and has an excellent disinfecting effect.

【0016】また既述のように、従来の食塩水の電気分
解による酸性電解水には強酸性のものと弱酸性のものと
があるから、その各々に対応する殺菌消毒液とする上で
は、上記のa,b成分の使用量と相互の配合割合を両酸
性電解水の各々におけるPH、残留塩素量、ORPに対
応する酸性水溶液となるように設定すればよい。すなわ
ち、強酸性水溶液ではPH2.7以下、残留塩素量30
〜40ppm、酸化還元電位+1100mV以上、弱酸
性水溶液ではPH4.5〜5.5、残留塩素量50〜8
0ppm、ORP+800〜1000mVである。
Further, as described above, the conventional acidic electrolyzed water obtained by the electrolysis of salt water is classified into a strongly acidic solution and a weakly acidic solution. The amounts of the components a and b and the mixing ratio thereof may be set so as to be an acidic aqueous solution corresponding to the PH, the residual chlorine amount, and the ORP in each of the acidic electrolyzed water. That is, in a strongly acidic aqueous solution, the pH is 2.7 or less and the residual chlorine amount is 30.
4040 ppm, oxidation-reduction potential +1100 mV or more, PH 4.5 to 5.5 in weakly acidic aqueous solution, residual chlorine amount 50 to 8
0 ppm, ORP + 800 to 1000 mV.

【0017】a成分の塩素剤は、ジクロロイソシアヌー
ル酸ナトリウム(以下、SDCIと略称する)、次亜塩
素酸ナトリウム、高度サラシ粉〔Ca(OCl)2 〕、
クロラミンT(CH3 6 4 SO2 NClNa・3H
2 O)の群より選ばれるものであり、これら以外の塩素
剤は不適当である。例えば、構造的にSDCIに近いト
リクロロイソシアヌール酸は、有効塩素量が90%と高
い塩素剤であるが、水に難溶であるために目的とする殺
菌消毒液の調製が困難である。また、二酸化塩素(Cl
2 )や亜塩素酸ナトリウム(NaClO2 )では、残
留塩素量を80ppm程度に設定し、酸性物質を添加し
てPHを5.5〜2.7に調整しても、ORPは+75
0mV以下にしかならず、目的とする殺菌消毒液は調整
不能である。
The chlorine agent of the component a includes sodium dichloroisocyanurate (hereinafter abbreviated as SDCI), sodium hypochlorite, high-grade powder [Ca (OCl) 2 ],
Chloramine T (CH 3 C 6 H 4 SO 2 NClNa · 3H
2 O), and other chlorine agents are unsuitable. For example, trichloroisocyanuric acid, which is structurally similar to SDCI, is a chlorinating agent having a high effective chlorine content of 90%, but it is difficult to prepare a target disinfectant solution because it is hardly soluble in water. In addition, chlorine dioxide (Cl
In O 2 ) and sodium chlorite (NaClO 2 ), even if the residual chlorine amount is set to about 80 ppm and the pH is adjusted to 5.5 to 2.7 by adding an acidic substance, the ORP is +75.
It is only 0 mV or less, and the target disinfectant cannot be adjusted.

【0018】しかして、上記4種の塩素剤の内では、特
にSDCIが最も好適なものとして推奨される。すなわ
ち、SDCIは、有効塩素濃度が60%以上(理論値6
4.5%)と高い上に水溶液における残留塩素量の安定
性に優れ、しかも水に溶け易く且つ水溶液が略中性(1
%水溶液でPH6.0〜7.0)となるため、前記b成
分の少ない使用量で所要の残留塩素量及びPHの酸性水
溶液を容易に調製できるという利点がある。
However, among the above four chlorine agents, SDCI is particularly recommended as the most suitable one. That is, the SDCI indicates that the effective chlorine concentration is 60% or more (theoretical value 6).
(4.5%) as well as excellent stability of the amount of residual chlorine in the aqueous solution, and is easily soluble in water and the aqueous solution is almost neutral (1%).
% Aqueous solution having a pH of 6.0 to 7.0) has the advantage that an acidic aqueous solution of the required residual chlorine amount and PH can be easily prepared with a small amount of the component b.

【0019】これに対し、次亜塩素酸ナトリウムは、最
も普及しているアルカリ性の塩素剤であるが、普通品と
低食塩品とがあって両者のアルカリ度も異なる上、市販
品でもメーカーによってアルカリ度や有効塩素濃度に差
異があるから、所要のPH及び残留塩素量の殺菌消毒液
を調製するには予め使用する品種毎にアルカリ度と有効
塩素濃度を測定する必要があり、且つ不安定であるから
残留塩素量については使用時に逐次測定して適正範囲に
あることを確認せねばならず、これらの手間が非常に煩
雑である上、酸性水溶液とするのに前記b成分の使用量
が多くなるという難点がある。
On the other hand, sodium hypochlorite is the most widely used alkaline chlorinating agent. There are ordinary products and low-salt products, both of which have different alkalinities. Since there is a difference in alkalinity and available chlorine concentration, it is necessary to measure alkalinity and available chlorine concentration in advance for each type of varieties used in order to prepare a disinfectant solution with the required PH and residual chlorine, and it is unstable Therefore, the residual chlorine amount must be measured successively at the time of use to confirm that the amount is within an appropriate range, and these labors are very complicated. There is a drawback that it increases.

【0020】また高度サラシ粉では、有効塩素濃度60
%以上のものがあるが、アルカリ性であるためにやはり
前記b成分の使用量が多くなる他、水溶性のよい粉状品
は第1類危険物である上に吸湿性を有して塩素の安定性
にも劣り、危険物に相当しない粒状品は水に難溶で使用
できないという問題がある。更にクロラミンTは、水に
溶け易い粉末であるが、有効塩素濃度が25%と低い上
にSDCIよりも高価であり、またアルカリ性で前記b
成分の使用量が多くなるという難点があり、特に強酸性
電解水に相当する強酸性水溶液の調製には適さない。
In the case of advanced salad powder, the effective chlorine concentration is 60%.
% Or more, but the use of component b is also large because of its alkalinity. In addition, powdery products having good water solubility are class 1 hazardous substances and have a hygroscopic property and chlorine. There is a problem that granular products which are inferior in stability and do not correspond to dangerous substances are hardly soluble in water and cannot be used. Further, chloramine T is a powder that is easily soluble in water, but has a low effective chlorine concentration of 25% and is more expensive than SDCI.
There is a drawback that the amount of components used increases, and it is not particularly suitable for preparing a strongly acidic aqueous solution corresponding to strongly acidic electrolyzed water.

【0021】b成分の酸性物質は、a成分の塩素剤との
組合せにおいて得られる酸性水溶液のPH及びORPを
所定範囲に調製し得るものであれば制約なく使用できる
が、好適なものとして次のものが挙げられる。すなわ
ち、PH4.5〜5.5、残留塩素量50〜80pp
m、ORP+800〜1000mVの弱酸性水溶液の調
製用としては、クエン酸、リンゴ酸、酒石酸、マレイン
酸、コハク酸、シュウ酸、グリコール酸、酢酸、塩酸、
硫酸、硝酸、硫酸水素ナトリウム、スルファミン酸、リ
ン酸等が好適である。またはPH2.7以下、残留塩素
量30〜40ppm、ORP+1100mV以上の強酸
性水溶液の調製用としては、マレイン酸、コハク酸、酢
酸、塩酸、硫酸、硝酸、リン酸、硫酸水素ナトリウム等
が挙げられる。ただし、強酸性水溶液の調製用としての
コハク酸と酢酸は、他に比較して使用量がかなり多くな
る点でやや劣る。
The acidic substance of the component (b) can be used without limitation as long as the pH and ORP of the acidic aqueous solution obtained in combination with the chlorinating agent of the component (a) can be adjusted to a predetermined range. Things. That is, PH 4.5 to 5.5, residual chlorine amount 50 to 80 pp
m, ORP + 800 to 1000 mV for preparing a weakly acidic aqueous solution include citric acid, malic acid, tartaric acid, maleic acid, succinic acid, oxalic acid, glycolic acid, acetic acid, hydrochloric acid,
Sulfuric acid, nitric acid, sodium hydrogen sulfate, sulfamic acid, phosphoric acid and the like are preferred. Alternatively, for preparing a strongly acidic aqueous solution having a pH of 2.7 or less, a residual chlorine amount of 30 to 40 ppm, and an ORP of 1100 mV or more, maleic acid, succinic acid, acetic acid, hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, sodium hydrogen sulfate and the like can be mentioned. However, succinic acid and acetic acid for preparing a strongly acidic aqueous solution are somewhat inferior in that the amounts used are considerably larger than those of the others.

【0022】なお、クエン酸、リンゴ酸、酒石酸、マレ
イン酸、シュウ酸、グリコール酸、スルファミン酸が強
酸性水溶液の調製用として不適であるのは、いずれもO
RPを+1100mV以上になし得ないことによる。ま
た他の酸性物質として、例えば、ほう酸はPH5.5以
下の酸性水溶液を調製できないため、不適当である。な
お、リン酸二水素ナトリウムはPH5.5以下の酸性水
溶液とするために使用量が多くなるという難点がある。
一方、a成分の塩素剤であるクロラミンTは、ORPを
+1100mV以上になし得ないため、強酸性水溶液の
調製には使用できない。
Citric acid, malic acid, tartaric acid, maleic acid, oxalic acid, glycolic acid, and sulfamic acid are all unsuitable for preparing a strongly acidic aqueous solution.
This is because RP cannot be set to +1100 mV or more. Further, as another acidic substance, for example, boric acid is not suitable because an acidic aqueous solution having a pH of 5.5 or less cannot be prepared. It should be noted that sodium dihydrogen phosphate has a drawback that the amount of use is increased because it is an acidic aqueous solution of pH 5.5 or less.
On the other hand, chloramine T, which is a chlorine component of the component a, cannot be used for preparing a strongly acidic aqueous solution because the ORP cannot be increased to +1100 mV or more.

【0023】b成分としての過酸化水素は、a成分の塩
素剤の塩素と反応して塩酸を生成することにより、水溶
液のPHを低下させる作用があるため、前記の酸性物質
に代えて使用できる。ただし、水溶液のPHを2.7以
下まで低下させるには多量の過酸化水素を加える必要が
あり、これに伴う塩素の多量消費を補う上で塩素剤の使
用量も非常に多くすることになるから、強酸性水溶液の
調製用として過酸化水素は不適当である。
Hydrogen peroxide as the component (b) has an effect of lowering the pH of the aqueous solution by reacting with the chlorine of the chlorine agent of the component (a) to generate hydrochloric acid, and therefore can be used in place of the above acidic substance. . However, in order to lower the pH of the aqueous solution to 2.7 or less, it is necessary to add a large amount of hydrogen peroxide, and in order to compensate for the accompanying large consumption of chlorine, the amount of the chlorine agent used will be extremely large. Therefore, hydrogen peroxide is not suitable for preparing a strongly acidic aqueous solution.

【0024】本発明では、上記a成分の塩素剤とb成分
の酸性物質又は過酸化水素とを水に溶解し、既述の残留
塩素量、PH、ORPを満たす弱酸性水溶液又は強酸性
水溶液を調製するが、この水としてイオン交換水等の精
製水ならびに通常の水道水を利用できる。
In the present invention, the chlorine agent as the component a and the acidic substance or the hydrogen peroxide as the component b are dissolved in water, and a weakly acidic aqueous solution or a strongly acidic aqueous solution satisfying the above-mentioned residual chlorine amount, PH and ORP is prepared. The water to be prepared can be purified water such as ion-exchanged water or ordinary tap water.

【0025】得られた強酸性及び弱酸性水溶液は、それ
ぞれ従来の電解水生成装置によって製造していた弱酸性
電解水及び強酸性電解水の各々と全く同等の作用及び性
状を有する殺菌消毒液となるから、これら電解水に代え
て様々な殺菌消毒用途に供し得る。その用途としては、
例えば、医療機関,各種厚生施設,厨房,一般家庭等に
おける殺菌消毒用の手洗い水、医療器具や調理器具の洗
浄、ポータブルトイレ,ワゴン,棚,台,流し等の各種
備品ならびに壁や床の清拭、リネン,フキン,エブロ
ン,白衣の如き衣類,スリッパの如き履物類の洗浄等が
挙げられる。更に前記のような一般的な用途の他、弱酸
性及び強酸性の殺菌消毒液共に、歯科における歯形取得
後のアルギン酸塩印象材の殺菌洗浄に用いれば、印象材
の形状変化や表面荒れを殆ど生起することなく患者の口
内より移行した雑菌の殺菌を行え、また人工透析ライン
の洗浄に用いれば、短時間で殺菌と共にラインに付着し
ている炭酸カルシウムの除去を行えるという利点があ
る。
The obtained strongly acidic and weakly acidic aqueous solutions are each disinfected with a sterilizing disinfectant having the same action and properties as those of the weakly acidic electrolyzed water and the strongly acidic electrolyzed water produced by the conventional electrolyzed water generator. Therefore, it can be used for various sterilization and disinfection applications in place of the electrolyzed water. Its uses include:
For example, hand washing water for disinfection in medical institutions, various welfare facilities, kitchens, households, etc., cleaning of medical and cooking utensils, portable toilets, wagons, shelves, shelves, sinks, etc., and cleaning of walls and floors Examples include wiping, washing of clothing such as linen, fukin, eblon, white robe, and footwear such as slippers. Furthermore, in addition to the above-mentioned general uses, if both weakly acidic and strongly acidic disinfectants are used for disinfecting and cleaning the alginate impression material after obtaining the tooth profile in dentistry, the shape change and surface roughness of the impression material are almost eliminated. There is an advantage that sterilization of bacteria transferred from the mouth of the patient can be carried out without occurrence, and if the artificial dialysis line is used for washing, the calcium carbonate adhering to the line can be removed in a short time together with the sterilization.

【0026】しかして、殺菌消毒液は、一般にユーザー
側において前記のa,b両成分をメーカー提供のマニュ
アルに指示された割合で水に溶解して調製するのが普通
であるが、この調製時のa,b両成分の計量と使用比率
の設定の手間を省くために、メーカー側から例えば1,
5,10リットルといった単位液量の殺菌消毒液に対応
する量及び比率のa,b両成分を分包した殺菌消毒剤を
提供し、これをユーザー側で所定量の水に溶かすように
すればよい。
In general, a disinfectant solution is prepared by dissolving both the components a and b in water at a ratio specified in a manual provided by the manufacturer on the user side. In order to save the trouble of weighing the components a and b, and setting the use ratio, for example,
If a disinfectant is provided in which the components a and b are packaged in an amount and a ratio corresponding to a unit amount of disinfectant such as 5, 10 liters, and the user dissolves it in a predetermined amount of water, Good.

【0027】上記の殺菌消毒剤とする場合、特にa,b
両成分として粉末のものを使用すれば、両成分を予め所
定比率で混合してパック化した粉末混合物形態の製品を
提供でき、その運搬や保管に便利であると共に、ユーザ
ー側での殺菌消毒液の調製もより容易になるという利点
がある。なお、粉末形態として入手できるものは、a成
分ではSDCI、高度サラシ粉、クロラミンTであり、
b成分ではクエン酸、リンゴ酸、酒石酸、マレイン酸、
コハク酸、シュウ酸、硫酸水素ナトリウム、スルファミ
ン酸等がある。
When the above-mentioned disinfectant is used, particularly, a, b
If both components are powdered, both components can be mixed in a predetermined ratio in advance to provide a product in the form of a powder mixture, which is convenient for transportation and storage, and a disinfectant solution for the user. Has the advantage that the preparation of is also easier. In addition, what can be obtained as a powder form is, for the component a, SDCI, high-grade salad powder, chloramine T,
In component b, citric acid, malic acid, tartaric acid, maleic acid,
Examples include succinic acid, oxalic acid, sodium hydrogen sulfate, and sulfamic acid.

【0028】[0028]

【実施例】【Example】

〔殺菌消毒液の製造例1〕希釈水としてイオン交換水を
用いると共に、酸性物質としてクエン酸、リンゴ酸、酒
石酸、コハク酸、マレイン酸、シュウ酸、グリコール酸
(70%水溶液)、酢酸、塩酸(1N水溶液)、硫酸
(1N水溶液)、硝酸(1N水溶液)、硫酸水素ナトリ
ウム、スルファミン酸、リン酸(85%水溶液)、リン
酸二水素ナトリウム、ホウ酸の各々を使用し、各酸性物
質をSDCI(有効塩素量の測定値62.0%)の12
0mg/リットル濃度の水溶液に加えて、PH4.5、
同5.0、同5.5の弱酸性水溶液よりなる殺菌消毒液
をそれぞれ調製すると共に、各殺菌消毒液のORPを測
定した。各殺菌消毒液の調製に要した酸性物質の量(水
溶液形態では液としての量)とORPの測定値を表1に
示す。ただし、ホウ酸はPH低下能が小さ過ぎるため、
5g/リットルの添加量でもPHを5.7以下に低下で
きず、目的とする弱酸性電解水に対応した殺菌消毒液の
調製用としては不適であった。なお、各殺菌消毒液の調
製直後の残留塩素量は、いずれも74.4ppmであっ
た。
[Manufacturing Example 1 of Disinfectant Solution] Ion-exchanged water was used as dilution water, and citric acid, malic acid, tartaric acid, succinic acid, maleic acid, oxalic acid, glycolic acid (70% aqueous solution), acetic acid, and hydrochloric acid were used as acidic substances. (1N aqueous solution), sulfuric acid (1N aqueous solution), nitric acid (1N aqueous solution), sodium hydrogen sulfate, sulfamic acid, phosphoric acid (85% aqueous solution), sodium dihydrogen phosphate, and boric acid. 12 of SDCI (measured value of available chlorine 62.0%)
In addition to an aqueous solution having a concentration of 0 mg / liter, pH 4.5,
Disinfecting solutions composed of the weakly acidic aqueous solutions of 5.0 and 5.5 were respectively prepared, and the ORP of each disinfecting solution was measured. Table 1 shows the amount of the acidic substance (the amount as a liquid in the form of an aqueous solution) and the measured value of ORP required for the preparation of each disinfectant solution. However, boric acid has too little PH lowering ability,
Even at an addition amount of 5 g / liter, the pH could not be reduced to 5.7 or less, and was not suitable for preparing a disinfectant solution corresponding to the target weakly acidic electrolyzed water. The amount of residual chlorine immediately after the preparation of each disinfectant was 74.4 ppm.

【0029】〔殺菌消毒液の製造例2〕希釈水として水
道水を用いると共に、酸性物質としてクエン酸、リンゴ
酸、酒石酸、コハク酸、マレイン酸、シュウ酸、グリコ
ール酸(70%水溶液)、塩酸(1N水溶液)、硫酸
(1N水溶液)、硫酸水素ナトリウム、スルファミン
酸、リン酸(85%水溶液)の各々を使用し、各酸性物
質をSDCI(有効塩素量の測定値62.0%)の12
0mg/リットル濃度の水溶液に加えて、PH4.5、
同5.0、同5.5の弱酸性水溶液よりなる殺菌消毒液
をそれぞれ調製すると共に、各殺菌消毒液のORPを測
定した。その結果を各殺菌消毒液の調製に要した酸性物
質の量(水溶液形態では液量)と共に表2に示す。な
お、各殺菌消毒液の調製直後の残留塩素量は、いずれも
74.4ppmであった。
[Production Example 2 of Disinfectant Solution] Tap water is used as dilution water, and citric acid, malic acid, tartaric acid, succinic acid, maleic acid, oxalic acid, glycolic acid (70% aqueous solution), hydrochloric acid are used as acidic substances. (1N aqueous solution), sulfuric acid (1N aqueous solution), sodium hydrogen sulfate, sulfamic acid, and phosphoric acid (85% aqueous solution) were used, and each acidic substance was subjected to SDCI (measured value of available chlorine 62.0%) of 12%.
In addition to an aqueous solution having a concentration of 0 mg / liter, pH 4.5,
Disinfecting solutions composed of the weakly acidic aqueous solutions of 5.0 and 5.5 were respectively prepared, and the ORP of each disinfecting solution was measured. The results are shown in Table 2 together with the amount of the acidic substance (the amount of the solution in the form of an aqueous solution) required for the preparation of each disinfecting solution. The amount of residual chlorine immediately after the preparation of each disinfectant was 74.4 ppm.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】表1及び表2の結果から、希釈水として水
道水を使用する場合はイオン交換水使用の場合よりも酸
性物質の必要量がやや増えるが、塩素剤のSDCIとホ
ウ酸以外の各種の酸性物質とから、従来の電解水生成装
置にて得られていた弱酸性電解水に相当するPH4.5
〜5.5、残留塩素量50〜80ppm、ORP+80
0〜1000mVの殺菌消毒液を容易に調製できること
が判る。ただし、リン酸二水素ナトリウムは、上記のP
H及びORPの範囲に調整するに要する添加量が非常に
多くなるという難点があり、このために製造例2では用
いなかった。なお、製造例1で用いた酢酸及び硝酸は、
製造例2での使用を単に省略したが、水道水を希釈水と
する場合でも何ら不都合なく用い得る。
From the results of Tables 1 and 2, when tap water is used as the dilution water, the required amount of the acidic substance is slightly larger than when the ion-exchanged water is used. PH4.5 corresponding to the weakly acidic electrolyzed water obtained by the conventional electrolyzed water generator from the acidic substance of
~ 5.5, residual chlorine amount 50 ~ 80ppm, ORP + 80
It turns out that a sterilizing solution of 0 to 1000 mV can be easily prepared. However, sodium dihydrogen phosphate is used in the above P
There is a drawback that the amount of addition required for adjusting to the range of H and ORP is very large, and therefore, it was not used in Production Example 2. The acetic acid and nitric acid used in Production Example 1 were:
Although the use in Production Example 2 is simply omitted, even when tap water is used as dilution water, it can be used without any inconvenience.

【0033】〔殺菌消毒液の経時変化1〕製造例1に準
じ、希釈水としてイオン交換水を用い、SDCIの12
0mg/リットル濃度の水溶液に各種酸性物質をPHが
略5近傍となるように加えて弱酸性水溶液よりなる殺菌
消毒液を調製し、各殺菌消毒液の調製直後(経過時間
0)、24時間後、72時間後のPH、ORP、残留塩
素量を測定したところ、表3で示す結果が得られた。ま
た、同様に製造2に準じ、希釈水として水道水を用いて
調製した各殺菌消毒液の調製直後と24時間後のPH、
ORP、残留塩素量を測定したところ、表4に示す結果
が得られた。
[Time-dependent change of disinfectant solution 1] According to Production Example 1, ion exchanged water was used
A variety of acidic substances are added to an aqueous solution having a concentration of 0 mg / liter so that the pH becomes approximately 5 to prepare a disinfectant solution composed of a weakly acidic aqueous solution. Immediately after preparation of each disinfectant solution (elapsed time 0), 24 hours later , 72 hours later, PH, ORP and residual chlorine amount were measured, and the results shown in Table 3 were obtained. Similarly, according to Production 2, PH immediately after preparation and 24 hours after preparation of each disinfectant solution prepared using tap water as dilution water,
When the ORP and the residual chlorine content were measured, the results shown in Table 4 were obtained.

【0034】[0034]

【表3】 [Table 3]

【0035】[0035]

【表4】 [Table 4]

【0036】表3の結果から、本発明方法により、希釈
水としてイオン交換水、塩素剤にSDCIを用い、各種
の酸性物質にて略PH5に調製した弱酸性の殺菌消毒液
は、調製後の72時間経過後でも従来の電解水生成装置
にて得られていた弱酸性電解水に相当するPH4.5〜
5.5、残留塩素量50〜80ppm、ORP+800
〜1000mVの範囲を維持し、保存性に優れることが
明らかである。また表4の結果から、同様方法におい
て、希釈水として水道水を用いて略PH5に調製した弱
酸性の殺菌消毒液は、酸性物質にシュウ酸を用いた場合
にPHがやや規定より高くなる傾向があるものの、殆ど
が調製後の24時間後でも電解水生成装置による弱酸性
電解水と同等のPH、残留塩素量、ORPを示す殺菌消
毒液として支障なく用い得ることが判る。
From the results shown in Table 3, according to the method of the present invention, a weakly acidic sterilizing and disinfecting solution prepared by adjusting the pH to approximately PH5 with various acidic substances using ion-exchanged water as a dilution water and SDCI as a chlorinating agent was obtained. Even after 72 hours, a pH of 4.5 to 4.5 corresponding to the weakly acidic electrolyzed water obtained by the conventional electrolyzed water generator.
5.5, residual chlorine amount 50-80 ppm, ORP + 800
It is clear that the range of 10001000 mV is maintained and the storage stability is excellent. Also, from the results in Table 4, in the same manner, the weakly acidic disinfectant prepared at approximately PH5 using tap water as the dilution water tends to have a slightly higher PH when oxalic acid is used as the acidic substance. However, it can be seen that most of them can be used without any trouble as a disinfectant solution showing the same pH, residual chlorine amount and ORP as weakly acidic electrolyzed water by an electrolyzed water generator even 24 hours after preparation.

【0037】〔殺菌消毒液の製造例3〕希釈水としてイ
オン交換水を用いると共に、酸性物質としてクエン酸、
リンゴ酸、酒石酸、コハク酸、マレイン酸、シュウ酸、
グリコール酸(70%水溶液)、酢酸、塩酸(1N水溶
液)、硫酸(1N水溶液)、硝酸(1N水溶液)、硫酸
水素ナトリウム、スルファミン酸、リン酸(85%水溶
液)の各々を使用し、各酸性物質をSDCI(有効塩素
量の測定値62.0%)の60mg/リットル濃度の水
溶液に加えて、PH2.7と同2.65の強酸性水溶液
よりなる殺菌消毒液をそれぞれ調製すると共に、各殺菌
消毒液のORPを測定した。その結果を各殺菌消毒液の
調製に要した酸性物質の量(水溶液形態では液量)と共
に表5に示す。なお、各殺菌消毒液の調製直後の残留塩
素量は、いずれも37.2ppmであった。
[Manufacturing Example 3 of Disinfectant Solution] While using ion-exchanged water as dilution water, citric acid,
Malic acid, tartaric acid, succinic acid, maleic acid, oxalic acid,
Glycolic acid (70% aqueous solution), acetic acid, hydrochloric acid (1N aqueous solution), sulfuric acid (1N aqueous solution), nitric acid (1N aqueous solution), sodium hydrogen sulfate, sulfamic acid, phosphoric acid (85% aqueous solution) The substance was added to an aqueous solution of SDCI (measured value of available chlorine amount: 62.0%) having a concentration of 60 mg / liter to prepare a sterilizing and disinfecting solution composed of a strongly acidic aqueous solution of pH 2.7 and 2.65. The ORP of the sterilizing solution was measured. The results are shown in Table 5 together with the amount of the acidic substance (the amount of the solution in the form of an aqueous solution) required for the preparation of each sterilizing solution. The amount of residual chlorine immediately after the preparation of each disinfectant was 37.2 ppm.

【0038】〔殺菌消毒液の製造例4〕希釈水として水
道水を用いると共に、酸性物質としてクエン酸、リンゴ
酸、酒石酸、コハク酸、マレイン酸、シュウ酸、グリコ
ール酸(70%水溶液)、塩酸(1N水溶液)、硫酸
(1N水溶液)、硫酸水素ナトリウム、スルファミン
酸、リン酸(85%水溶液)の各々を使用し、各酸性物
質をSDCI(有効塩素量の測定値62.0%)の60
mg/リットル濃度の水溶液に加えて、PH2.7と同
2.65の強酸性水溶液よりなる殺菌消毒液をそれぞれ
調製すると共に、各殺菌消毒液のORPを測定した。そ
の結果を各殺菌消毒液の調製に要した酸性物質の量(水
溶液形態では液量)と共に表5に示す。なお、各殺菌消
毒液の調製直後の残留塩素量は、いずれも37.2pp
mであった。
[Manufacturing Example 4 of Disinfectant Solution] Tap water was used as dilution water, and citric acid, malic acid, tartaric acid, succinic acid, maleic acid, oxalic acid, glycolic acid (70% aqueous solution), hydrochloric acid were used as acidic substances. (1N aqueous solution), sulfuric acid (1N aqueous solution), sodium hydrogen sulfate, sulfamic acid, and phosphoric acid (85% aqueous solution) were used, and each acidic substance was subjected to 60% of SDCI (measured value of available chlorine 62.0%).
In addition to the aqueous solution having a concentration of mg / liter, disinfecting solutions each consisting of a strongly acidic aqueous solution of pH 2.7 and 2.65 were prepared, and the ORP of each disinfecting solution was measured. The results are shown in Table 5 together with the amount of the acidic substance (the amount of the solution in the form of an aqueous solution) required for the preparation of each sterilizing solution. The amount of residual chlorine immediately after the preparation of each disinfectant solution was 37.2 pp.
m.

【0039】[0039]

【表5】 [Table 5]

【0040】表5の結果から、希釈水として安価な水道
水を使用する場合は緩衝性の小さいイオン交換水使用の
場合よりも酸性物質の必要量がやや増えるが、塩素剤と
してSDCI、酸性物質としてマレイン酸、コハク酸、
酢酸、塩酸、硫酸、硝酸、リン酸、硫酸水素ナトリウム
を用いることにより、従来の電解水生成装置にて得られ
ていた強酸性電解水に相当するPH2.7以下、残留塩
素量30〜40ppm、ORP+1100mV以上の殺
菌消毒液を容易に調製できることが判る。しかるに、酸
性物質としてクエン酸、リンゴ酸、酒石酸、シュウ酸、
グリコール酸、スルファミン酸を用いたものは、ORP
が+1100mVを下回るため、強酸性電解水に代替で
きない。また酸性物質が酢酸であると、上記強酸性のP
H域に設定する上で使用量を非常に多くする必要があ
る。なお、製造例3で用いた酢酸及び硝酸は、製造例4
での使用を単に省略したが、水道水を希釈水とする場合
でも何ら不都合なく用い得る。
From the results shown in Table 5, when inexpensive tap water is used as the diluting water, the required amount of the acidic substance is slightly larger than when ion-exchanged water having a small buffering property is used. As maleic acid, succinic acid,
By using acetic acid, hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, and sodium hydrogen sulfate, a pH of 2.7 or less corresponding to strongly acidic electrolyzed water obtained by a conventional electrolyzed water generator, a residual chlorine amount of 30 to 40 ppm, It turns out that a disinfectant solution of ORP + 1100 mV or more can be easily prepared. However, citric acid, malic acid, tartaric acid, oxalic acid,
ORP using glycolic acid or sulfamic acid
Is below +1100 mV, so that it cannot be replaced with strongly acidic electrolyzed water. When the acidic substance is acetic acid, the strongly acidic P
In setting the H range, it is necessary to use a very large amount. Acetic acid and nitric acid used in Production Example 3 were used in Production Example 4
Is simply omitted, but even if tap water is used as dilution water, it can be used without any inconvenience.

【0041】〔殺菌消毒液の経時変化2〕製造例3に準
じ、希釈水としてイオン交換水を用い、SDCIの60
mg/リットル濃度の水溶液に各種酸性物質をPHが
2.6〜2.7程度となるように加えて強酸性水溶液よ
りなる殺菌消毒液を調製し、各殺菌消毒液の調製直後
(経過時間0)と24時間後のPH、ORP、残留塩素
量を測定した。また、同様に製造4に準じ、希釈水とし
て水道水を用いて調製した強酸性の各殺菌消毒液の調製
直後と24時間後のPH、ORP、残留塩素量を測定し
た。これらの結果を表6に示す。
[Time-dependent change of disinfectant solution 2] According to Production Example 3, ion-exchanged water was used
Various acidic substances are added to an aqueous solution having a concentration of mg / liter so as to have a pH of about 2.6 to 2.7 to prepare a disinfecting solution composed of a strongly acidic aqueous solution. ) And 24 hours later, PH, ORP and residual chlorine amount were measured. Similarly, in accordance with Production 4, PH, ORP, and residual chlorine amounts were measured immediately after and 24 hours after the preparation of each strongly acidic sterilizing disinfectant prepared using tap water as dilution water. Table 6 shows the results.

【0042】[0042]

【表6】 [Table 6]

【0043】表6の結果から、本発明方法により、希釈
水としてイオン交換水又は水道水、塩素剤にSDCIを
用い、各種の酸性物質にてPHを2.6〜2.7程度に
調製した強酸性の殺菌消毒液は、特に酸性物質が酢酸、
塩酸、硫酸、硝酸、リン酸、硫酸水素ナトリウムである
場合、調製後の24時間経過後でも従来の電解水生成装
置にて得られていた強酸性電解水と同等のPH、残留塩
素量、ORPを示すものとして支障なく用い得ることが
判る。しかるに、酸性物質としてコハク酸、マレイン
酸、リン酸を用いた強酸性水溶液は、残留塩素量の経時
的低下が大きいため、調整後にあまり時間を置かずに使
用するのが望ましいと言える。なお、表6では参考とし
て酸性物質にグリコール酸及びスルファミン酸を用いた
場合の経時変化も示しているが、これらは調製した水溶
液のORPが+1100mvを下回るので強酸性電解水
の代替としては不適である。
From the results shown in Table 6, according to the method of the present invention, ion exchange water or tap water was used as dilution water, SDCI was used as a chlorinating agent, and the pH was adjusted to about 2.6 to 2.7 with various acidic substances. Strongly acidic disinfectants are especially acidic substances, acetic acid,
In the case of hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, and sodium hydrogen sulfate, even after 24 hours from the preparation, the pH, the residual chlorine amount, and the ORP are the same as those of the strongly acidic electrolyzed water obtained by the conventional electrolyzed water generator. It can be seen that it can be used without any trouble. However, a strongly acidic aqueous solution using succinic acid, maleic acid, or phosphoric acid as an acidic substance can be said to be desirably used with little time after adjustment because the amount of residual chlorine is greatly reduced with time. Table 6 also shows the change with time when glycolic acid and sulfamic acid are used as the acidic substances for reference. However, these are not suitable as a substitute for strongly acidic electrolyzed water since the ORP of the prepared aqueous solution is lower than +1100 mv. is there.

【0044】〔殺菌消毒液の製造例5〕希釈水としてイ
オン交換水を用いると共に、酸性物質として酒石酸と塩
酸(1N水溶液)の各々を使用し、これら酸性物質を次
亜塩素酸ナトリウム(有効塩素量12%)の600mg
/リットル濃度の水溶液に加えて、PH5.5、PH
5.0、PH4.5の弱酸性水溶液よりなる殺菌消毒液
をそれぞれ調製した。
[Preparation Example 5 of Disinfectant Solution] While ion-exchanged water was used as dilution water, tartaric acid and hydrochloric acid (1N aqueous solution) were used as acidic substances, and these acidic substances were treated with sodium hypochlorite (effective chlorine). 600 mg of amount 12%)
PH 5.5, PH
Disinfectants containing 5.0 and PH 4.5 weakly acidic aqueous solutions were prepared.

【0045】〔殺菌消毒液の製造例6〕希釈水としてイ
オン交換水を用いると共に、酸性物質としてリンゴ酸と
塩酸(1N水溶液)の各々を使用し、これら酸性物質を
高度サラシ粉(南海化学工業社製、有効塩素量実測値6
3.8%)の114mg/リットル濃度の水溶液に加え
て、PHが5.5、5.0、4.5の弱酸性水溶液より
なる殺菌消毒液をそれぞれ調製した。
[Production Example 6 of Disinfectant Disinfectant] In addition to using ion-exchanged water as dilution water, each of malic acid and hydrochloric acid (1N aqueous solution) was used as an acidic substance, and these acidic substances were treated with advanced salad powder (Nankai Chemical Industry). Manufactured, available chlorine 6
(3.8%) of 114 mg / liter, and a disinfectant solution consisting of a weakly acidic aqueous solution having a pH of 5.5, 5.0, or 4.5 was prepared.

【0046】〔殺菌消毒液の製造例7〕希釈水としてイ
オン交換水を用いると共に、酸性物質としてクエン酸と
塩酸(1N水溶液)の各々を使用し、これら酸性物質を
クロラミンT(有効塩素量25%)の288mg/リッ
トル濃度の水溶液に加えて、PHが5.5、5.0、
4.5の弱酸性水溶液よりなる殺菌消毒液をそれぞれ調
製した。
[Manufacturing Example 7 of Disinfectant Solution] In addition to using ion-exchanged water as dilution water, citric acid and hydrochloric acid (1N aqueous solution) were used as acidic substances, and these acidic substances were treated with chloramine T (effective chlorine amount 25%). %), A pH of 5.5, 5.0, and 288 mg / liter.
Disinfectants containing 4.5 weakly acidic aqueous solutions were prepared.

【0047】上記の製造例5〜7で得られた各殺菌消毒
液の調製直後の残留塩素量とORPを測定した。その結
果を各殺菌消毒液の調製に要した酸性物質の量(塩酸で
は液量)と共に表7に示す。
The amount of residual chlorine and the ORP immediately after the preparation of each of the disinfecting solutions obtained in Production Examples 5 to 7 were measured. The results are shown in Table 7 together with the amount of acidic substance (the amount of hydrochloric acid) required for the preparation of each disinfectant solution.

【0048】[0048]

【表7】 [Table 7]

【0049】表7の結果から、塩素剤として次亜塩素酸
ナトリウム、高度サラシ粉、クロラミンTのいずれを用
いても、従来の電解水生成装置にて得られていた弱酸性
電解水に相当するPH4.5〜5.5、残留塩素量50
〜80ppm、ORP+800〜1000mVの殺菌消
毒液を容易に調製できることが判る。ただし、これらの
殺菌消毒液の調製においては、塩素剤としてSDCIを
使用した場合に比較して酸性物質の使用量は多くなって
いる。またクロラミンTを使用した殺菌消毒液では、S
DCIを使用した場合に比較してORPは低い値になっ
ている。
From the results in Table 7, it can be seen that the use of any of sodium hypochlorite, high-grade powder and chloramine T as the chlorinating agent corresponds to the weakly acidic electrolyzed water obtained by the conventional electrolyzed water generator. PH 4.5-5.5, residual chlorine amount 50
It can be seen that a germicidal disinfectant of 〜80 ppm, ORP + 800-1000 mV can be easily prepared. However, in the preparation of these germicidal disinfectants, the amount of the acidic substance used is larger than when SDCI is used as the chlorine agent. In the case of a germicidal disinfectant using chloramine T, S
The ORP has a lower value as compared with the case where DCI is used.

【0050】〔殺菌消毒液の経時変化3〕製造例5〜7
に準じ、希釈水としてイオン交換水、塩素剤として次亜
塩素酸ナトリウム、高度サラシ粉、クロラミンT、酸性
物質としてクエン酸と塩酸(1N水溶液)の各々を使用
し、塩素剤水溶液に各酸性物質をPHが5.0程度とな
るように加えて弱酸性水溶液よりなる殺菌消毒液を調製
した。また塩素剤として次亜塩素酸ナトリウムと高度サ
ラシ粉、酸性物質として塩酸(1N水溶液)の各々を使
用し、塩素剤水溶液の濃度を製造例5,6の略1/2と
してPHが2.65の強酸性水溶液よりなる殺菌消毒液
を調製した。そして、これら各殺菌消毒液の調製直後
(経過時間0)と24時間後のPH、ORP、残留塩素
量を測定した。これらの結果を表8に示す。
[Time-dependent change of disinfectant solution 3] Production Examples 5 to 7
Use ion-exchanged water as the dilution water, sodium hypochlorite, high-grade powder, chloramine T as the chlorinating agent, and citric acid and hydrochloric acid (1N aqueous solution) as the acidic substances. Was added to adjust the pH to about 5.0 to prepare a disinfectant solution composed of a weakly acidic aqueous solution. In addition, sodium hypochlorite and high-grade salad powder were used as the chlorinating agent, and hydrochloric acid (1N aqueous solution) was used as the acidic substance, and the concentration of the chlorinating agent aqueous solution was approximately 略 of those in Production Examples 5 and 6, and the PH was 2.65. A disinfectant solution consisting of a strongly acidic aqueous solution of was prepared. Then, PH, ORP, and residual chlorine amounts were measured immediately after preparation (elapsed time 0) and after 24 hours of each of these disinfectants. Table 8 shows the results.

【0051】[0051]

【表8】 [Table 8]

【0052】表8の結果から、本発明方法により、塩素
剤として次亜塩素酸ナトリウム、高度サラシ粉、クロラ
ミンTを各々用いて調製した弱酸性の殺菌消毒液は、調
製後の24時間経過時点でも、従来の電解水生成装置に
て得られる弱酸性電解水に相当するPH、残留塩素量、
ORPを示す殺菌消毒液を維持していることが判る。ま
た、本発明方法により、塩素剤として次亜塩素酸ナトリ
ウムと高度サラシ粉を各々用いて調製した強酸性の殺菌
消毒液でも、調製後の24時間経過時点において、塩素
剤が高度サラシ粉の場合に僅かに残留塩素量が低くなる
が、従来の電解水生成装置にて得られる強酸性電解水と
略同等の性状を維持することが判る。なお、塩素剤がク
ロラミンTであるPH2.7以下の強酸性の殺菌消毒液
は、酸性物質として塩酸を用いて調製したが、ORPが
+1100mvを下回り、また沈澱物の生成も認められ
るため、強酸性電解水の代替用としては不適であった。
From the results in Table 8, it can be seen that the weakly acidic germicidal disinfectant prepared by the method of the present invention using sodium hypochlorite, high-grade salad powder and chloramine T as the chlorinating agent was obtained at the time of 24 hours after the preparation. However, PH corresponding to the weakly acidic electrolyzed water obtained by the conventional electrolyzed water generator, the residual chlorine amount,
It can be seen that the sterilizing solution showing ORP is maintained. Further, according to the method of the present invention, even in the case of a strongly acidic disinfecting solution prepared using sodium hypochlorite and high-grade salad powder as the chlorine agent, respectively, at the time of 24 hours after preparation, when the chlorinated agent is high-grade salad powder It can be seen that the residual chlorine content is slightly lower, but the properties are maintained substantially the same as the strongly acidic electrolyzed water obtained by the conventional electrolyzed water generator. The strongly acidic disinfectant solution having a pH of 2.7 or less, in which the chlorinating agent is chloramine T, was prepared using hydrochloric acid as an acidic substance. However, since the ORP was below +1100 mv and the formation of precipitates was observed, the strong acid was used. It was not suitable as a substitute for electrolyzed water.

【0053】〔殺菌消毒液の製造例8〕後記表9に示す
ように、各種濃度のSDCI水溶液に過酸化水素をSD
CI/H2 2 の分子比が8/1、8/2、8/3のい
ずれかの割合で添加し、弱酸性水溶液からなる各殺菌消
毒液を調製した。これら殺菌消毒液のPH、ORP、残
留塩素量を測定すると共に、140mg/l濃度のSD
CI水溶液に過酸化水素を分子比8/2で添加して得た
殺菌消毒液について、調製後の24時間及び72時間経
過時点での経時変化を調べたところ、表9に示す結果が
得られた。
[Production Example 8 of Disinfectant Solution] As shown in Table 9 below, hydrogen peroxide was added to aqueous solutions of SDCI at various concentrations.
CI / H 2 O 2 was added at a molecular ratio of 8/1, 8/2, or 8/3 to prepare each disinfectant solution comprising a weakly acidic aqueous solution. The PH, ORP and residual chlorine content of these disinfecting solutions were measured, and a 140 mg / l SD
With respect to the germicidal disinfectant obtained by adding hydrogen peroxide to the CI aqueous solution at a molecular ratio of 8/2, the change over time at the time of 24 hours and 72 hours after preparation was examined, and the results shown in Table 9 were obtained. Was.

【0054】[0054]

【表9】 [Table 9]

【0055】表9の結果から過酸化水素の添加によって
PHが低下することが判るが、これはSDCIの1分子
の持つ塩素を過酸化水素の1分子が消費し、これに伴っ
て塩酸が生成するものと考えられる。しかして、弱酸性
電解水に相当するPH4.5〜5.5、残留塩素量50
〜80ppm、ORP+800〜1000mVの弱酸性
水溶液とし、且つ過酸化水素によるSDCIの消費を少
なく抑える上で、SDCI/H2 2 の分子比は4/1
近辺が好適である。なお、表9に示す経時変化から、こ
の過酸化水素にてPH調整して得られる弱酸性の殺菌消
毒液においても、その調製後の72時間経過時点でも従
来の電解水生成装置にて得られる弱酸性電解水に相当す
る性状を維持し、優れた保存安定性を具備することが判
る。
From the results shown in Table 9, it can be seen that the pH is lowered by the addition of hydrogen peroxide. This is because one molecule of hydrogen peroxide consumes the chlorine contained in one molecule of SDCI, and hydrochloric acid is thereby produced. It is thought to be. Thus, PH 4.5 to 5.5 corresponding to weakly acidic electrolyzed water, residual chlorine amount 50
The molecular ratio of SDCI / H 2 O 2 is 4/1 in order to make a weakly acidic aqueous solution of 8080 ppm, ORP + 800-1000 mV, and to reduce the consumption of SDCI by hydrogen peroxide.
Near is preferred. In addition, from the time-dependent change shown in Table 9, even a weakly acidic disinfectant obtained by adjusting the pH with hydrogen peroxide can be obtained with a conventional electrolyzed water generator even after 72 hours from its preparation. It can be seen that properties equivalent to the weakly acidic electrolyzed water are maintained, and excellent storage stability is provided.

【0056】〔殺菌消毒試験1〕製造例1で調製したP
H5.0の殺菌消毒液(表1参照、酸性物質がホウ酸で
あるものを除く15種)、製造例3でイオン交換水を用
いて調製したPH2.65、ORP+1100mv以上
の殺菌消毒液(表5参照…8種)、製造例5〜7で調製
したPH5.0の殺菌消毒液(表7参照…6種)、殺菌
消毒液の経時変化3の項で用いたPH2.65の殺菌消
毒液(表8参照…2種)、製造例8において140mg
/l濃度のSDCI水溶液に過酸化水素を分子比8/2
で添加して得た殺菌消毒液(表9参照…1種)、の各々
について10mlずつ3本の試験管に採取し、大腸菌、
黄色ブドウ球菌、緑膿菌の各菌液1ml(菌数約106
個/ml)をそれぞれ1本の試験管に添加して1分間震
盪後、その50μlを採取してシャーレの培地の全面に
塗布し、37℃で24時間の培養を行った。そして、こ
れら培地の表面を観察したところ、いずれもコロニーの
発生が認められなかった。なお、培地には防腐剤不活性
化生菌数測定用SCDLP寒天培地「ダイゴ」を用い
た。
[Sterilization Test 1] P prepared in Production Example 1
H5.0 germicidal disinfectant (see Table 1, 15 kinds excluding those in which the acidic substance is boric acid), PH 2.65 prepared using ion-exchanged water in Production Example 3, ORP +1100 mv or more germicidal disinfectant (Table 1) 5; 8 kinds); PH5.0 germicidal disinfectants prepared in Production Examples 5 to 7 (see Table 7; 6 varieties); (See Table 8 ... 2 types), 140 mg in Production Example 8
/ L concentration of SD2 aqueous solution with hydrogen peroxide at a molecular ratio of 8/2
10 ml of each of the germicidal disinfectants (see Table 9 ... 1 type) obtained by adding in 3 test tubes,
1 ml of each bacterial solution of Staphylococcus aureus and Pseudomonas aeruginosa (number of bacteria about 10 6
Was added to each test tube and shaken for 1 minute. Then, 50 μl of the mixture was collected, applied to the entire surface of a petri dish medium, and cultured at 37 ° C. for 24 hours. When the surfaces of these media were observed, no colonies were found. In addition, the SCDLP agar medium for measurement of the number of viable preservative-inactivated bacteria "DAIGO" was used as the medium.

【0057】〔殺菌消毒試験2〕製造例1で調製したP
H5.0の殺菌消毒液(表1参照、酸性物質がホウ酸で
あるものを除く15種)を各々病室の床面に20cmの
高さから噴霧し、5分後に一般生菌用フードスタンプで
各噴霧面の中心部をスタンプし、37℃にて2日間の培
養を行った。その結果、殺菌消毒液を噴霧しなかった床
面を同様にスタンプしたものではコロニーが形成された
が、噴霧した床面のスタンプはいずれもコロニーの発生
は認められなかった。
[Sterilization Test 2] P prepared in Production Example 1
H5.0 germicidal disinfectant solution (see Table 1, 15 kinds except for the case where the acidic substance is boric acid) is sprayed from the height of 20 cm on the floor of the sickroom, and 5 minutes later with a food stamp for general viable bacteria. The center of each sprayed surface was stamped and cultured at 37 ° C. for 2 days. As a result, colonies were formed on the floor surface which was not sprayed with the disinfectant solution in the same manner, but colonies were not found on any of the stamped floor surfaces.

【0058】〔歯科印象材に対する影響試験〕製造例1
で120mg/l濃度のSDCI水溶液にクエン酸、コ
ハク酸、りん酸二水素ナトリウムを各々加えて調製した
PH5.0の3種の殺菌消毒液、製造例3で60mg/
l濃度のSDCI水溶液にマレイン酸、グリコール酸、
硫酸水素ナトリウムを各々加えると共に希釈水として水
道水を用いて調製したPH2.65の3種の殺菌消毒
液、製造例8において140mg/l濃度のSDCI水
溶液に過酸化水素を分子比8/2で添加して得た殺菌消
毒液を用い、各液中にそれぞれ、歯科において患者の歯
型を得るために使用されるアルギン酸塩印象材(直径2
5mm、高さ10mmのペレット)を30分間浸漬した
のち、その直径の変化を測定した。また上記浸漬後のア
ルギン酸塩印象材を石膏印象に転写し、40分後にアル
ギン酸塩印象材を除去して石膏表面の状態を調べた。そ
の結果を、殺菌消毒液に代えて水道水に浸漬した結果と
共に表10に示す。
[Effect test on dental impression material] Production example 1
Three kinds of disinfecting solutions of pH 5.0 prepared by adding citric acid, succinic acid and sodium dihydrogen phosphate to an aqueous solution of SDCI at a concentration of 120 mg / l respectively, and 60 mg / l in Production Example 3
Maleic acid, glycolic acid,
Each of sodium hydrogen sulfate was added, and three kinds of disinfecting solutions of pH 2.65 prepared using tap water as dilution water. In Preparation Example 8, hydrogen peroxide was added to a 140 mg / l SDCI aqueous solution at a molecular ratio of 8/2. The alginate impression material (diameter 2) used in dentistry to obtain a patient's tooth model was used in each solution using the disinfectant solution obtained by addition.
(5 mm, 10 mm height pellet) was immersed for 30 minutes, and the change in diameter was measured. The alginate impression material after the immersion was transferred to a gypsum impression, and after 40 minutes, the alginate impression material was removed and the state of the gypsum surface was examined. The results are shown in Table 10 together with the results of immersion in tap water instead of the sterilizing solution.

【0059】[0059]

【表10】 [Table 10]

【0060】表10の結果から、本発明方法による殺菌
消毒液は、いずれもアルギン酸塩印象材の浸漬による形
状変化が少なく、また酸性物質にりん酸二水素ナトリウ
ムを用いたものを除いて石膏表面の荒れがないため、歯
形印象を採得後の歯科印象材の殺菌に好適に用い得るこ
とが判る。
From the results shown in Table 10, it can be seen that the disinfectants and disinfectants according to the method of the present invention show little change in shape due to the immersion of the alginate impression material, and the gypsum surface except for those using sodium dihydrogen phosphate as the acidic substance. Since there is no roughness, it can be seen that the tooth impression can be suitably used for sterilization of the dental impression material after obtaining the impression.

【0061】〔人工透析ラインの消毒洗浄への適用性試
験〕製造例1で120mg/l濃度のSDCI水溶液に
クエン酸を加えて調製したPH5.0の殺菌消毒液、製
造例8において140mg/l濃度のSDCI水溶液に
過酸化水素を分子比8/2で添加して得た殺菌消毒液、
SDCI単独の130mg/l濃度の水溶液、をそれぞ
れ消毒洗浄試験液として用い、ステンレス鋼板上に透析
液を10μl、25μl、50μlの各液量で滴下して
24時間の自然乾燥を行った試料を所要数だけ用意し、
これら試料をそれぞれ上記の各試験液に浸漬し、30分
毎に引き上げてOCPC法(オルトクレゾールフタレイ
ンコンプレキソン法)にて板上にカルシウムが残留して
いるか否かを判定することにより、カルシウムの除去に
要する浸漬時間(30分単位)を調べた。その結果を表
11に示す。
[Applicability test for disinfection washing of artificial dialysis line] A sterilization disinfectant of pH 5.0 prepared by adding citric acid to a 120 mg / l SDCI aqueous solution in Production Example 1, 140 mg / l in Production Example 8 Disinfectant obtained by adding hydrogen peroxide to a concentrated SDCI aqueous solution at a molecular ratio of 8/2,
Using a 130 mg / l aqueous solution of SDCI alone as a disinfecting and washing test solution, a dialysate solution of 10 μl, 25 μl, and 50 μl was dropped on a stainless steel plate and air-dried for 24 hours. Prepare only the number,
Each of these samples was immersed in each of the test solutions described above, pulled up every 30 minutes, and determined by the OCPC method (orthocresol phthalein complexone method) to determine whether calcium remained on the plate. The immersion time (30 minutes unit) required for the removal of the resin was examined. Table 11 shows the results.

【0062】[0062]

【表11】 [Table 11]

【0063】表11の結果から、本発明方法にて塩素剤
としてSDCIを用いて得られる弱酸性の殺菌消毒液
は、透析液より析出した炭酸カルシウムを除去でき、人
工透析ラインの消毒洗浄用として好適に使用できること
が判る。なお、強酸性の殺菌消毒液についても同様の人
工透析ラインの消毒洗浄への適用性試験を行った結果、
カルシウムの除去性は弱酸性の場合よりも高く、30分
以内に完全辞除去できた。しかして、このように人工透
析ラインの消毒洗浄に供する場合、予め殺菌消毒液の1
5〜50倍程度の濃縮液を調製し、これを消毒洗浄に際
して所要濃度に希釈して用いるようにすればよい。
From the results shown in Table 11, the weakly acidic disinfectant obtained by using the SDCI as the chlorinating agent in the method of the present invention can remove calcium carbonate precipitated from the dialysate, and is used for disinfection and cleaning of the artificial dialysis line. It turns out that it can be used conveniently. In addition, as a result of conducting a similar applicability test for disinfection and cleaning of the artificial dialysis line for a strongly acidic disinfectant solution,
Calcium removal was higher than in the case of weak acid, and complete removal was possible within 30 minutes. Therefore, when the artificial dialysis line is to be used for disinfecting and cleaning as described above, one of the sterilizing and disinfecting solutions must be prepared in advance.
A concentrated solution having a concentration of about 5 to 50 times may be prepared, and may be diluted to a required concentration for disinfecting and washing.

【0064】[0064]

【発明の効果】請求項1の発明によれば、従来の食塩水
の電気分解によって生成させていた酸性電解水と同等の
性能及び性状を有する有用性の高い殺菌消毒液を、電解
水生成装置の如き高価な機器を用いることなく容易に且
つ安価に得ることができる。
According to the first aspect of the present invention, a highly useful sterilizing and disinfecting solution having the same performance and properties as acidic electrolyzed water generated by conventional electrolysis of saline is provided. And can be obtained easily and inexpensively without using expensive equipment such as

【0065】請求項2の発明によれば、上記の殺菌消毒
液として、特に残留塩素の安定性に優れるものを安価に
且つ容易に調製できる。
According to the second aspect of the present invention, the above sterilizing and disinfecting solution, which is particularly excellent in the stability of residual chlorine, can be easily prepared at low cost.

【0066】請求項3の発明によれば、上記の殺菌消毒
液として、従来の食塩水の電気分解によって生成させて
いた弱酸性電解水に相当するものを調製できる。
According to the third aspect of the present invention, it is possible to prepare, as the above-mentioned germicidal disinfectant, a solution corresponding to weakly acidic electrolyzed water generated by conventional electrolysis of saline.

【0067】請求項4の発明によれば、上記の殺菌消毒
液として、従来の食塩水の電気分解による弱酸性電解水
に相当するものを確実に且つ容易に調製できる。
According to the fourth aspect of the present invention, the above-mentioned sterilizing and disinfecting solution can be reliably and easily prepared as a solution corresponding to a weakly acidic electrolyzed water obtained by electrolysis of a conventional saline solution.

【0068】請求項5の発明によれば、上記の殺菌消毒
液として、従来の食塩水の電気分解によって生成させて
いた強酸性電解水に相当するものを調製できる。
According to the invention of claim 5, as the above-mentioned disinfectant solution, a solution corresponding to strongly acidic electrolyzed water generated by conventional electrolysis of saline can be prepared.

【0069】請求項6の発明によれば、上記の殺菌消毒
液として、従来の食塩水の電気分解による強酸性電解水
に相当するものを確実に且つ容易に調製できる。
According to the sixth aspect of the present invention, the above-mentioned disinfectant can be reliably and easily prepared as a solution corresponding to the conventional strongly acidic electrolyzed water obtained by electrolysis of a saline solution.

【0070】請求項8の発明によれば、単に所定量の水
に溶かすだけで上記の殺菌消毒液を簡単に調製し得る殺
菌消毒剤を、粉末形態のパック製品として供給できる。
According to the eighth aspect of the present invention, a disinfectant capable of easily preparing the above disinfectant by simply dissolving it in a predetermined amount of water can be supplied as a pack product in powder form.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 微生物の生活圏を示す酸化還元電位とPHの
相関図。
FIG. 1 is a correlation diagram of redox potential and PH showing a living sphere of a microorganism.

【図2】 水中での有効塩素の形態変化を示す有効塩素
存在比率とPHの相関図。
FIG. 2 is a correlation diagram between effective chlorine abundance ratio and PH showing a change in the form of available chlorine in water.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年11月8日[Submission date] November 8, 1996

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0028[Correction target item name] 0028

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0028】[0028]

【実施例】 〔殺菌消毒液の製造例1〕希釈水としてイオン交換水を
用いると共に、酸性物質としてクエン酸、リンゴ酸、酒
石酸、コハク酸、マレイン酸、シュウ酸、グリコール酸
(70%水溶液)、酢酸、塩酸(1N水溶液)、硫酸
(1N水溶液)、硝酸(1N水溶液)、硫酸水素ナトリ
ウム、スルファミン酸、リン酸(85%水溶液)、リン
酸二水素ナトリウム、ホウ酸の各々を使用し、各酸性物
質をSDCI(有効塩素量の測定値62.0%)の12
0mg/リットル濃度の水溶液に加えて、PH4.5、
同5.0、同5.5の弱酸性水溶液よりなる殺菌消毒液
をそれぞれ調製すると共に、各殺菌消毒液のORPを測
定した。各殺菌消毒液の調製に要した酸性物質の量と
RPの測定値を表1に示す。ただし、ホウ酸はPH低下
能が小さ過ぎるため、5g/リットルの添加量でもPH
を5.7以下に低下できず、目的とする弱酸性電解水に
対応した殺菌消毒液の調製用としては不適であった。な
お、各殺菌消毒液の調製直後の残留塩素量は、いずれも
74.4ppmであった。
EXAMPLES [Manufacturing Example 1 of Disinfectant Solution] Ion-exchanged water is used as dilution water, and citric acid, malic acid, tartaric acid, succinic acid, maleic acid, oxalic acid, and glycolic acid (70% aqueous solution) are used as acidic substances. Acetic acid, hydrochloric acid (1N aqueous solution), sulfuric acid (1N aqueous solution), nitric acid (1N aqueous solution), sodium hydrogen sulfate, sulfamic acid, phosphoric acid (85% aqueous solution), sodium dihydrogen phosphate, boric acid, Each acidic substance was subjected to SDCI (measured value of available chlorine 62.0%) of 12
In addition to an aqueous solution having a concentration of 0 mg / liter, pH 4.5,
Disinfecting solutions composed of the weakly acidic aqueous solutions of 5.0 and 5.5 were respectively prepared, and the ORP of each disinfecting solution was measured. The amount of acidic substance and O required for preparation of each disinfectant
Table 1 shows the measured values of RP. However, boric acid has too little ability to lower the pH, so even if it is added in an amount of 5 g / liter, the pH is lowered.
Was not reduced to 5.7 or less, which was unsuitable for preparing a disinfectant solution corresponding to the target weakly acidic electrolyzed water. The amount of residual chlorine immediately after the preparation of each disinfectant was 74.4 ppm.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0029[Correction target item name] 0029

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0029】〔殺菌消毒液の製造例2〕希釈水として水
道水を用いると共に、酸性物質としてクエン酸、リンゴ
酸、酒石酸、コハク酸、マレイン酸、シュウ酸、グリコ
ール酸(70%水溶液)、塩酸(1N水溶液)、硫酸
(1N水溶液)、硫酸水素ナトリウム、スルファミン
酸、リン酸(85%水溶液)の各々を使用し、各酸性物
質をSDCI(有効塩素量の測定値62.0%)の12
0mg/リットル濃度の水溶液に加えて、PH4.5、
同5.0、同5.5の弱酸性水溶液よりなる殺菌消毒液
をそれぞれ調製すると共に、各殺菌消毒液のORPを測
定した。その結果を各殺菌消毒液の調製に要した酸性物
質の量と共に表2に示す。なお、各殺菌消毒液の調製直
後の残留塩素量は、いずれも74.4ppmであった。
[Production Example 2 of Disinfectant Solution] Tap water is used as dilution water, and citric acid, malic acid, tartaric acid, succinic acid, maleic acid, oxalic acid, glycolic acid (70% aqueous solution), hydrochloric acid are used as acidic substances. (1N aqueous solution), sulfuric acid (1N aqueous solution), sodium hydrogen sulfate, sulfamic acid, and phosphoric acid (85% aqueous solution) were used, and each acidic substance was subjected to SDCI (measured value of available chlorine 62.0%) of 12%.
In addition to an aqueous solution having a concentration of 0 mg / liter, pH 4.5,
Disinfecting solutions composed of the weakly acidic aqueous solutions of 5.0 and 5.5 were respectively prepared, and the ORP of each disinfecting solution was measured. Both are shown in Table 2 with the amount of the acidic substance required results for the preparation of the disinfectant. The amount of residual chlorine immediately after the preparation of each disinfectant was 74.4 ppm.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0030[Correction target item name] 0030

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0030】[0030]

【表1】 [Table 1]

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0031[Correction target item name] 0031

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0031】[0031]

【表2】 [Table 2]

【手続補正5】[Procedure amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0034[Correction target item name] 0034

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0034】[0034]

【表3】 [Table 3]

【手続補正6】[Procedure amendment 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0035[Correction target item name] 0035

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0035】[0035]

【表4】 [Table 4]

【手続補正7】[Procedure amendment 7]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0037[Correction target item name] 0037

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0037】〔殺菌消毒液の製造例3〕希釈水としてイ
オン交換水を用いると共に、酸性物質としてクエン酸、
リンゴ酸、酒石酸、コハク酸、マレイン酸、シュウ酸、
グリコール酸(70%水溶液)、酢酸、塩酸(1N水溶
液)、硫酸(1N水溶液)、硝酸(1N水溶液)、硫酸
水素ナトリウム、スルファミン酸、リン酸(85%水溶
液)の各々を使用し、各酸性物質をSDCI(有効塩素
量の測定値62.0%)の60mg/リットル濃度の水
溶液に加えて、PH2.7と同2.65の強酸性水溶液
よりなる殺菌消毒液をそれぞれ調製すると共に、各殺菌
消毒液のORPを測定した。その結果を各殺菌消毒液の
調製に要した酸性物質の量と共に表5に示す。なお、各
殺菌消毒液の調製直後の残留塩素量は、いずれも37.
2ppmであった。
[Manufacturing Example 3 of Disinfectant Solution] While using ion-exchanged water as dilution water, citric acid,
Malic acid, tartaric acid, succinic acid, maleic acid, oxalic acid,
Glycolic acid (70% aqueous solution), acetic acid, hydrochloric acid (1N aqueous solution), sulfuric acid (1N aqueous solution), nitric acid (1N aqueous solution), sodium hydrogen sulfate, sulfamic acid, phosphoric acid (85% aqueous solution) The substance was added to an aqueous solution of SDCI (measured value of available chlorine amount: 62.0%) having a concentration of 60 mg / liter to prepare a sterilizing and disinfecting solution composed of a strongly acidic aqueous solution of pH 2.7 and 2.65. The ORP of the sterilizing solution was measured. Both are shown in Table 5 the amount of acidic substance required results for the preparation of the disinfectant. The amount of residual chlorine immediately after the preparation of each disinfectant solution was 37.
It was 2 ppm.

【手続補正8】[Procedure amendment 8]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0038[Correction target item name] 0038

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0038】〔殺菌消毒液の製造例4〕希釈水として水
道水を用いると共に、酸性物質としてクエン酸、リンゴ
酸、酒石酸、コハク酸、マレイン酸、シュウ酸、グリコ
ール酸(70%水溶液)、塩酸(1N水溶液)、硫酸
(1N水溶液)、硫酸水素ナトリウム、スルファミン
酸、リン酸(85%水溶液)の各々を使用し、各酸性物
質をSDCI(有効塩素量の測定値62.0%)の60
mg/リットル濃度の水溶液に加えて、PH2.7と同
2.65の強酸性水溶液よりなる殺菌消毒液をそれぞれ
調製すると共に、各殺菌消毒液のORPを測定した。そ
の結果を各殺菌消毒液の調製に要した酸性物質の量と
に表5に示す。なお、各殺菌消毒液の調製直後の残留塩
素量は、いずれも37.2ppmであった。
[Manufacturing Example 4 of Disinfectant Solution] Tap water was used as dilution water, and citric acid, malic acid, tartaric acid, succinic acid, maleic acid, oxalic acid, glycolic acid (70% aqueous solution), hydrochloric acid were used as acidic substances. (1N aqueous solution), sulfuric acid (1N aqueous solution), sodium hydrogen sulfate, sulfamic acid, and phosphoric acid (85% aqueous solution) were used, and each acidic substance was subjected to 60% of SDCI (measured value of available chlorine 62.0%).
In addition to the aqueous solution having a concentration of mg / liter, disinfecting solutions each consisting of a strongly acidic aqueous solution of pH 2.7 and 2.65 were prepared, and the ORP of each disinfecting solution was measured. The results are shown in Table 5 together with the amount of acidic substance required for preparing each disinfectant solution. The amount of residual chlorine immediately after the preparation of each disinfectant was 37.2 ppm.

【手続補正9】[Procedure amendment 9]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0039[Correction target item name] 0039

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0039】[0039]

【表5】 [Table 5]

【手続補正10】[Procedure amendment 10]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0042[Correction target item name] 0042

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0042】[0042]

【表6】 [Table 6]

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 水中に、a)ジクロロイソシアヌール酸
ナトリウム、次亜塩素酸ナトリウム、高度サラシ粉、ク
ロラミンTの群より選ばれる塩素剤と、b)酸性物質又
は過酸化水素とを溶解することにより、PH5.5以
下、残留塩素量30ppm以上、酸化還元電位+800
mV以上の酸性水溶液を調製することを特徴とする殺菌
消毒液の製造方法。
1. dissolving in water a) a chlorinating agent selected from the group consisting of a) sodium dichloroisocyanurate, sodium hypochlorite, high-grade powder, and chloramine T; and b) an acidic substance or hydrogen peroxide. PH 5.5 or less, residual chlorine amount 30 ppm or more, oxidation-reduction potential +800
A method for producing a disinfecting and disinfecting solution, comprising preparing an acidic aqueous solution of mV or more.
【請求項2】 塩素剤がジクロロイソシアヌール酸ナト
リウムである請求項1記載の殺菌消毒液の製造方法。
2. The method according to claim 1, wherein the chlorine agent is sodium dichloroisocyanurate.
【請求項3】 酸性水溶液を、PH4.5〜5.5、残
留塩素量50〜80ppm、酸化還元電位+800〜1
000mVに調製する請求項1又は2に記載の殺菌消毒
液の製造方法。
3. An acidic aqueous solution having a pH of 4.5 to 5.5, a residual chlorine amount of 50 to 80 ppm, and an oxidation-reduction potential of +800 to 1
The method for producing a disinfectant / disinfectant according to claim 1 or 2, wherein the disinfectant is adjusted to 000 mV.
【請求項4】 前記b)成分が、クエン酸、リンゴ酸、
酒石酸、マレイン酸、コハク酸、シュウ酸、グリコール
酸、酢酸、塩酸、硫酸、硝酸、硫酸水素ナトリウム、ス
ルファミン酸、リン酸より選ばれる少なくとも一種の酸
性物質、もしくは過酸化水素である請求項3記載の殺菌
消毒液の製造方法。
4. The method according to claim 1, wherein the component (b) is citric acid, malic acid,
4. The compound according to claim 3, which is at least one acidic substance selected from tartaric acid, maleic acid, succinic acid, oxalic acid, glycolic acid, acetic acid, hydrochloric acid, sulfuric acid, nitric acid, sodium hydrogen sulfate, sulfamic acid and phosphoric acid, or hydrogen peroxide. Method for producing a disinfectant solution of the present invention.
【請求項5】 酸性水溶液を、PH2.7以下、残留塩
素量30〜40ppm、酸化還元電位+1100mV以
上に調製する請求項1又は2に記載の殺菌消毒液の製造
方法。
5. The method according to claim 1, wherein the acidic aqueous solution is adjusted to a pH of 2.7 or less, a residual chlorine content of 30 to 40 ppm, and an oxidation-reduction potential of +1100 mV or more.
【請求項6】 前記a成分が、ジクロロイソシアヌール
酸ナトリウム、次亜塩素酸ナトリウム、高度サラシ粉よ
り選ばれるものであり、前記b)成分が、マレイン酸、
コハク酸、酢酸、塩酸、硫酸、硝酸、リン酸、硫酸水素
ナトリウムより選ばれる少なくとも一種の酸性物質であ
る請求項5記載の殺菌消毒液の製造方法。
6. The component (a) is selected from sodium dichloroisocyanurate, sodium hypochlorite, and high-grade powder, and the component (b) is maleic acid.
The method for producing a germicidal antiseptic according to claim 5, wherein the method is at least one acidic substance selected from succinic acid, acetic acid, hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, and sodium hydrogen sulfate.
【請求項7】 ジクロロイソシアヌール酸ナトリウム、
高度サラシ粉、及びクロラミンTの群より選ばれる塩素
剤の粉末と、粉末形態の有機酸又は/及び無機酸との粉
末混合物よりなる殺菌消毒剤。
7. A sodium dichloroisocyanurate,
A germicidal disinfectant comprising a powder mixture of a powder of a chlorine agent selected from the group consisting of advanced salami powder and chloramine T, and a powdered organic acid and / or inorganic acid.
JP23608096A 1996-09-06 1996-09-06 Manufacturing method of disinfectant solution Expired - Lifetime JP3219698B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23608096A JP3219698B2 (en) 1996-09-06 1996-09-06 Manufacturing method of disinfectant solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23608096A JP3219698B2 (en) 1996-09-06 1996-09-06 Manufacturing method of disinfectant solution

Publications (2)

Publication Number Publication Date
JPH1081610A true JPH1081610A (en) 1998-03-31
JP3219698B2 JP3219698B2 (en) 2001-10-15

Family

ID=16995434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23608096A Expired - Lifetime JP3219698B2 (en) 1996-09-06 1996-09-06 Manufacturing method of disinfectant solution

Country Status (1)

Country Link
JP (1) JP3219698B2 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999062625A1 (en) * 1998-06-01 1999-12-09 Nihon Aqua Co., Ltd. Liquid medicine preparing device
JP2000015261A (en) * 1998-06-30 2000-01-18 Techno Excel Co Ltd Disinfectant water and apparatus for producing disinfectant water
WO2000051434A1 (en) * 1999-02-26 2000-09-08 Yongcheng Cui A weak acidic disinfectant
JP2002210474A (en) * 2001-01-15 2002-07-30 Hirosuke Sato Method for sterilizing preserved drinking water for emergency and hermetically sealed container of sterilizer
EP1236399A1 (en) * 1999-12-10 2002-09-04 Kao Corporation Methods of sterilization
EP1236398A1 (en) * 1999-12-10 2002-09-04 Kao Corporation Microbicide compositions
JP2002265308A (en) * 2001-03-13 2002-09-18 S T Chem Co Ltd Solid halogen agent composition
WO2004098657A1 (en) * 2003-05-12 2004-11-18 Veeta Inc. Method for forming bactericidal water containing hypochlorous acid or chlorous acid, raw bactericidal material package and kit for forming bactericidal water, and method and apparatus for sterilizing space
JP2005538178A (en) * 2002-09-11 2005-12-15 ボード・オブ・スーパーバイザーズ・オブ・ルイジアナ・ステイト・ユニバーシテイ・アンド・アグリカルチユラル・アンド・メカニカル・カレツジ・スルー・ザ・エルエスユー・アグセンター Biocidal compositions and related methods
JP2006043695A (en) * 2004-07-08 2006-02-16 Kao Corp Cleaning method
GB2437489A (en) * 2006-04-28 2007-10-31 David Robert Norton Disinfectant mixture of a donor of freely available chlorine (e.g. hypochlorite) and a buffering agent or acid, optionally in the form of an aqueous solution
US20070264355A1 (en) * 2005-12-14 2007-11-15 Binary, Llc Binary compositions and methods for sterilization
US7465829B2 (en) * 2002-02-19 2008-12-16 Schneider Advanced Technologies, Inc. Halo active aromatic sulfonamide organic compounds and uses therefor
US7629492B2 (en) * 2002-02-19 2009-12-08 Schneider Advanced Technologies, Inc. Halo active aromatic sulfonamide organic compounds and odor control uses therefor
JP2011153095A (en) * 2010-01-27 2011-08-11 Pureson Corp Disinfection liquid and method for producing the same
JP2013049652A (en) * 2011-08-31 2013-03-14 Tokuyama Dental Corp Kit for bonding dental alginate impression material to impression tray
WO2014058175A1 (en) * 2012-10-11 2014-04-17 강원대학교산학협력단 Bioscaffold sterilising composition comprising slightly acidic electrolyzed water as an active ingredient, and bioscaffold sterilisation method using same
US8759399B2 (en) 2002-02-19 2014-06-24 David J. Schneider Halo active aromatic sulfonamide organic compounds and uses therefor
JP2014148526A (en) * 2014-04-14 2014-08-21 Sutakku System:Kk Method for producing disinfectant antiseptic solution
JP2014196266A (en) * 2013-03-29 2014-10-16 アクアス株式会社 Oxidative slime control agent composition having high storage stability
JP2015028015A (en) * 2008-09-26 2015-02-12 ロンザ インコーポレイテッド Synergistic peroxide-based sterilizing composition
US9040587B2 (en) 2002-02-19 2015-05-26 David J. Schneider Halo active aromatic sulfonamide organic compounds and uses therefor
JP2015131848A (en) * 2015-04-03 2015-07-23 株式会社スタックシステム Method for producing disinfectant antiseptic solution
WO2022008972A1 (en) * 2020-07-07 2022-01-13 Wiab Water Innovation Ab Compositions and methods to disinfect, treat and prevent microbial infections

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999062625A1 (en) * 1998-06-01 1999-12-09 Nihon Aqua Co., Ltd. Liquid medicine preparing device
JP2000015261A (en) * 1998-06-30 2000-01-18 Techno Excel Co Ltd Disinfectant water and apparatus for producing disinfectant water
WO2000051434A1 (en) * 1999-02-26 2000-09-08 Yongcheng Cui A weak acidic disinfectant
KR100737951B1 (en) * 1999-12-10 2007-07-13 가오가부시끼가이샤 Microbicide compositions
EP1236399A1 (en) * 1999-12-10 2002-09-04 Kao Corporation Methods of sterilization
EP1236398A1 (en) * 1999-12-10 2002-09-04 Kao Corporation Microbicide compositions
EP1236398A4 (en) * 1999-12-10 2004-04-07 Kao Corp Microbicide compositions
EP1236399A4 (en) * 1999-12-10 2004-04-07 Kao Corp Methods of sterilization
US6793846B2 (en) 1999-12-10 2004-09-21 Kao Corporation Microbicide compositions
KR100737934B1 (en) * 1999-12-10 2007-07-13 가오가부시끼가이샤 Methods of sterilization
JP2002210474A (en) * 2001-01-15 2002-07-30 Hirosuke Sato Method for sterilizing preserved drinking water for emergency and hermetically sealed container of sterilizer
JP2002265308A (en) * 2001-03-13 2002-09-18 S T Chem Co Ltd Solid halogen agent composition
US8759399B2 (en) 2002-02-19 2014-06-24 David J. Schneider Halo active aromatic sulfonamide organic compounds and uses therefor
US8003823B2 (en) 2002-02-19 2011-08-23 Charles A. Schneider Halo active aromatic sulfonamide organic compounds and odor control uses therefor
US9040587B2 (en) 2002-02-19 2015-05-26 David J. Schneider Halo active aromatic sulfonamide organic compounds and uses therefor
US7629492B2 (en) * 2002-02-19 2009-12-08 Schneider Advanced Technologies, Inc. Halo active aromatic sulfonamide organic compounds and odor control uses therefor
US7465829B2 (en) * 2002-02-19 2008-12-16 Schneider Advanced Technologies, Inc. Halo active aromatic sulfonamide organic compounds and uses therefor
JP2005538178A (en) * 2002-09-11 2005-12-15 ボード・オブ・スーパーバイザーズ・オブ・ルイジアナ・ステイト・ユニバーシテイ・アンド・アグリカルチユラル・アンド・メカニカル・カレツジ・スルー・ザ・エルエスユー・アグセンター Biocidal compositions and related methods
WO2004098657A1 (en) * 2003-05-12 2004-11-18 Veeta Inc. Method for forming bactericidal water containing hypochlorous acid or chlorous acid, raw bactericidal material package and kit for forming bactericidal water, and method and apparatus for sterilizing space
JP4602178B2 (en) * 2004-07-08 2010-12-22 花王株式会社 Cleaning method
JP2006043695A (en) * 2004-07-08 2006-02-16 Kao Corp Cleaning method
US20070264355A1 (en) * 2005-12-14 2007-11-15 Binary, Llc Binary compositions and methods for sterilization
GB2437489A (en) * 2006-04-28 2007-10-31 David Robert Norton Disinfectant mixture of a donor of freely available chlorine (e.g. hypochlorite) and a buffering agent or acid, optionally in the form of an aqueous solution
JP2015028015A (en) * 2008-09-26 2015-02-12 ロンザ インコーポレイテッド Synergistic peroxide-based sterilizing composition
JP2011153095A (en) * 2010-01-27 2011-08-11 Pureson Corp Disinfection liquid and method for producing the same
JP2013049652A (en) * 2011-08-31 2013-03-14 Tokuyama Dental Corp Kit for bonding dental alginate impression material to impression tray
WO2014058175A1 (en) * 2012-10-11 2014-04-17 강원대학교산학협력단 Bioscaffold sterilising composition comprising slightly acidic electrolyzed water as an active ingredient, and bioscaffold sterilisation method using same
US9232804B2 (en) 2012-10-11 2016-01-12 Knu University-Industry Cooperation Foundation Compositions and methods for sterilizing bioscaffolds
JP2014196266A (en) * 2013-03-29 2014-10-16 アクアス株式会社 Oxidative slime control agent composition having high storage stability
JP2014148526A (en) * 2014-04-14 2014-08-21 Sutakku System:Kk Method for producing disinfectant antiseptic solution
JP2015131848A (en) * 2015-04-03 2015-07-23 株式会社スタックシステム Method for producing disinfectant antiseptic solution
WO2022008972A1 (en) * 2020-07-07 2022-01-13 Wiab Water Innovation Ab Compositions and methods to disinfect, treat and prevent microbial infections

Also Published As

Publication number Publication date
JP3219698B2 (en) 2001-10-15

Similar Documents

Publication Publication Date Title
JP3219698B2 (en) Manufacturing method of disinfectant solution
US6322822B1 (en) Biocidal applications of concentrated aqueous bromine chloride solutions
JP3004958B2 (en) Disinfectant preparation
US20150119245A1 (en) Method for Producing Shelf Stable Hypochlorous Acid Solutions
TW201505974A (en) Acidic Electrolyzed Water, Manufacturing Method Therefor, and Cleanser And Disinfectant Containing Acidic Electrolyzed Water
JP2008507399A (en) Water treatment
US20140302168A1 (en) Microbiocidal Solution with Ozone and Methods
WO1991008981A2 (en) Solutions for stabilizing hydrogen peroxide containing solutions
CN103503922A (en) Disinfection powder for hospital wastewater disinfection
KR101286088B1 (en) Method for Preparing Hypochlorous Acid Water with High Stability
JP2002104908A (en) Disinfectant agricultural electrolytic water and production unit therefor
Farah et al. Electrolyzed water generated on-site as a promising disinfectant in the dental office during the COVID-19 pandemic
JP3554749B2 (en) Disinfectant
EP1217892B1 (en) Biocidal applications of concentrated aqueous bromine chloride solutions
WO2015029263A1 (en) Cleaning solution and manufacturing method therefor
JP2007031374A (en) Method for producing germicidal disinfectant solution
JP2021172649A (en) Aqueous solution having hypochlorous acid as main component
JP2013136609A (en) Bactericide application of concentrated aqueous bromine chloride solution
CN113907072A (en) Preparation method of high-precision weak acid hypochlorite disinfectant
CN106689198A (en) Compound hydrogen peroxide disinfectant as well as preparation method and application thereof&lt;0}
JP2002086155A (en) Sterilization method of water system
KR101956575B1 (en) Electrolysis apparatus for producing between germicide and detergent
JP2005161254A (en) Method for preventing adhesion of slime in water system
WO2023063003A1 (en) Disinfection composition and disinfection method
KR101140147B1 (en) Compositoin for disinfection and deodorization and disinfectant for feed of livestock including the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010706

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070810

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090810

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term