JP3219698B2 - Manufacturing method of disinfectant solution - Google Patents
Manufacturing method of disinfectant solutionInfo
- Publication number
- JP3219698B2 JP3219698B2 JP23608096A JP23608096A JP3219698B2 JP 3219698 B2 JP3219698 B2 JP 3219698B2 JP 23608096 A JP23608096 A JP 23608096A JP 23608096 A JP23608096 A JP 23608096A JP 3219698 B2 JP3219698 B2 JP 3219698B2
- Authority
- JP
- Japan
- Prior art keywords
- acid
- aqueous solution
- disinfectant
- acidic
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Apparatus For Disinfection Or Sterilisation (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、医療機関,各種厚
生施設,厨房,一般家庭等における手洗い、各種器材や
備品の洗浄、リネン,フキン,衣類や履物の洗浄、壁や
床の清拭、歯科用印象剤の洗浄、人工透析ラインの洗浄
等に使用される殺菌消毒液の製造方法に関する。BACKGROUND OF THE INVENTION The present invention relates to hand washing in medical institutions, various welfare facilities, kitchens, general households, etc., washing of various equipment and fixtures, washing of linen, fukin, clothes and footwear, cleaning of walls and floors, The present invention relates to a method for producing a germicidal disinfectant used for cleaning dental impression agents, cleaning artificial dialysis lines, and the like.
【0002】[0002]
【従来の技術】一般に、食塩水溶液を両極間にイオン交
換膜等の隔膜を介して電気分解すれば、陰極側には水素
の発生を伴って高PHのアルカリ電解水が生成すると共
に、陽極側には活性塩素や酸素を含む低PHの酸性電解
水が生成することが知られている。しかして、後者の酸
性電解水は、強い殺菌作用を有しており、且つ従来汎用
の消毒薬に比較して毒性が少なく、手洗い等に使用して
も肌の荒れを生じにくい上、使用済み廃水についても特
別な処理が不要であるという利点から、殺菌消毒用とし
て注目されている。そして、近年において、水道水に微
量の食塩を加えて電気分解し、陽極側に生成する酸性電
解水を取り出すように構成された電解水生成装置が種々
市販されている。2. Description of the Related Art In general, if a saline solution is electrolyzed between both electrodes through a membrane such as an ion exchange membrane, high-pH alkaline electrolyzed water is produced on the cathode side with the generation of hydrogen, and the anode side is produced. Is known to produce low pH acidic electrolyzed water containing active chlorine and oxygen. However, the latter acidic electrolyzed water has a strong bactericidal action, is less toxic than conventional general-purpose disinfectants, is less likely to cause rough skin even when used for hand washing, and has been used. Wastewater has attracted attention for sterilization because it does not require special treatment. In recent years, various electrolyzed water generators configured to add a trace amount of sodium chloride to tap water to perform electrolysis and take out acidic electrolyzed water generated on the anode side are commercially available.
【0003】この酸性電解水には、通常の電解によって
得られるPH2.7以下、残留塩素量30〜40pp
m、酸化還元電位(以下、ORPという)+1100m
V以上の強酸性電解水と、これを電解直後に希釈する方
法等で得られるPH4.5〜5.5、残留塩素量50〜
80ppm、ORP+800〜+1000mVの弱酸性
電解水とがあり、後者の弱酸性電解水は保存安定性に優
れるという利点がある。しかして、酸性電解水の殺菌作
用は、高ORPによる微生物の生息環境破壊と、次亜塩
素酸による殺菌効果に基づくとされている。The acidic electrolyzed water has a pH of 2.7 or less and a residual chlorine content of 30 to 40 pp obtained by ordinary electrolysis.
m, oxidation-reduction potential (hereinafter referred to as ORP) +1100 m
V or higher, strongly acidic electrolyzed water, PH 4.5 to 5.5 obtained by diluting the water immediately after electrolysis, residual chlorine amount 50 to
There is 80 ppm, ORP +800 to +1000 mV weakly acidic electrolyzed water, and the latter weakly acidic electrolyzed water has an advantage of being excellent in storage stability. The bactericidal action of acidic electrolyzed water is said to be based on the destruction of the microbial habitat by high ORP and the bactericidal effect by hypochlorous acid.
【0004】すなわち、微生物は、ORPとして通性好
気性微生物では+200〜+820mV、嫌気性微生物
では−700〜+100mV、ORP−PHの相関から
は図1で示す斜線を施した領域A内を生活圏とするが、
酸性電解水中では該領域Aをほぼ外れた高ORPの環境
となるために細胞小器官の膜電位の安定化限界を越え、
エネルギー代謝や呼吸が阻害されて生息困難になると解
されている。また、食塩の電解によって生じた塩素ガス
は、水中での化合形態が高PHほど次式の右側へ移行す
るように変化するが、 Cl2 +H2 O←→HCl+HOCl←→HCl+H+ +OCl- 酸性電解水の前記PH領域では図2に示すように大部分
が活性塩素である次亜塩素酸(HOCl)として存在す
るため、この次亜塩素酸の強い酸化力により、微生物は
蛋白質の変性(N末端アミノ基の酸化による酵素活性の
失活)を生じて死滅すると考えられている。[0004] That is, the microorganisms are ORP at +200 to +820 mV for facultative aerobic microorganisms and -700 to +100 mV for anaerobic microorganisms. But
In the acidic electrolyzed water, the environment of high ORP almost deviating from the region A is exceeded, so that the membrane potential of the organelle exceeds the stabilization limit,
It is understood that energy metabolism and respiration are obstructed, making it difficult to live. The chlorine gas generated by the electrolysis of the salt changes so that the compound form in water shifts to the right side of the following equation as the pH becomes higher. However, Cl 2 + H 2 O ← → HCl + HOCl ← → HCl + H + + OCl − acidic electrolysis As shown in FIG. 2, most of the water in the PH region is present as hypochlorous acid (HOCl), which is active chlorine. Therefore, the strong oxidizing power of hypochlorous acid causes microorganisms to denature proteins (N-terminal). It is considered that the enzyme activity is lost due to oxidation of the amino group).
【0005】[0005]
【発明が解決しようとする課題】上述のように、食塩水
溶液の電気分解によって陽極側に生成する酸性電解水は
殺菌消毒用として有用性の高いものと考えられるが、そ
の生成に使用される従来の電解水生成装置は、非常に高
価であることから、多量の殺菌消毒液を必要としない小
規模な施設や一般家庭等に導入するには経済的に見合わ
ず、また病院等の使用頻度が高く消費量の多い施設でも
設備コストの負担が大きいために必要箇所の全てに設置
することは困難であった。As described above, acidic electrolyzed water generated on the anode side by electrolysis of a saline solution is considered to be highly useful for sterilization and disinfection. Is very expensive, so it is not economically feasible to introduce it into small-scale facilities or ordinary households that do not require a large amount of disinfectant, Even facilities with high consumption and high consumption have a large burden on equipment costs, so it has been difficult to install them in all necessary locations.
【0006】従って、殺菌消毒用としての酸性電解水の
利用を促進する上では、より安価な電解水生成装置の出
現が待たれるが、電解部の構成や配管、電気的及び流体
的制御等面より装置の製作コスト低減には自ずと限界が
あり、また電極寿命に伴う交換等のメンテナンスの費用
負担も避けられないため、経済性の問題は解決困難であ
り、特に使用頻度や消費量が少ない場合に対応できな
い。Therefore, in order to promote the use of acidic electrolyzed water for sterilization and disinfection, the emergence of an inexpensive electrolyzed water generator is expected. However, the construction of the electrolysis section, piping, electrical and fluid control, and the like are required. There is naturally a limit in reducing the manufacturing cost of the device, and the cost of maintenance such as replacement due to the life of the electrode is unavoidable, so it is difficult to solve the economic problem, especially when the frequency of use and consumption are small. Can not respond to.
【0007】[0007]
【課題を解決するための手段】本発明者らは、上述の状
況に鑑み、殺菌消毒用として有用性の高い酸性電解水を
安価に提供する目的で鋭意検討を重ねる過程で、電解水
生成装置の低価格化という考え方から発想を180度転
換し、食塩水の電気分解という方法によらずに、薬剤の
調合によって酸性電解水と同等の性能及び性状を有する
殺菌消毒液を極めて簡単に且つ安価に提供できることを
見出し、本発明をなすに至った。SUMMARY OF THE INVENTION In view of the above-mentioned situation, the present inventors have conducted intensive studies in order to provide inexpensively acidic electrolyzed water having high utility for sterilization and disinfection. The idea was changed 180 degrees from the idea of lowering the cost of sterilization, and a sterilizing and disinfecting solution having the same performance and properties as acidic electrolyzed water could be prepared very easily and inexpensively by mixing chemicals without depending on the method of electrolysis of saline solution. And found that the present invention can be provided.
【0008】すなわち、本発明の請求項1に係る殺菌消
毒液の製造方法は、水中に、a)ジクロロイソシアヌー
ル酸ナトリウムと、b)酸性物質又は過酸化水素とを溶
解することにより、PH5.5以下、残留塩素量30p
pm以上、ORP(酸化還元電位)+800mV以上の
酸性水溶液を調製することを特徴とするものである。し
かして、この方法によれば、水に溶解したa成分の塩素
剤であるジクロロイソシアヌール酸ナトリウムに基づく
残留塩素がb成分によってPHを5.5以下に調整する
ことによって活性の次亜塩素酸として存在する形にな
り、またb成分によってORP+800mV以上に設定
するため、従来の食塩水の電気分解によって生成させて
いた酸性電解水と同等の性能及び性状を有する有用性の
高い殺菌消毒液が容易に且つ安価に得られることにな
る。なお、b成分の過酸化水素は、a成分のジクロロイ
ソシアヌール酸ナトリウムの塩素と反応して塩酸を生成
することにより、水溶液のPHを低下させる作用があ
る。That is, the method for producing a disinfectant solution according to claim 1 of the present invention comprises dissolving a) sodium dichloroisocyanurate and b) an acidic substance or hydrogen peroxide in water to obtain a PH5. 5 or less, residual chlorine amount 30p
The present invention is characterized in that an acidic aqueous solution of not less than pm and not less than ORP (redox potential) +800 mV is prepared. According to this method, the residual chlorine based on sodium dichloroisocyanurate, which is a chlorine agent for the component a dissolved in water, is adjusted to a pH of 5.5 or less by the component b to activate active hypochlorous acid. As it is set as ORP + 800 mV or more depending on the b component, a highly useful disinfectant solution having the same performance and properties as the acidic electrolyzed water generated by the conventional electrolysis of saline is easily obtained. And inexpensively. In addition, the hydrogen peroxide of the component b has an effect of lowering the pH of the aqueous solution by generating hydrochloric acid by reacting with the chlorine of sodium dichloroisocyanurate of the component a.
【0009】請求項2の発明では、上記請求項1の殺菌
消毒液の製造方法において、酸性水溶液を、PH4.5
〜5.5、残留塩素量50〜80ppm、酸化還元電位
+800〜1000mVに調製する構成を採用している
から、得られる殺菌消毒液は従来の食塩水の電気分解に
よって生成させていた弱酸性電解水に相当するものとな
る。According to a second aspect of the present invention, in the method for producing a germicidal disinfectant according to the first aspect, the acidic aqueous solution has a pH of 4.5.
~ 5.5, residual chlorine amount 50 ~ 80ppm, redox potential + 800 ~ 1000mV, so that the obtained disinfectant solution is weakly acidic electrolyzed solution which is generated by conventional electrolysis of saline solution. It is equivalent to water.
【0010】請求項3の発明では、上記請求項2の殺菌
消毒液の製造方法において、前記b)成分が、クエン
酸、リンゴ酸、酒石酸、マレイン酸、コハク酸、シュウ
酸、グリコール酸、酢酸、塩酸、硫酸、硝酸、硫酸水素
ナトリウム、スルファミン酸、リン酸より選ばれる少な
くとも一種の酸性物質、もしくは過酸化水素である構成
を採用しているから、従来の食塩水の電気分解による弱
酸性電解水に相当する殺菌消毒液を容易に調製できる。According to a third aspect of the present invention, in the method for producing a germicidal disinfectant of the second aspect, the component b) is selected from the group consisting of citric acid, malic acid, tartaric acid, maleic acid, succinic acid, oxalic acid, glycolic acid, and acetic acid. Weak acid electrolysis by conventional electrolysis of salt water because it employs at least one acidic substance selected from hydrochloric acid, sulfuric acid, nitric acid, sodium hydrogen sulfate, sulfamic acid, phosphoric acid, or hydrogen peroxide A disinfectant solution corresponding to water can be easily prepared.
【0011】請求項4の発明では、上記請求項1の殺菌
消毒液の製造方法において、酸性水溶液を、PH2.7
以下、残留塩素量30〜40ppm、酸化還元電位+1
100mV以上に調製する構成を採用していることか
ら、得られる殺菌消毒液は従来の食塩水の電気分解によ
って生成させていた強酸性電解水に相当するものとな
る。According to a fourth aspect of the present invention, in the method for producing a germicidal disinfectant according to the first aspect, the acidic aqueous solution may have a pH of 2.7.
Hereinafter, the residual chlorine amount is 30 to 40 ppm, the oxidation-reduction potential +1
Since the configuration for adjusting the voltage to 100 mV or more is employed, the obtained disinfectant solution corresponds to strongly acidic electrolyzed water generated by conventional electrolysis of saline.
【0012】請求項5の発明では、上記請求項4の殺菌
消毒液の製造方法において、前記b)成分が、マレイン
酸、コハク酸、酢酸、塩酸、硫酸、硝酸、リン酸、硫酸
水素ナトリウムより選ばれる少なくとも一種の酸性物質
である構成を採用しているから、従来の食塩水の電気分
解による強酸性電解水に相当する殺菌消毒液を容易に調
製できる。According to a fifth aspect of the present invention, in the method for producing a germicidal disinfectant according to the fourth aspect, the component b) is selected from the group consisting of maleic acid, succinic acid, acetic acid, hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, and sodium hydrogen sulfate. Since the composition of at least one selected acidic substance is adopted, a disinfecting solution corresponding to strongly acidic electrolyzed water obtained by conventional electrolysis of saline can be easily prepared.
【0013】[0013]
【発明の実施の形態】本発明では、殺菌消毒液の製造に
際してa成分のジクロロイソシアヌール酸ナトリウムと
b成分の酸性物質又は過酸化水素とを単に水に溶解する
だけでよいが、このとき水溶液がPH5.5以下、残留
塩素量30ppm以上、ORP+800mV以上の酸性
水溶液になるように、a,b成分の使用量と相互の配合
割合を設定する。すなわち、残留塩素量は塩素剤である
ジクロロイソシアヌール酸ナトリウムの使用量に、PH
及びORPはb成分の使用量にそれぞれ依存するが、b
成分によるPH調整作用は各々の種類によって異なるた
め、b成分の種類と組合せに応じてa,b成分各々の使
用量を前記のPH及びORPの条件を満たすように設定
すればよい。しかして、得られる殺菌消毒液は、従来の
食塩水の電気分解によって生成させていた酸性電解水と
同等の性能及び性状を有するものとなり、優れた殺菌消
毒作用を具備する。DESCRIPTION OF THE PREFERRED EMBODIMENTS According to the present invention, in producing a disinfectant solution, sodium dichloroisocyanurate (a) and an acidic substance or hydrogen peroxide (b) may be simply dissolved in water. The amounts of the components a and b and the mixing ratio thereof are set so that the pH of the mixture is an acidic aqueous solution having a pH of 5.5 or less, a residual chlorine content of 30 ppm or more, and an ORP + 800 mV or more. That is, the amount of residual chlorine is determined by the amount of sodium dichloroisocyanurate used as a chlorine agent,
And ORP depend on the amount of the component b, respectively.
Since the PH adjustment effect of the component differs depending on the type, the usage of each of the a and b components may be set so as to satisfy the above-mentioned conditions of PH and ORP according to the type and combination of the component b. Thus, the obtained disinfecting solution has the same performance and properties as the acidic electrolyzed water generated by the conventional electrolysis of saline, and has an excellent disinfecting effect.
【0014】また既述のように、従来の食塩水の電気分
解による酸性電解水には強酸性のものと弱酸性のものと
があるから、その各々に対応する殺菌消毒液とする上で
は、上記のa,b成分の使用量と相互の配合割合を両酸
性電解水の各々におけるPH、残留塩素量、ORPに対
応する酸性水溶液となるように設定すればよい。すなわ
ち、強酸性水溶液ではPH2.7以下、残留塩素量30
〜40ppm、酸化還元電位+1100mV以上、弱酸
性水溶液ではPH4.5〜5.5、残留塩素量50〜8
0ppm、ORP+800〜1000mVである。[0014] As described above, there are two types of conventional acidic electrolyzed water obtained by electrolysis of saline, which are strongly acidic and weakly acidic. The amounts of the components a and b and the mixing ratio thereof may be set so as to be an acidic aqueous solution corresponding to the PH, the residual chlorine amount, and the ORP in each of the acidic electrolyzed water. That is, in a strongly acidic aqueous solution, the pH is 2.7 or less and the residual chlorine amount is 30.
4040 ppm, oxidation-reduction potential +1100 mV or more, PH 4.5 to 5.5 in weakly acidic aqueous solution, residual chlorine amount 50 to 8
0 ppm, ORP + 800 to 1000 mV.
【0015】a成分のジクロロイソシアヌール酸ナトリ
ウム(以下、SDCIと略称する)は、有効塩素濃度が
60%以上(理論値64.5%)と高い上に水溶液にお
ける残留塩素量の安定性に優れ、しかも水に溶け易く且
つ水溶液が略中性(1%水溶液でPH6.0〜7.0)
となるため、前記b成分の少ない使用量で所要の残留塩
素量及びPHの酸性水溶液を容易に調製できるという利
点があり、前記酸性電解水の調製に用いる塩素剤として
最も好適である。The component (a) sodium dichloroisocyanurate (hereinafter abbreviated as SDCI) has an effective chlorine concentration of as high as 60% or more (theoretical value of 64.5%) and has excellent stability of the residual chlorine amount in an aqueous solution. Moreover, it is easily soluble in water and the aqueous solution is almost neutral (pH 6.0 to 7.0 for a 1% aqueous solution).
Therefore, there is an advantage that an acidic aqueous solution of a required residual chlorine amount and PH can be easily prepared with a small use amount of the component b, and is most suitable as a chlorine agent used for preparing the acidic electrolyzed water.
【0016】これに対し、次亜塩素酸ナトリウムは、最
も普及しているアルカリ性の塩素剤であるが、普通品と
低食塩品とがあって両者のアルカリ度も異なる上、市販
品でもメーカーによってアルカリ度や有効塩素濃度に差
異があるから、所要のPH及び残留塩素量の殺菌消毒液
を調製するには予め使用する品種毎にアルカリ度と有効
塩素濃度を測定する必要があり、且つ不安定であるから
残留塩素量については使用時に逐次測定して適正範囲に
あることを確認せねばならず、これらの手間が非常に煩
雑である上、酸性水溶液とするのに前記b成分の使用量
が多くなるという難点がある。[0016] On the other hand, sodium hypochlorite is the most widely used alkaline chlorinating agent, but there are ordinary products and low-salt products, both of which have different alkalinities. Since there is a difference in alkalinity and available chlorine concentration, it is necessary to measure alkalinity and available chlorine concentration in advance for each type of varieties used in order to prepare a disinfectant solution with the required PH and residual chlorine, and it is unstable Therefore, the residual chlorine amount must be measured successively at the time of use to confirm that the amount is within an appropriate range, and these labors are very complicated. There is a drawback that it increases.
【0017】また高度サラシ粉では、有効塩素濃度60
%以上のものがあるが、アルカリ性であるためにやはり
前記b成分の使用量が多くなる他、水溶性のよい粉状品
は第1類危険物である上に吸湿性を有して塩素の安定性
にも劣り、危険物に相当しない粒状品は水に難溶で使用
できないという問題がある。更にクロラミンTは、水に
溶け易い粉末であるが、有効塩素濃度が25%と低い上
にSDCIよりも高価であり、またアルカリ性で前記b
成分の使用量が多くなるという難点があり、特に強酸性
電解水に相当する強酸性水溶液の調製には適さない。In the case of advanced salad powder, the effective chlorine concentration is 60%.
% Or more, but the use of component b is also large because of its alkalinity. In addition, powdery products having good water solubility are class 1 hazardous substances and have a hygroscopic property and chlorine. There is a problem that granular products which are inferior in stability and do not correspond to dangerous substances are hardly soluble in water and cannot be used. Further, chloramine T is a powder that is easily soluble in water, but has a low effective chlorine concentration of 25% and is more expensive than SDCI.
There is a drawback that the amount of components used increases, and it is not particularly suitable for preparing a strongly acidic aqueous solution corresponding to strongly acidic electrolyzed water.
【0018】その他、構造的にSDCIに近いトリクロ
ロイソシアヌール酸は、有効塩素量が90%と高い塩素
剤であるが、水に難溶であるために目的とする殺菌消毒
液の調製が困難である。また、二酸化塩素(ClO2 )
や亜塩素酸ナトリウム(NaClO2 )では、残留塩素
量を80ppm程度に設定し、酸性物質を添加してPH
を5.5〜2.7に調整しても、ORPは+750mV
以下にしかならず、目的とする殺菌消毒液は調整不能で
ある。In addition, trichloroisocyanuric acid, which is structurally similar to SDCI, is a chlorinating agent having a high effective chlorine content of 90%, but it is difficult to prepare a target disinfecting solution because it is hardly soluble in water. is there. Also, chlorine dioxide (ClO 2 )
And sodium chlorite (NaClO 2 ), the residual chlorine amount is set to about 80 ppm, and the pH is adjusted by adding an acidic substance.
Is adjusted to 5.5 to 2.7, the ORP is +750 mV
However, the target disinfectant cannot be adjusted.
【0019】b成分の酸性物質は、a成分のSDCIと
の組合せにおいて得られる酸性水溶液のPH及びORP
を所定範囲に調製し得るものであれば制約なく使用でき
るが、好適なものとして次のものが挙げられる。すなわ
ち、PH4.5〜5.5、残留塩素量50〜80pp
m、ORP+800〜1000mVの弱酸性水溶液の調
製用としては、クエン酸、リンゴ酸、酒石酸、マレイン
酸、コハク酸、シュウ酸、グリコール酸、酢酸、塩酸、
硫酸、硝酸、硫酸水素ナトリウム、スルファミン酸、リ
ン酸等が好適である。またはPH2.7以下、残留塩素
量30〜40ppm、ORP+1100mV以上の強酸
性水溶液の調製用としては、マレイン酸、コハク酸、酢
酸、塩酸、硫酸、硝酸、リン酸、硫酸水素ナトリウム等
が挙げられる。ただし、強酸性水溶液の調製用としての
コハク酸と酢酸は、他に比較して使用量がかなり多くな
る点でやや劣る。The acidic substance of the component (b) is obtained by measuring the pH and ORP of the acidic aqueous solution obtained in combination with the SDCI of the component (a).
Can be used without limitation as long as it can be adjusted to a predetermined range, but the following are preferred. That is, PH 4.5 to 5.5, residual chlorine amount 50 to 80 pp
m, ORP + 800 to 1000 mV for preparing a weakly acidic aqueous solution include citric acid, malic acid, tartaric acid, maleic acid, succinic acid, oxalic acid, glycolic acid, acetic acid, hydrochloric acid,
Sulfuric acid, nitric acid, sodium hydrogen sulfate, sulfamic acid, phosphoric acid and the like are preferred. Alternatively, for preparing a strongly acidic aqueous solution having a pH of 2.7 or less, a residual chlorine amount of 30 to 40 ppm, and an ORP of 1100 mV or more, maleic acid, succinic acid, acetic acid, hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, sodium hydrogen sulfate and the like can be mentioned. However, succinic acid and acetic acid for preparing a strongly acidic aqueous solution are somewhat inferior in that the amounts used are considerably larger than those of the others.
【0020】なお、クエン酸、リンゴ酸、酒石酸、マレ
イン酸、シュウ酸、グリコール酸、スルファミン酸が強
酸性水溶液の調製用として不適であるのは、いずれもO
RPを+1100mV以上になし得ないことによる。ま
た他の酸性物質として、例えば、ほう酸はPH5.5以
下の酸性水溶液を調製できないため、不適当である。な
お、リン酸二水素ナトリウムはPH5.5以下の酸性水
溶液とするために使用量が多くなるという難点がある。It is to be noted that citric acid, malic acid, tartaric acid, maleic acid, oxalic acid, glycolic acid, and sulfamic acid are all unsuitable for preparing a strongly acidic aqueous solution.
This is because RP cannot be set to +1100 mV or more. Further, as another acidic substance, for example, boric acid is not suitable because an acidic aqueous solution having a pH of 5.5 or less cannot be prepared. It should be noted that sodium dihydrogen phosphate has a drawback that the amount of use is increased because it is an acidic aqueous solution having a pH of 5.5 or less.
【0021】b成分としての過酸化水素は、a成分のS
DCIの塩素と反応して塩酸を生成することにより、水
溶液のPHを低下させる作用があるため、前記の酸性物
質に代えて使用できる。ただし、水溶液のPHを2.7
以下まで低下させるには多量の過酸化水素を加える必要
があり、これに伴う塩素の多量消費を補う上でSDCI
の使用量も非常に多くすることになるから、強酸性水溶
液の調製用として過酸化水素は不適当である。Hydrogen peroxide as the component b is converted to S
By reacting with the chlorine of DCI to generate hydrochloric acid, it has the effect of lowering the pH of the aqueous solution, and thus can be used in place of the acidic substance. However, when the pH of the aqueous solution is 2.7.
It is necessary to add a large amount of hydrogen peroxide to reduce the amount to below, and to compensate for the large consumption of chlorine accompanying this, SDCI
Since the amount of used is also very large, hydrogen peroxide is not suitable for preparing a strongly acidic aqueous solution.
【0022】本発明では、上記a成分のSDCIとb成
分の酸性物質又は過酸化水素とを水に溶解し、既述の残
留塩素量、PH、ORPを満たす弱酸性水溶液又は強酸
性水溶液を調製するが、この水としてイオン交換水等の
精製水ならびに通常の水道水を利用できる。In the present invention, the above-mentioned SDCI of the component a and the acidic substance or the hydrogen peroxide of the component b are dissolved in water to prepare a weakly acidic aqueous solution or a strongly acidic aqueous solution satisfying the above-mentioned residual chlorine content, PH and ORP. However, purified water such as ion-exchanged water and ordinary tap water can be used as the water.
【0023】得られた強酸性及び弱酸性水溶液は、それ
ぞれ従来の電解水生成装置によって製造していた弱酸性
電解水及び強酸性電解水の各々と全く同等の作用及び性
状を有する殺菌消毒液となるから、これら電解水に代え
て様々な殺菌消毒用途に供し得る。その用途としては、
例えば、医療機関,各種厚生施設,厨房,一般家庭等に
おける殺菌消毒用の手洗い水、医療器具や調理器具の洗
浄、ポータブルトイレ,ワゴン,棚,台,流し等の各種
備品ならびに壁や床の清拭、リネン,フキン,エブロ
ン,白衣の如き衣類,スリッパの如き履物類の洗浄等が
挙げられる。更に前記のような一般的な用途の他、弱酸
性及び強酸性の殺菌消毒液共に、歯科における歯形取得
後のアルギン酸塩印象材の殺菌洗浄に用いれば、印象材
の形状変化や表面荒れを殆ど生起することなく患者の口
内より移行した雑菌の殺菌を行え、また人工透析ライン
の洗浄に用いれば、短時間で殺菌と共にラインに付着し
ている炭酸カルシウムの除去を行えるという利点があ
る。The obtained strongly acidic and weakly acidic aqueous solutions are disinfected with sterilizing solutions having the same action and properties as those of the weakly acidic electrolyzed water and the strongly acidic electrolyzed water produced by the conventional electrolyzed water generating apparatus, respectively. Therefore, it can be used for various sterilization and disinfection applications in place of the electrolyzed water. Its uses include:
For example, hand washing water for disinfection in medical institutions, various welfare facilities, kitchens, households, etc., cleaning of medical and cooking utensils, portable toilets, wagons, shelves, shelves, sinks, etc., and cleaning of walls and floors Examples include wiping, washing of clothing such as linen, fukin, eblon, white robe, and footwear such as slippers. Furthermore, in addition to the above-mentioned general uses, if both weakly acidic and strongly acidic disinfectants are used for disinfecting and cleaning the alginate impression material after obtaining the tooth profile in dentistry, the shape change and surface roughness of the impression material are almost eliminated. There is an advantage that sterilization of bacteria transferred from the mouth of the patient can be carried out without occurrence, and if the artificial dialysis line is used for washing, the calcium carbonate adhering to the line can be removed in a short time together with the sterilization.
【0024】しかして、殺菌消毒液は、一般にユーザー
側において前記のa,b両成分をメーカー提供のマニュ
アルに指示された割合で水に溶解して調製するのが普通
であるが、この調製時のa,b両成分の計量と使用比率
の設定の手間を省くために、メーカー側から例えば1,
5,10リットルといった単位液量の殺菌消毒液に対応
する量及び比率のa,b両成分を分包した殺菌消毒剤を
提供し、これをユーザー側で所定量の水に溶かすように
すればよい。In general, a disinfectant solution is prepared by dissolving both components a and b in water at a ratio specified in a manual provided by a manufacturer on the user side. In order to save the trouble of weighing the components a and b, and setting the use ratio, for example,
If a disinfectant is provided in which the components a and b are packaged in an amount and a ratio corresponding to a unit amount of disinfectant such as 5, 10 liters, and the user dissolves it in a predetermined amount of water, Good.
【0025】上記の殺菌消毒剤とする場合、特にa,b
両成分として粉末のものを使用すれば、両成分を予め所
定比率で混合してパック化した粉末混合物形態の製品を
提供でき、その運搬や保管に便利であると共に、ユーザ
ー側での殺菌消毒液の調製もより容易になるという利点
がある。なお、粉末形態として入手できるものは、a成
分のSDCIと、b成分ではクエン酸、リンゴ酸、酒石
酸、マレイン酸、コハク酸、シュウ酸、硫酸水素ナトリ
ウム、スルファミン酸等がある。When the above-mentioned disinfectant is used, in particular, a, b
If both components are powdered, both components can be mixed in a predetermined ratio in advance to provide a product in the form of a powder mixture, which is convenient for transportation and storage, and a disinfectant solution for the user. Has the advantage that the preparation of is also easier. In addition, what can be obtained as a powder form includes SDCI of the component a, and citric acid, malic acid, tartaric acid, maleic acid, succinic acid, oxalic acid, sodium hydrogen sulfate, sulfamic acid and the like for the component b.
【0026】[0026]
【実施例】〔殺菌消毒液の製造例1〕 希釈水としてイオン交換水を用いると共に、酸性物質と
してクエン酸、リンゴ酸、酒石酸、コハク酸、マレイン
酸、シュウ酸、グリコール酸(70%水溶液)、酢酸、
塩酸(1N水溶液)、硫酸(1N水溶液)、硝酸(1N
水溶液)、硫酸水素ナトリウム、スルファミン酸、リン
酸(85%水溶液)、リン酸二水素ナトリウム、ホウ酸
の各々を使用し、各酸性物質をSDCI(有効塩素量の
測定値62.0%)の120mg/リットル濃度の水溶
液に加えて、PH4.5、同5.0、同5.5の弱酸性
水溶液よりなる殺菌消毒液をそれぞれ調製すると共に、
各殺菌消毒液のORPを測定した。各殺菌消毒液の調製
に要した酸性物質の量とORPの測定値を表1に示す。
ただし、ホウ酸はPH低下能が小さ過ぎるため、5g/
リットルの添加量でもPHを5.7以下に低下できず、
目的とする弱酸性電解水に対応した殺菌消毒液の調製用
としては不適であった。なお、各殺菌消毒液の調製直後
の残留塩素量は、いずれも74.4ppmであった。EXAMPLES [Production Example 1 of Disinfectant Solution] Ion-exchanged water is used as dilution water, and citric acid, malic acid, tartaric acid, succinic acid, maleic acid, oxalic acid, and glycolic acid (70% aqueous solution) are used as acidic substances. , Acetic acid,
Hydrochloric acid (1N aqueous solution), sulfuric acid (1N aqueous solution), nitric acid (1N aqueous solution)
Aqueous solution), sodium hydrogen sulfate, sulfamic acid, phosphoric acid (85% aqueous solution), sodium dihydrogen phosphate, and boric acid. Each acidic substance was subjected to SDCI (measured value of available chlorine 62.0%). In addition to an aqueous solution having a concentration of 120 mg / liter, a disinfectant solution consisting of a weakly acidic aqueous solution having a pH of 4.5, 5.0, and 5.5 was prepared.
The ORP of each sterilizing solution was measured. Table 1 shows the amounts of acidic substances required for the preparation of each disinfectant and the measured ORP.
However, since boric acid has too low a pH lowering ability, 5 g /
Even with the addition amount of liter, the pH cannot be reduced to 5.7 or less,
It was not suitable for preparing a disinfectant solution corresponding to the desired weakly acidic electrolyzed water. The amount of residual chlorine immediately after the preparation of each disinfectant was 74.4 ppm.
【0027】〔殺菌消毒液の製造例2〕 希釈水として水道水を用いると共に、酸性物質としてク
エン酸、リンゴ酸、酒石酸、コハク酸、マレイン酸、シ
ュウ酸、グリコール酸(70%水溶液)、塩酸(1N水
溶液)、硫酸(1N水溶液)、硫酸水素ナトリウム、ス
ルファミン酸、リン酸(85%水溶液)の各々を使用
し、各酸性物質をSDCI(有効塩素量の測定値62.
0%)の120mg/リットル濃度の水溶液に加えて、
PH4.5、同5.0、同5.5の弱酸性水溶液よりな
る殺菌消毒液をそれぞれ調製すると共に、各殺菌消毒液
のORPを測定した。その結果を各殺菌消毒液の調製に
要した酸性物質の量と共に表2に示す。なお、各殺菌消
毒液の調製直後の残留塩素量は、いずれも74.4pp
mであった。[Manufacturing Example 2 of Disinfectant Solution] Tap water is used as dilution water, and citric acid, malic acid, tartaric acid, succinic acid, maleic acid, oxalic acid, glycolic acid (70% aqueous solution), hydrochloric acid are used as acidic substances. (1N aqueous solution), sulfuric acid (1N aqueous solution), sodium hydrogen sulfate, sulfamic acid, and phosphoric acid (85% aqueous solution) were used, and each acidic substance was subjected to SDCI (measured value of effective chlorine amount 62.
0%) of a 120 mg / liter aqueous solution,
Disinfecting solutions composed of weakly acidic aqueous solutions of pH 4.5, 5.0 and 5.5 were each prepared, and the ORP of each disinfecting solution was measured. The results are shown in Table 2 together with the amount of acidic substances required for preparing each disinfectant solution. In addition, the residual chlorine amount immediately after the preparation of each disinfectant solution was 74.4 pp.
m.
【0028】[0028]
【表1】 [Table 1]
【0029】[0029]
【表2】 [Table 2]
【0030】表1及び表2の結果から、希釈水として水
道水を使用する場合はイオン交換水使用の場合よりも酸
性物質の必要量がやや増えるが、塩素剤のSDCIとホ
ウ酸以外の各種の酸性物質とから、従来の電解水生成装
置にて得られていた弱酸性電解水に相当するPH4.5
〜5.5、残留塩素量50〜80ppm、ORP+80
0〜1000mVの殺菌消毒液を容易に調製できること
が判る。ただし、リン酸二水素ナトリウムは、上記のP
H及びORPの範囲に調整するに要する添加量が非常に
多くなるという難点があり、このために製造例2では用
いなかった。なお、製造例1で用いた酢酸及び硝酸は、
製造例2での使用を単に省略したが、水道水を希釈水と
する場合でも何ら不都合なく用い得る。From the results shown in Tables 1 and 2, when tap water is used as the dilution water, the required amount of acidic substances is slightly larger than when ion-exchanged water is used. PH4.5 corresponding to the weakly acidic electrolyzed water obtained by the conventional electrolyzed water generator from the acidic substance of
~ 5.5, residual chlorine amount 50 ~ 80ppm, ORP + 80
It turns out that a sterilizing solution of 0 to 1000 mV can be easily prepared. However, sodium dihydrogen phosphate is used in the above P
There is a drawback that the amount of addition required for adjusting to the range of H and ORP is very large, and therefore, it was not used in Production Example 2. The acetic acid and nitric acid used in Production Example 1 were:
Although the use in Production Example 2 is simply omitted, even when tap water is used as dilution water, it can be used without any inconvenience.
【0031】〔殺菌消毒液の経時変化1〕 製造例1に準じ、希釈水としてイオン交換水を用い、S
DCIの120mg/リットル濃度の水溶液に各種酸性
物質をPHが略5近傍となるように加えて弱酸性水溶液
よりなる殺菌消毒液を調製し、各殺菌消毒液の調製直後
(経過時間0)、24時間後、72時間後のPH、OR
P、残留塩素量を測定したところ、表3で示す結果が得
られた。また、同様に製造2に準じ、希釈水として水道
水を用いて調製した各殺菌消毒液の調製直後と24時間
後のPH、ORP、残留塩素量を測定したところ、表4
に示す結果が得られた。[Time-dependent change 1 of disinfectant solution] According to Production Example 1, ion-exchanged water was used as dilution water.
A variety of acidic substances were added to an aqueous solution of DCI at a concentration of 120 mg / liter so that the pH became approximately 5 to prepare a disinfectant solution composed of a weakly acidic aqueous solution. Immediately after the preparation of each disinfectant solution (elapsed time 0), 24 After 72 hours, PH, OR
When the amounts of P and residual chlorine were measured, the results shown in Table 3 were obtained. Similarly, the PH, ORP, and residual chlorine amounts of immediately after and 24 hours after the preparation of each disinfectant prepared using tap water as the dilution water in accordance with Production 2 were measured.
The result shown in FIG.
【0032】[0032]
【表3】 [Table 3]
【0033】[0033]
【表4】 [Table 4]
【0034】表3の結果から、本発明方法により、希釈
水としてイオン交換水、塩素剤にSDCIを用い、各種
の酸性物質にて略PH5に調製した弱酸性の殺菌消毒液
は、調製後の72時間経過後でも従来の電解水生成装置
にて得られていた弱酸性電解水に相当するPH4.5〜
5.5、残留塩素量50〜80ppm、ORP+800
〜1000mVの範囲を維持し、保存性に優れることが
明らかである。また表4の結果から、同様方法におい
て、希釈水として水道水を用いて略PH5に調製した弱
酸性の殺菌消毒液は、酸性物質にシュウ酸を用いた場合
にPHがやや規定より高くなる傾向があるものの、殆ど
が調製後の24時間後でも電解水生成装置による弱酸性
電解水と同等のPH、残留塩素量、ORPを示す殺菌消
毒液として支障なく用い得ることが判る。From the results shown in Table 3, according to the method of the present invention, a weakly acidic sterilizing and disinfecting solution prepared by using the ion exchange water as the dilution water and SDCI as the chlorinating agent to approximately PH5 with various acidic substances was obtained. Even after 72 hours, a pH of 4.5 to 4.5 corresponding to the weakly acidic electrolyzed water obtained by the conventional electrolyzed water generator.
5.5, residual chlorine amount 50-80 ppm, ORP + 800
It is clear that the range of 10001000 mV is maintained and the storage stability is excellent. Also, from the results in Table 4, in the same manner, the weakly acidic disinfectant prepared at approximately PH5 using tap water as the dilution water tends to have a slightly higher PH when oxalic acid is used as the acidic substance. However, it can be seen that most of them can be used without any trouble as a disinfectant solution showing the same pH, residual chlorine amount and ORP as weakly acidic electrolyzed water by an electrolyzed water generator even 24 hours after preparation.
【0035】〔殺菌消毒液の製造例3〕 希釈水としてイオン交換水を用いると共に、酸性物質と
してクエン酸、リンゴ酸、酒石酸、コハク酸、マレイン
酸、シュウ酸、グリコール酸(70%水溶液)、酢酸、
塩酸(1N水溶液)、硫酸(1N水溶液)、硝酸(1N
水溶液)、硫酸水素ナトリウム、スルファミン酸、リン
酸(85%水溶液)の各々を使用し、各酸性物質をSD
CI(有効塩素量の測定値62.0%)の60mg/リ
ットル濃度の水溶液に加えて、PH2.7と同2.65
の強酸性水溶液よりなる殺菌消毒液をそれぞれ調製する
と共に、各殺菌消毒液のORPを測定した。その結果を
各殺菌消毒液の調製に要した酸性物質の量と共に表5に
示す。なお、各殺菌消毒液の調製直後の残留塩素量は、
いずれも37.2ppmであった。[Manufacturing Example 3 of Disinfectant Solution] Using ion-exchanged water as dilution water, citric acid, malic acid, tartaric acid, succinic acid, maleic acid, oxalic acid, glycolic acid (70% aqueous solution) Acetic acid,
Hydrochloric acid (1N aqueous solution), sulfuric acid (1N aqueous solution), nitric acid (1N aqueous solution)
Aqueous solution), sodium hydrogen sulfate, sulfamic acid, and phosphoric acid (85% aqueous solution).
In addition to a 60 mg / liter aqueous solution of CI (measured value of available chlorine 62.0%), pH 2.7 and 2.65
Was prepared, and the ORP of each sterilizing solution was measured. The results are shown in Table 5 together with the amount of acidic substances required for preparing each disinfectant solution. In addition, the residual chlorine amount immediately after the preparation of each disinfectant solution,
All were 37.2 ppm.
【0036】〔殺菌消毒液の製造例4〕 希釈水として水道水を用いると共に、酸性物質としてク
エン酸、リンゴ酸、酒石酸、コハク酸、マレイン酸、シ
ュウ酸、グリコール酸(70%水溶液)、塩酸(1N水
溶液)、硫酸(1N水溶液)、硫酸水素ナトリウム、ス
ルファミン酸、リン酸(85%水溶液)の各々を使用
し、各酸性物質をSDCI(有効塩素量の測定値62.
0%)の60mg/リットル濃度の水溶液に加えて、P
H2.7と同2.65の強酸性水溶液よりなる殺菌消毒
液をそれぞれ調製すると共に、各殺菌消毒液のORPを
測定した。その結果を各殺菌消毒液の調製に要した酸性
物質の量と共に表5に示す。なお、各殺菌消毒液の調製
直後の残留塩素量は、いずれも37.2ppmであっ
た。[Manufacture Example 4 of Disinfectant Solution] Tap water was used as dilution water, and citric acid, malic acid, tartaric acid, succinic acid, maleic acid, oxalic acid, glycolic acid (70% aqueous solution), hydrochloric acid were used as acidic substances. (1N aqueous solution), sulfuric acid (1N aqueous solution), sodium hydrogen sulfate, sulfamic acid, and phosphoric acid (85% aqueous solution) were used, and each acidic substance was subjected to SDCI (measured value of effective chlorine amount 62.
0%) at a concentration of 60 mg / liter,
Disinfecting solutions composed of a strongly acidic aqueous solution of H2.7 and 2.65 were each prepared, and the ORP of each disinfecting solution was measured. The results are shown in Table 5 together with the amount of acidic substances required for preparing each disinfectant solution. The amount of residual chlorine immediately after the preparation of each disinfectant was 37.2 ppm.
【0037】[0037]
【表5】 [Table 5]
【0038】表5の結果から、希釈水として安価な水道
水を使用する場合は緩衝性の小さいイオン交換水使用の
場合よりも酸性物質の必要量がやや増えるが、塩素剤と
してSDCI、酸性物質としてマレイン酸、コハク酸、
酢酸、塩酸、硫酸、硝酸、リン酸、硫酸水素ナトリウム
を用いることにより、従来の電解水生成装置にて得られ
ていた強酸性電解水に相当するPH2.7以下、残留塩
素量30〜40ppm、ORP+1100mV以上の殺
菌消毒液を容易に調製できることが判る。しかるに、酸
性物質としてクエン酸、リンゴ酸、酒石酸、シュウ酸、
グリコール酸、スルファミン酸を用いたものは、ORP
が+1100mVを下回るため、強酸性電解水に代替で
きない。また酸性物質が酢酸であると、上記強酸性のP
H域に設定する上で使用量を非常に多くする必要があ
る。なお、製造例3で用いた酢酸及び硝酸は、製造例4
での使用を単に省略したが、水道水を希釈水とする場合
でも何ら不都合なく用い得る。From the results shown in Table 5, when inexpensive tap water is used as the dilution water, the required amount of the acidic substance is slightly increased as compared with the case of using ion-exchanged water having a small buffering property. As maleic acid, succinic acid,
By using acetic acid, hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, and sodium hydrogen sulfate, a pH of 2.7 or less corresponding to strongly acidic electrolyzed water obtained by a conventional electrolyzed water generator, a residual chlorine amount of 30 to 40 ppm, It turns out that a disinfectant solution of ORP + 1100 mV or more can be easily prepared. However, citric acid, malic acid, tartaric acid, oxalic acid,
ORP using glycolic acid or sulfamic acid
Is below +1100 mV, so that it cannot be replaced with strongly acidic electrolyzed water. When the acidic substance is acetic acid, the strongly acidic P
In setting the H range, it is necessary to use a very large amount. Acetic acid and nitric acid used in Production Example 3 were used in Production Example 4
Is simply omitted, but even if tap water is used as dilution water, it can be used without any inconvenience.
【0039】〔殺菌消毒液の経時変化2〕 製造例3に準じ、希釈水としてイオン交換水を用い、S
DCIの60mg/リットル濃度の水溶液に各種酸性物
質をPHが2.6〜2.7程度となるように加えて強酸
性水溶液よりなる殺菌消毒液を調製し、各殺菌消毒液の
調製直後(経過時間0)と24時間後のPH、ORP、
残留塩素量を測定した。また、同様に製造4に準じ、希
釈水として水道水を用いて調製した強酸性の各殺菌消毒
液の調製直後と24時間後のPH、ORP、残留塩素量
を測定した。これらの結果を表6に示す。[Time-dependent change 2 of disinfectant solution] According to Production Example 3, ion-exchanged water was used as dilution water.
Various acidic substances were added to an aqueous solution of DCI at a concentration of 60 mg / liter so that the pH became about 2.6 to 2.7 to prepare a disinfectant solution composed of a strongly acidic aqueous solution, and immediately after the preparation of each disinfectant solution Time 0) and 24 hours later, PH, ORP,
The amount of residual chlorine was measured. Similarly, in accordance with Production 4, PH, ORP, and residual chlorine amounts were measured immediately after and 24 hours after the preparation of each strongly acidic sterilizing disinfectant prepared using tap water as dilution water. Table 6 shows the results.
【0040】[0040]
【表6】 [Table 6]
【0041】表6の結果から、本発明方法により、希釈
水としてイオン交換水又は水道水、塩素剤にSDCIを
用い、各種の酸性物質にてPHを2.6〜2.7程度に
調製した強酸性の殺菌消毒液は、特に酸性物質が酢酸、
塩酸、硫酸、硝酸、リン酸、硫酸水素ナトリウムである
場合、調製後の24時間経過後でも従来の電解水生成装
置にて得られていた強酸性電解水と同等のPH、残留塩
素量、ORPを示すものとして支障なく用い得ることが
判る。しかるに、酸性物質としてコハク酸、マレイン
酸、リン酸を用いた強酸性水溶液は、残留塩素量の経時
的低下が大きいため、調整後にあまり時間を置かずに使
用するのが望ましいと言える。なお、表6では参考とし
て酸性物質にグリコール酸及びスルファミン酸を用いた
場合の経時変化も示しているが、これらは調製した水溶
液のORPが+1100mvを下回るので強酸性電解水
の代替としては不適である。From the results shown in Table 6, according to the method of the present invention, PH was adjusted to about 2.6 to 2.7 with various acidic substances using ion-exchanged water or tap water as a dilution water, SDCI as a chlorinating agent. Strongly acidic disinfectants are especially acidic substances, acetic acid,
In the case of hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, and sodium hydrogen sulfate, even after 24 hours from the preparation, the pH, the residual chlorine amount, and the ORP are the same as those of the strongly acidic electrolyzed water obtained by the conventional electrolyzed water generator. It can be seen that it can be used without any trouble. However, a strongly acidic aqueous solution using succinic acid, maleic acid, or phosphoric acid as an acidic substance can be said to be desirably used with little time after adjustment because the amount of residual chlorine is greatly reduced with time. Table 6 also shows the change with time when glycolic acid and sulfamic acid are used as the acidic substances for reference. However, these are not suitable as a substitute for strongly acidic electrolyzed water since the ORP of the prepared aqueous solution is lower than +1100 mv. is there.
【0042】〔殺菌消毒液の製造例5〕 希釈水としてイオン交換水を用いると共に、酸性物質と
して酒石酸と塩酸(1N水溶液)の各々を使用し、これ
ら酸性物質を次亜塩素酸ナトリウム(有効塩素量12
%)の600mg/リットル濃度の水溶液に加えて、P
H5.5、PH5.0、PH4.5の弱酸性水溶液より
なる殺菌消毒液をそれぞれ調製した。[Preparation Example 5 of Disinfectant Solution] In addition to using ion-exchanged water as dilution water, tartaric acid and hydrochloric acid (1N aqueous solution) were used as acidic substances, and these acidic substances were treated with sodium hypochlorite (effective chlorine). Quantity 12
%) Of a 600 mg / liter aqueous solution, and P
Disinfectants were prepared from weakly acidic aqueous solutions of H5.5, PH5.0, and PH4.5, respectively.
【0043】〔殺菌消毒液の製造例6〕 希釈水としてイオン交換水を用いると共に、酸性物質と
してリンゴ酸と塩酸(1N水溶液)の各々を使用し、こ
れら酸性物質を高度サラシ粉(南海化学工業社製、有効
塩素量実測値63.8%)の114mg/リットル濃度
の水溶液に加えて、PHが5.5、5.0、4.5の弱
酸性水溶液よりなる殺菌消毒液をそれぞれ調製した。[Production Example 6 of Disinfectant Solution] Ion-exchanged water was used as dilution water, and malic acid and hydrochloric acid (1N aqueous solution) were used as acidic substances. In addition to a 114 mg / liter aqueous solution (manufactured by Co., Ltd., actual measured amount of chlorine: 63.8%), a sterilizing disinfectant solution containing a weakly acidic aqueous solution having a pH of 5.5, 5.0, or 4.5 was prepared. .
【0044】〔殺菌消毒液の製造例7〕 希釈水としてイオン交換水を用いると共に、酸性物質と
してクエン酸と塩酸(1N水溶液)の各々を使用し、こ
れら酸性物質をクロラミンT(有効塩素量25%)の2
88mg/リットル濃度の水溶液に加えて、PHが5.
5、5.0、4.5の弱酸性水溶液よりなる殺菌消毒液
をそれぞれ調製した。[Manufacturing Example 7 of Disinfectant Solution] In addition to using ion-exchanged water as dilution water, citric acid and hydrochloric acid (1N aqueous solution) were used as acidic substances, and these acidic substances were treated with chloramine T (effective chlorine amount 25%). %) 2
In addition to the 88 mg / liter aqueous solution, the pH was 5.
Disinfectants containing 5, 5.0, and 4.5 weakly acidic aqueous solutions were prepared.
【0045】上記の製造例5〜7で得られた各殺菌消毒
液の調製直後の残留塩素量とORPを測定した。その結
果を各殺菌消毒液の調製に要した酸性物質の量(塩酸で
は液量)と共に表7に示す。The amount of residual chlorine and ORP immediately after preparation of each of the disinfecting solutions obtained in Production Examples 5 to 7 were measured. The results are shown in Table 7 together with the amount of acidic substance (the amount of hydrochloric acid) required for the preparation of each disinfectant solution.
【0046】[0046]
【表7】 [Table 7]
【0047】表7の結果から、塩素剤として次亜塩素酸
ナトリウム、高度サラシ粉、クロラミンTのいずれを用
いても、従来の電解水生成装置にて得られていた弱酸性
電解水に相当するPH4.5〜5.5、残留塩素量50
〜80ppm、ORP+800〜1000mVの殺菌消
毒液を容易に調製できることが判る。ただし、これらの
殺菌消毒液の調製においては、塩素剤としてSDCIを
使用した場合に比較して酸性物質の使用量は多くなって
いる。またクロラミンTを使用した殺菌消毒液では、S
DCIを使用した場合に比較してORPは低い値になっ
ている。From the results in Table 7, it can be seen that the use of any of sodium hypochlorite, high-grade powder and chloramine T as the chlorinating agent corresponds to the weakly acidic electrolyzed water obtained by the conventional electrolyzed water generator. PH 4.5-5.5, residual chlorine amount 50
It can be seen that a germicidal disinfectant of 〜80 ppm, ORP + 800-1000 mV can be easily prepared. However, in the preparation of these germicidal disinfectants, the amount of the acidic substance used is larger than when SDCI is used as the chlorine agent. In the case of a germicidal disinfectant using chloramine T, S
The ORP has a lower value as compared with the case where DCI is used.
【0048】〔殺菌消毒液の経時変化3〕 製造例5〜7に準じ、希釈水としてイオン交換水、塩素
剤として次亜塩素酸ナトリウム、高度サラシ粉、クロラ
ミンT、酸性物質としてクエン酸と塩酸(1N水溶液)
の各々を使用し、塩素剤水溶液に各酸性物質をPHが
5.0程度となるように加えて弱酸性水溶液よりなる殺
菌消毒液を調製した。また塩素剤として次亜塩素酸ナト
リウムと高度サラシ粉、酸性物質として塩酸(1N水溶
液)の各々を使用し、塩素剤水溶液の濃度を製造例5,
6の略1/2としてPHが2.65の強酸性水溶液より
なる殺菌消毒液を調製した。そして、これら各殺菌消毒
液の調製直後(経過時間0)と24時間後のPH、OR
P、残留塩素量を測定した。これらの結果を表8に示
す。[Time-dependent change 3 of disinfectant solution] According to Production Examples 5 to 7, ion-exchanged water as diluting water, sodium hypochlorite, high-grade salami powder, chloramine T, citric acid and hydrochloric acid as acidic substances (1N aqueous solution)
Were used, and each acidic substance was added to the aqueous chlorinating agent solution so that the pH became about 5.0 to prepare a disinfecting and disinfecting solution comprising a weakly acidic aqueous solution. Further, using sodium hypochlorite and high-grade salad powder as the chlorine agent and hydrochloric acid (1N aqueous solution) as the acidic substance, the concentration of the aqueous solution of the chlorine agent was measured.
A germicidal disinfectant solution consisting of a strongly acidic aqueous solution having a pH of 2.65 as approximately 1/2 of 6 was prepared. Then, PH, OR immediately after preparation (elapsed time 0) and 24 hours after the preparation of each of these disinfectants.
P and the amount of residual chlorine were measured. Table 8 shows the results.
【0049】[0049]
【表8】 [Table 8]
【0050】表8の結果から、塩素剤として次亜塩素酸
ナトリウム、高度サラシ粉、クロラミンTを各々用いて
調製した弱酸性の殺菌消毒液は、調製後の24時間経過
時点でも、従来の電解水生成装置にて得られる弱酸性電
解水に相当するPH、残留塩素量、ORPを示す殺菌消
毒液を維持していることが判る。また、塩素剤として次
亜塩素酸ナトリウムと高度サラシ粉を各々用いて調製し
た強酸性の殺菌消毒液でも、調製後の24時間経過時点
において、塩素剤が高度サラシ粉の場合に僅かに残留塩
素量が低くなるが、従来の電解水生成装置にて得られる
強酸性電解水と略同等の性状を維持することが判る。な
お、塩素剤がクロラミンTであるPH2.7以下の強酸
性の殺菌消毒液は、酸性物質として塩酸を用いて調製し
たが、ORPが+1100mvを下回り、また沈澱物の
生成も認められるため、強酸性電解水の代替用としては
不適であった。From the results shown in Table 8, it can be seen that the weakly acidic disinfectant prepared using sodium hypochlorite, high-grade salad powder and chloramine T as the chlorinating agent was the same as the conventional electrolytic solution even after 24 hours from the preparation. It can be seen that a disinfectant solution showing PH, residual chlorine amount, and ORP corresponding to the weakly acidic electrolyzed water obtained by the water generator is maintained. In addition, even with a strongly acidic disinfecting solution prepared using sodium hypochlorite and high-grade salad powder as the chlorine agent, a slight residual chlorine was obtained when the chlorine agent was high-grade salad powder after 24 hours from the preparation. Although the amount is low, it can be seen that properties substantially equivalent to the strongly acidic electrolyzed water obtained by the conventional electrolyzed water generator are maintained. The strongly acidic disinfectant solution having a pH of 2.7 or less, in which the chlorinating agent is chloramine T, was prepared using hydrochloric acid as an acidic substance. However, since the ORP was below +1100 mv and the formation of precipitates was observed, the strong acid was used. It was not suitable as a substitute for electrolyzed water.
【0051】〔殺菌消毒液の製造例8〕 後記表9に示すように、各種濃度のSDCI水溶液に過
酸化水素をSDCI/H2 O2 の分子比が8/1、8/
2、8/3のいずれかの割合で添加し、弱酸性水溶液か
らなる各殺菌消毒液を調製した。これら殺菌消毒液のP
H、ORP、残留塩素量を測定すると共に、140mg
/l濃度のSDCI水溶液に過酸化水素を分子比8/2
で添加して得た殺菌消毒液について、調製後の24時間
及び72時間経過時点での経時変化を調べたところ、表
9に示す結果が得られた。[Manufacturing Example 8 of Disinfectant Solution] As shown in Table 9 below, hydrogen peroxide was added to aqueous solutions of SDCI of various concentrations at a SDCI / H 2 O 2 molecular ratio of 8/1, 8 /
Each was added at a ratio of 2, 8/3 to prepare each disinfectant solution comprising a weakly acidic aqueous solution. P of these disinfectants
Measure H, ORP, residual chlorine and 140mg
/ L concentration of SD2 aqueous solution with hydrogen peroxide at a molecular ratio of 8/2
Of the disinfecting solution obtained by adding the above at 24 hours and 72 hours after preparation, the results shown in Table 9 were obtained.
【0052】[0052]
【表9】 [Table 9]
【0053】表9の結果から過酸化水素の添加によって
PHが低下することが判るが、これはSDCIの1分子
の持つ塩素を過酸化水素の1分子が消費し、これに伴っ
て塩酸が生成するものと考えられる。しかして、弱酸性
電解水に相当するPH4.5〜5.5、残留塩素量50
〜80ppm、ORP+800〜1000mVの弱酸性
水溶液とし、且つ過酸化水素によるSDCIの消費を少
なく抑える上で、SDCI/H2 O2 の分子比は4/1
近辺が好適である。なお、表9に示す経時変化から、こ
の過酸化水素にてPH調整して得られる弱酸性の殺菌消
毒液においても、その調製後の72時間経過時点でも従
来の電解水生成装置にて得られる弱酸性電解水に相当す
る性状を維持し、優れた保存安定性を具備することが判
る。From the results shown in Table 9, it can be seen that the pH is lowered by the addition of hydrogen peroxide. This is because one molecule of hydrogen peroxide consumes the chlorine contained in one molecule of SDCI, and hydrochloric acid is generated accordingly. It is thought to be. Thus, PH 4.5 to 5.5 corresponding to weakly acidic electrolyzed water, residual chlorine amount 50
The molecular ratio of SDCI / H 2 O 2 is 4/1 in order to make a weakly acidic aqueous solution of 8080 ppm, ORP + 800-1000 mV, and to reduce the consumption of SDCI by hydrogen peroxide.
Near is preferred. In addition, from the time-dependent change shown in Table 9, even a weakly acidic disinfectant obtained by adjusting the pH with hydrogen peroxide can be obtained with a conventional electrolyzed water generator even after 72 hours from its preparation. It can be seen that properties equivalent to the weakly acidic electrolyzed water are maintained, and excellent storage stability is provided.
【0054】〔殺菌消毒試験1〕 製造例1で調製したPH5.0の殺菌消毒液(表1参
照、酸性物質がホウ酸であるものを除く15種)、製造
例3でイオン交換水を用いて調製したPH2.65、O
RP+1100mv以上の殺菌消毒液(表5参照…8
種)、製造例5〜7で調製したPH5.0の殺菌消毒液
(表7参照…6種)、殺菌消毒液の経時変化3の項で用
いたPH2.65の殺菌消毒液(表8参照…2種)、製
造例8において140mg/l濃度のSDCI水溶液に
過酸化水素を分子比8/2で添加して得た殺菌消毒液
(表9参照…1種)、の各々について10mlずつ3本
の試験管に採取し、大腸菌、黄色ブドウ球菌、緑膿菌の
各菌液1ml(菌数約106 個/ml)をそれぞれ1本
の試験管に添加して1分間震盪後、その50μlを採取
してシャーレの培地の全面に塗布し、37℃で24時間
の培養を行った。そして、これら培地の表面を観察した
ところ、いずれもコロニーの発生が認められなかった。
なお、培地には防腐剤不活性化生菌数測定用SCDLP
寒天培地「ダイゴ」を用いた。[Sterilization / Disinfection Test 1] A germicidal / sterilization solution of pH 5.0 prepared in Production Example 1 (see Table 1, 15 kinds excluding those in which the acidic substance is boric acid), and ion exchange water was used in Production Example 3. PH 2.65, O prepared
RP + 1100 mv or more disinfectant (see Table 5 ... 8)
Seeds), a disinfectant of pH 5.0 prepared in Production Examples 5 to 7 (see Table 7 ... 6 types), and a disinfectant of PH 2.65 used in the section of time-dependent change 3 of disinfectants (see Table 8) ... 2 types), and a sterilization disinfectant solution (see Table 9 ... 1 type) obtained by adding hydrogen peroxide to a 140 mg / l aqueous solution of SDCI at a molecular ratio of 8/2 in Production Example 8; 1 ml of each of Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa bacteria (approximately 10 6 cells / ml) was added to each test tube, and shaked for 1 minute. Was collected and applied to the entire surface of a Petri dish medium, and cultured at 37 ° C. for 24 hours. Observation of the surfaces of these media revealed that no colonies were generated.
In addition, SCDLP for preservative-inactivated viable cell count measurement was used in the medium.
An agar medium "Daigo" was used.
【0055】〔殺菌消毒試験2〕 製造例1で調製したPH5.0の殺菌消毒液(表1参
照、酸性物質がホウ酸であるものを除く15種)を各々
病室の床面に20cmの高さから噴霧し、5分後に一般
生菌用フードスタンプで各噴霧面の中心部をスタンプ
し、37℃にて2日間の培養を行った。その結果、殺菌
消毒液を噴霧しなかった床面を同様にスタンプしたもの
ではコロニーが形成されたが、噴霧した床面のスタンプ
はいずれもコロニーの発生は認められなかった。[Disinfection test 2] The disinfection solution of pH 5.0 prepared in Production Example 1 (see Table 1, 15 kinds excluding those in which the acidic substance is boric acid) was applied to the floor of the hospital room by a height of 20 cm. After 5 minutes, the center of each sprayed surface was stamped with a food stamp for general bacteria, and cultivation was performed at 37 ° C. for 2 days. As a result, colonies were formed on the floor surface which was not sprayed with the disinfectant solution in the same manner, but colonies were not found on any of the stamped floor surfaces.
【0056】〔歯科印象材に対する影響試験〕 製造例1で120mg/l濃度のSDCI水溶液にクエ
ン酸、コハク酸、りん酸二水素ナトリウムを各々加えて
調製したPH5.0の3種の殺菌消毒液、製造例3で6
0mg/l濃度のSDCI水溶液にマレイン酸、グリコ
ール酸、硫酸水素ナトリウムを各々加えると共に希釈水
として水道水を用いて調製したPH2.65の3種の殺
菌消毒液、製造例8において140mg/l濃度のSD
CI水溶液に過酸化水素を分子比8/2で添加して得た
殺菌消毒液を用い、各液中にそれぞれ、歯科において患
者の歯型を得るために使用されるアルギン酸塩印象材
(直径25mm、高さ10mmのペレット)を30分間
浸漬したのち、その直径の変化を測定した。また上記浸
漬後のアルギン酸塩印象材を石膏印象に転写し、40分
後にアルギン酸塩印象材を除去して石膏表面の状態を調
べた。その結果を、殺菌消毒液に代えて水道水に浸漬し
た結果と共に表10に示す。[Effect Test on Dental Impression Material] Three kinds of disinfectants of PH 5.0 prepared by adding citric acid, succinic acid and sodium dihydrogen phosphate to the aqueous solution of 120 mg / l SDCI in Production Example 1 respectively. In Production Example 3, 6
Maleic acid, glycolic acid and sodium bisulfate were added to a 0 mg / l SDCI aqueous solution, and three kinds of disinfecting solutions of PH 2.65 prepared using tap water as dilution water, and 140 mg / l concentration in Production Example 8 SD
Using a disinfectant solution obtained by adding hydrogen peroxide to a CI aqueous solution at a molecular ratio of 8/2, an alginate impression material (diameter 25 mm) used for obtaining a patient's tooth shape in dentistry was used in each solution. , 10 mm in height) was immersed for 30 minutes, and the change in diameter was measured. The alginate impression material after the immersion was transferred to a gypsum impression, and after 40 minutes, the alginate impression material was removed and the state of the gypsum surface was examined. The results are shown in Table 10 together with the results of immersion in tap water instead of the sterilizing solution.
【0057】[0057]
【表10】 [Table 10]
【0058】表10の結果から、本発明方法による殺菌
消毒液は、いずれもアルギン酸塩印象材の浸漬による形
状変化が少なく、また酸性物質にりん酸二水素ナトリウ
ムを用いたものを除いて石膏表面の荒れがないため、歯
形印象を採得後の歯科印象材の殺菌に好適に用い得るこ
とが判る。From the results in Table 10, it can be seen that the disinfectants and disinfectants according to the method of the present invention show little change in shape due to the immersion of the alginate impression material, and the gypsum surface except for those using sodium dihydrogen phosphate as the acidic substance. Since there is no roughness, it can be seen that the tooth impression can be suitably used for sterilization of the dental impression material after obtaining the impression.
【0059】 〔人工透析ラインの消毒洗浄への適用性試験〕 製造例1で120mg/l濃度のSDCI水溶液にクエ
ン酸を加えて調製したPH5.0の殺菌消毒液、製造例
8において140mg/l濃度のSDCI水溶液に過酸
化水素を分子比8/2で添加して得た殺菌消毒液、SD
CI単独の130mg/l濃度の水溶液、をそれぞれ消
毒洗浄試験液として用い、ステンレス鋼板上に透析液を
10μl、25μl、50μlの各液量で滴下して24
時間の自然乾燥を行った試料を所要数だけ用意し、これ
ら試料をそれぞれ上記の各試験液に浸漬し、30分毎に
引き上げてOCPC法(オルトクレゾールフタレインコ
ンプレキソン法)にて板上にカルシウムが残留している
か否かを判定することにより、カルシウムの除去に要す
る浸漬時間(30分単位)を調べた。その結果を表11
に示す。[Applicability test for disinfection washing of artificial dialysis line] A sterilization disinfectant solution of PH 5.0 prepared by adding citric acid to a 120 mg / l SDCI aqueous solution in Production Example 1, 140 mg / L in Production Example 8 Disinfectant obtained by adding hydrogen peroxide to a concentrated aqueous solution of SDCI at a molecular ratio of 8/2, SD
Using a 130 mg / l aqueous solution of CI alone as a disinfecting and washing test solution, dialysate was dropped on a stainless steel plate at a volume of 10 μl, 25 μl, and 50 μl, respectively.
A required number of samples that have been air-dried for a certain time are prepared, and these samples are immersed in each of the above test solutions, pulled up every 30 minutes, and placed on a plate by the OCPC method (orthocresol phthalein complexone method). By determining whether or not calcium remained, the immersion time (in units of 30 minutes) required for removing calcium was examined. Table 11 shows the results.
Shown in
【0060】[0060]
【表11】 [Table 11]
【0061】表11の結果から、本発明方法にて塩素剤
としてSDCIを用いて得られる弱酸性の殺菌消毒液
は、透析液より析出した炭酸カルシウムを除去でき、人
工透析ラインの消毒洗浄用として好適に使用できること
が判る。なお、強酸性の殺菌消毒液についても同様の人
工透析ラインの消毒洗浄への適用性試験を行った結果、
カルシウムの除去性は弱酸性の場合よりも高く、30分
以内に完全辞除去できた。しかして、このように人工透
析ラインの消毒洗浄に供する場合、予め殺菌消毒液の1
5〜50倍程度の濃縮液を調製し、これを消毒洗浄に際
して所要濃度に希釈して用いるようにすればよい。From the results shown in Table 11, the weakly acidic disinfectant obtained by using the SDCI as the chlorinating agent in the method of the present invention can remove calcium carbonate precipitated from the dialysate, and is used for disinfection and cleaning of the artificial dialysis line. It turns out that it can be used conveniently. In addition, as a result of conducting a similar applicability test for disinfection and cleaning of the artificial dialysis line for a strongly acidic disinfectant solution,
Calcium removal was higher than in the case of weak acid, and complete removal was possible within 30 minutes. Therefore, when the artificial dialysis line is to be used for disinfecting and cleaning as described above, one of the sterilizing and disinfecting solutions must be prepared in advance.
A concentrated solution having a concentration of about 5 to 50 times may be prepared, and may be diluted to a required concentration for disinfecting and washing.
【0062】[0062]
【発明の効果】請求項1の発明によれば、従来の食塩水
の電気分解によって生成させていた酸性電解水と同等の
性能及び性状を有し、特に特に残留塩素の安定性に優れ
た有用性の高い殺菌消毒液を、電解水生成装置の如き高
価な機器を用いることなく容易に且つ安価に得ることが
できる。According to the first aspect of the present invention, it has the same performance and properties as the acidic electrolyzed water generated by the conventional electrolysis of salt water, and is particularly useful especially in the stability of residual chlorine. It is possible to easily and inexpensively obtain a highly disinfectant solution without using expensive equipment such as an electrolyzed water generator.
【0063】請求項2の発明によれば、上記の殺菌消毒
液として、従来の食塩水の電気分解によって生成させて
いた弱酸性電解水に相当するものを調製できる。According to the second aspect of the present invention, it is possible to prepare, as the above-mentioned germicidal disinfecting solution, a solution corresponding to weakly acidic electrolyzed water generated by conventional electrolysis of saline.
【0064】請求項3の発明によれば、上記の殺菌消毒
液として、従来の食塩水の電気分解による弱酸性電解水
に相当するものを確実に且つ容易に調製できる。According to the third aspect of the present invention, the above-mentioned disinfectant can be reliably and easily prepared as a solution corresponding to a weakly acidic electrolyzed water obtained by electrolysis of a conventional saline solution.
【0065】請求項4の発明によれば、上記の殺菌消毒
液として、従来の食塩水の電気分解によって生成させて
いた強酸性電解水に相当するものを調製できる。According to the fourth aspect of the present invention, it is possible to prepare, as the above-mentioned germicidal disinfecting solution, a solution corresponding to strongly acidic electrolyzed water generated by conventional electrolysis of saline.
【0066】請求項5の発明によれば、上記の殺菌消毒
液として、従来の食塩水の電気分解による強酸性電解水
に相当するものを確実に且つ容易に調製できる。According to the fifth aspect of the present invention, the above-mentioned sterilizing and disinfecting solution can be reliably and easily prepared as a solution corresponding to conventional strongly acidic electrolyzed water obtained by electrolysis of a saline solution.
【図1】 微生物の生活圏を示す酸化還元電位とPHの
相関図。FIG. 1 is a correlation diagram of redox potential and PH showing a living sphere of a microorganism.
【図2】 水中での有効塩素の形態変化を示す有効塩素
存在比率とPHの相関図。FIG. 2 is a correlation diagram between effective chlorine abundance ratio and PH showing a change in the form of available chlorine in water.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平8−168774(JP,A) 特開 平2−131409(JP,A) 特開 昭63−267708(JP,A) 特開 昭53−148844(JP,A) 特開 昭52−123399(JP,A) 特開 昭61−165309(JP,A) 特開 昭54−140718(JP,A) 特表 昭61−501495(JP,A) (58)調査した分野(Int.Cl.7,DB名) A01N 59/08 A01N 25/00 101 A61L 2/18 A01N 41/06 A01N 43/64 105 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-8-168774 (JP, A) JP-A-2-131409 (JP, A) JP-A-63-267708 (JP, A) JP-A-53-167 148844 (JP, A) JP-A-52-123399 (JP, A) JP-A-61-165309 (JP, A) JP-A-54-140718 (JP, A) JP-T-61-501495 (JP, A) (58) Field surveyed (Int.Cl. 7 , DB name) A01N 59/08 A01N 25/00 101 A61L 2/18 A01N 41/06 A01N 43/64 105
Claims (5)
ナトリウムと、b)酸性物質又は過酸化水素とを溶解す
ることにより、PH5.5以下、残留塩素量30ppm
以上、酸化還元電位+800mV以上の酸性水溶液を調
製することを特徴とする殺菌消毒液の製造方法。To 1. A water, a) and dichloro isocyanuric acid <br/> sodium, b) by dissolving the acidic material or hydrogen peroxide, pH 5.5 or less, residual chlorine content 30ppm
As described above, a method for producing a disinfecting and disinfecting solution, comprising preparing an acidic aqueous solution having an oxidation-reduction potential of +800 mV or more.
留塩素量50〜80ppm、酸化還元電位+800〜1
000mVに調製する請求項1記載の殺菌消毒液の製造
方法。2. An acidic aqueous solution having a pH of 4.5 to 5.5 and a residual pH of 5.5.
Distilled chlorine amount 50-80 ppm, oxidation-reduction potential + 800-1
Method for producing a disinfectant according to claim 1, wherein you prepared 000MV.
酒石酸、マレイン酸、コハク酸、シュウ酸、グリコール
酸、酢酸、塩酸、硫酸、硝酸、硫酸水素ナトリウム、ス
ルファミン酸、リン酸より選ばれる少なくとも一種の酸
性物質、もしくは過酸化水素である請求項2記載の殺菌
消毒液の製造方法。3. The method according to claim 1, wherein the component (b) is citric acid, malic acid,
Tartaric acid, maleic acid, succinic acid, oxalic acid, glycol
Acid, acetic acid, hydrochloric acid, sulfuric acid, nitric acid, sodium hydrogen sulfate,
At least one acid selected from rufamic acid and phosphoric acid
3. The method for producing a disinfectant / disinfectant according to claim 2 , wherein the disinfectant is hydrogen peroxide .
素量30〜40ppm、酸化還元電位+1100mV以
上に調製する請求項1記載の殺菌消毒液の製造方法。4. An acidic aqueous solution having a pH of 2.7 or less and a residual salt
Elemental amount 30-40ppm, redox potential + 1100mV or less
Method for producing a disinfectant according to claim 1, wherein you prepared above.
酸、酢酸、塩酸、硫酸、硝酸、リン酸、硫酸水素ナトリ
ウムより選ばれる少なくとも一種の酸性物質である請求
項4記載の殺菌消毒液の製造方法。 5. The method according to claim 1, wherein the component (b) is maleic acid or succinic acid.
Acid, acetic acid, hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, sodium hydrogen sulfate
At least one acidic substance der Ru claim 4 manufacturing method of disinfectant according selected from um.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23608096A JP3219698B2 (en) | 1996-09-06 | 1996-09-06 | Manufacturing method of disinfectant solution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23608096A JP3219698B2 (en) | 1996-09-06 | 1996-09-06 | Manufacturing method of disinfectant solution |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1081610A JPH1081610A (en) | 1998-03-31 |
JP3219698B2 true JP3219698B2 (en) | 2001-10-15 |
Family
ID=16995434
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23608096A Expired - Lifetime JP3219698B2 (en) | 1996-09-06 | 1996-09-06 | Manufacturing method of disinfectant solution |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3219698B2 (en) |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010052418A (en) * | 1998-06-01 | 2001-06-25 | 니혼 아쿠아 코포레이션 리미티드 | Liquid Medicine Preparing Device |
JP3594112B2 (en) * | 1998-06-30 | 2004-11-24 | テクノエクセル株式会社 | Disinfection water generator |
CN1264539A (en) * | 1999-02-26 | 2000-08-30 | 崔永成 | Weakly acidic disinfectant |
KR100737951B1 (en) * | 1999-12-10 | 2007-07-13 | 가오가부시끼가이샤 | Microbicide compositions |
EP1236399A4 (en) * | 1999-12-10 | 2004-04-07 | Kao Corp | Methods of sterilization |
JP2002210474A (en) * | 2001-01-15 | 2002-07-30 | Hirosuke Sato | Method for sterilizing preserved drinking water for emergency and hermetically sealed container of sterilizer |
JP4601191B2 (en) * | 2001-03-13 | 2010-12-22 | エステー株式会社 | Solid halogen agent composition |
US7629492B2 (en) * | 2002-02-19 | 2009-12-08 | Schneider Advanced Technologies, Inc. | Halo active aromatic sulfonamide organic compounds and odor control uses therefor |
US7465829B2 (en) * | 2002-02-19 | 2008-12-16 | Schneider Advanced Technologies, Inc. | Halo active aromatic sulfonamide organic compounds and uses therefor |
US9040587B2 (en) | 2002-02-19 | 2015-05-26 | David J. Schneider | Halo active aromatic sulfonamide organic compounds and uses therefor |
US8759399B2 (en) | 2002-02-19 | 2014-06-24 | David J. Schneider | Halo active aromatic sulfonamide organic compounds and uses therefor |
CA2498100C (en) * | 2002-09-11 | 2012-08-28 | Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Through The Lsu Agcenter | Peroxide-hypochlorite biocide which is free of organic material and method of preparing the same |
JPWO2004098657A1 (en) * | 2003-05-12 | 2006-07-13 | 岡崎 龍夫 | Method of producing sterilizing water containing hypochlorous acid or chlorous acid, sterilizing raw material package, sterilizing water producing kit, and space sterilizing method and apparatus |
JP4602178B2 (en) * | 2004-07-08 | 2010-12-22 | 花王株式会社 | Cleaning method |
US20070264355A1 (en) * | 2005-12-14 | 2007-11-15 | Binary, Llc | Binary compositions and methods for sterilization |
GB2437489A (en) * | 2006-04-28 | 2007-10-31 | David Robert Norton | Disinfectant mixture of a donor of freely available chlorine (e.g. hypochlorite) and a buffering agent or acid, optionally in the form of an aqueous solution |
JP5670334B2 (en) * | 2008-09-26 | 2015-02-18 | ロンザ インコーポレイテッド | Synergistic peroxide disinfectant composition |
JP2011153095A (en) * | 2010-01-27 | 2011-08-11 | Pureson Corp | Disinfection liquid and method for producing the same |
JP5804851B2 (en) * | 2011-08-31 | 2015-11-04 | 株式会社トクヤマデンタル | Kit for bonding dental alginate impression material to impression tray |
US9232804B2 (en) | 2012-10-11 | 2016-01-12 | Knu University-Industry Cooperation Foundation | Compositions and methods for sterilizing bioscaffolds |
JP6093620B2 (en) * | 2013-03-29 | 2017-03-08 | アクアス株式会社 | Oxidative slime control agent composition with high storage stability |
JP2014148526A (en) * | 2014-04-14 | 2014-08-21 | Sutakku System:Kk | Method for producing disinfectant antiseptic solution |
JP6240632B2 (en) * | 2015-04-03 | 2017-11-29 | 株式会社スタックシステム | Manufacturing method of disinfectant |
MX2023000445A (en) * | 2020-07-07 | 2023-04-11 | Wiab Water Innovation Ab | Compositions and methods to disinfect, treat and prevent microbial infections. |
-
1996
- 1996-09-06 JP JP23608096A patent/JP3219698B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH1081610A (en) | 1998-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3219698B2 (en) | Manufacturing method of disinfectant solution | |
US7393522B2 (en) | Physiologically balanced, ionized, acidic solution and methodology for use in wound healing | |
JP4580039B1 (en) | Electrolyzed water generating apparatus and electrolyzed water generating method | |
TW201505974A (en) | Acidic Electrolyzed Water, Manufacturing Method Therefor, and Cleanser And Disinfectant Containing Acidic Electrolyzed Water | |
US20150119245A1 (en) | Method for Producing Shelf Stable Hypochlorous Acid Solutions | |
CA2577990A1 (en) | Neutral electrolytic water, neutral electrolytic water production methodand device thereof | |
JP5238899B1 (en) | Disinfecting water generating apparatus and disinfecting cleaning method | |
US20140302168A1 (en) | Microbiocidal Solution with Ozone and Methods | |
KR101286088B1 (en) | Method for Preparing Hypochlorous Acid Water with High Stability | |
JP2002104908A (en) | Disinfectant agricultural electrolytic water and production unit therefor | |
WO2015029263A1 (en) | Cleaning solution and manufacturing method therefor | |
EP1217892B1 (en) | Biocidal applications of concentrated aqueous bromine chloride solutions | |
JP2002249407A (en) | Sterilizing disinfectant | |
JP2018111095A (en) | Acidic electrolyzed water and a method for producing the same, and a cleaning agent and a disinfectant containing the acidic electrolyzed water | |
JP2021172649A (en) | Aqueous solution having hypochlorous acid as main component | |
JP2014028363A (en) | Acidic electrolytic water and method for producing the same | |
JP2013136609A (en) | Bactericide application of concentrated aqueous bromine chloride solution | |
KR100363896B1 (en) | A medical instrument cleaning solution using peracetic acid and the manufacturing method of the above solution | |
KR101956575B1 (en) | Electrolysis apparatus for producing between germicide and detergent | |
CN113907072A (en) | Preparation method of high-precision weak acid hypochlorite disinfectant | |
JP2018075535A (en) | Method for producing mixture water containing hypochlorous acid molecule and hydrogen molecule | |
JP2002086155A (en) | Sterilization method of water system | |
WO2023063003A1 (en) | Disinfection composition and disinfection method | |
JP2005161254A (en) | Method for preventing adhesion of slime in water system | |
CN113180056B (en) | Hypochlorous acid disinfectant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20010706 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070810 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080810 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090810 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100810 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100810 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110810 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110810 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120810 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130810 Year of fee payment: 12 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |