JPH108155A - Method for recovering palladium - Google Patents
Method for recovering palladiumInfo
- Publication number
- JPH108155A JPH108155A JP19265196A JP19265196A JPH108155A JP H108155 A JPH108155 A JP H108155A JP 19265196 A JP19265196 A JP 19265196A JP 19265196 A JP19265196 A JP 19265196A JP H108155 A JPH108155 A JP H108155A
- Authority
- JP
- Japan
- Prior art keywords
- palladium
- iodide
- iodine
- recovering
- aqua regia
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
【発明の詳細な説明】
【産業上の利用分野】本発明は王水等強酸性液を使用し
てパラジウムを溶解後、回収する方法に関するものであ
り、例えば廃触媒、廃工業製品等に含まれるパラジウム
の溶解回収方法に関する。
【従来技術】パラジウムを回収する方法として、従来か
ら知られる方法しては、パラジウムを王水等の無機酸に
溶解後、塩化アンモニウム、アンモニア等を添加してジ
クロロアンミンパラジウムを生成させ、分離後水素気流
中で還元して、パラジウムを回収する方法。或いは溶媒
抽出法が知られている。しかしながら王水は排水が強酸
性の為、排水管理に多大な経費がかかっている。またジ
クロロアンミンパラジウムの焼成では有害ガスが発生す
るのでその管理に多大な経費がかかっている。また溶媒
抽出法は逆抽出の効率、高価な抽出剤の劣化、繁雑な操
作性等の問題が指摘されている。
【発明が解決しようとする課題】本発明は上記欠点を解
決するものであり、廃触媒、廃工業製品等からパラジウ
ムを溶解、回収する際に使用する強酸性液を廃棄するこ
となく繰り返し使用することを可能にし、排水を極力減
少せしめる経済的な新規なパラジウム回収方法を提供す
ることを目的とするものである。
【課題を解決するための手段】本発明の特徴のひとつ
は、パラジウムを回収する際に、反応式より導き出され
る理論量の1.5倍までのヨウ素あるいはヨウ化物を添
加して、パラジウムをヨウ化パラジウムとして分離する
ことにある。その際、夾雑する卑金属は僅かにヨウ化卑
金属として副生する場合もあるが溶解性が良く、溶解液
中に溶解しているので、容易にヨウ化パラジムと分離す
ることができ、卑金属が夾雑していない高品位のヨウ化
パラジウムとして回収される。高品位のヨウ化パラジウ
ムを還元して得られるパラジウムは高度に精製された高
品位パラジウムとなる。また本発明の他の特徴は、溶解
に使用した強酸性液を繰り返し使用できることにある。
ヨウ化パラジウムとして分離した後に、溶解液中に残存
するパラジウムは僅か数ppm程度となる。夾雑する卑
金属は溶解に関してなんら問題なく強酸性液は繰り返し
使用する。さらに本発明の特徴は、分離したヨウ化パラ
ジウムに還元剤を添加して還元し、高品位パラジウムと
して回収した後、副生したヨウ化物は再度ヨウ化パラジ
ウム生成用として、繰り返し使用することにある。すな
わち本発明の特徴は王水等強酸性液とヨウ化物を繰り返
し使用出来ることである。
【実施例】以下実施例により本発明を詳細に説明する。
実施例1
品位99.9%のパラジウムを0.3890g(約3.
7×10−3mol)と品位99.9%のアルミニウム
をを0.0948g(約3.5×10−3mol)を王
水12mlに溶解した後、ヨウ素1.3929g(約
5.5×10−3mol)を添加してヨウ化パラジウム
1.32gを生成した。濾液中の残留パラジウム濃度は
0.7ppmであった。ヨウ化パラジウムをヨウ化カリ
ウム水溶液(1mol/l)10mlに溶解させ、ギ酸
0.25gを添加して還元し、パラジウム0.38gを
回収した。回収したパラジウムの品位は99.9%であ
った。 実施例2
実施例1にて使用した王水約10mlに硝酸2mlを加
え、品位99.9%のパラジウムを0.3912g
(3.7×10−3mol)と品位99.9%のアルミ
ニウム0.0921g(約3.4×10−3mol)を
溶解して、ヨウ化カリウムを2.1011g(約1.3
×10−2mol)を添加し、生成したヨウ化パラジウ
ムを分離後、実施例1の還元後ヨウ素イオン含有液10
ml中に溶解させ、ギ酸0.25gを添加して還元し、
パラジウム約0.39gを回収した。回収したパラジウ
ムの品位は99.9%であった。同様操作を4回繰り返
したが、回収されたパラジウムの品位は99.9%を維
持し、5回の繰り返しに耐えることを確認した。
【発明の効果】上記実施例で示されるように、本発明の
方法によれば一旦、ヨウ化パラジウムとして分離するの
でパラジウムを効率よく、しかも高品位に回収すること
ができる。またパラジウムを溶解するのに使用する王水
は繰返し使用することができるので、強酸性排水を著し
く減少することが可能となり、従来の方法と比べ中和処
理等の負担が著しく軽減された。また焼成による有害ガ
スの発生も無く、回収操作も簡素化され、経済的に有利
な効果が得られる。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for dissolving and recovering palladium using a strongly acidic liquid such as aqua regia, and includes, for example, waste catalysts, waste industrial products and the like. And a method for dissolving and recovering palladium. 2. Description of the Related Art A conventionally known method for recovering palladium is to dissolve palladium in an inorganic acid such as aqua regia and then add ammonium chloride, ammonia or the like to form dichloroammine palladium, and after separation. A method of recovering palladium by reduction in a stream of hydrogen. Alternatively, a solvent extraction method is known. However, aqua regia has a great expense for drainage management because its drainage is strongly acidic. In addition, since harmful gas is generated in the firing of dichloroammine palladium, a great deal of expense is required for its management. In addition, the solvent extraction method has been pointed out with problems such as the efficiency of back extraction, deterioration of expensive extractants, and complicated operability. DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned drawbacks, in which a strong acid solution used for dissolving and recovering palladium from spent catalysts, waste industrial products and the like is used repeatedly without discarding. It is an object of the present invention to provide a new economical method for recovering palladium, which makes it possible to reduce wastewater as much as possible. One of the features of the present invention is that when recovering palladium, up to 1.5 times the theoretical amount of iodine or iodide derived from the reaction formula is added to convert palladium into iodine. Is to separate as palladium chloride. At that time, the contaminating base metal may be slightly produced as a base metal iodide, but has good solubility and is dissolved in the dissolving solution, so that it can be easily separated from palladium iodide, and the base metal is contaminated. Not recovered as high-grade palladium iodide. Palladium obtained by reducing high-grade palladium iodide becomes highly purified high-grade palladium. Another feature of the present invention is that the strongly acidic solution used for dissolution can be used repeatedly.
After separation as palladium iodide, the amount of palladium remaining in the solution is only a few ppm. The strongly acidic liquid is repeatedly used without any problem in dissolving the contaminating base metal. Further, a feature of the present invention is that the separated palladium iodide is reduced by adding a reducing agent thereto, and is recovered as high-grade palladium, and then the by-produced iodide is again used for producing palladium iodide, and is used repeatedly. . That is, a feature of the present invention is that a strongly acidic solution such as aqua regia and iodide can be used repeatedly. The present invention will be described in detail with reference to the following examples. Example 1 0.3890 g (approximately 3.890 g) of 99.9% grade palladium.
After dissolving 0.0948 g (about 3.5 × 10 −3 mol) of aluminum of 7 × 10 −3 mol and 99.9% in 12 ml of aqua regia, 1.3929 g (about 5.5 ×) of iodine was dissolved. 10 −3 mol) was added to produce 1.32 g of palladium iodide. The residual palladium concentration in the filtrate was 0.7 ppm. Palladium iodide was dissolved in 10 ml of an aqueous potassium iodide solution (1 mol / l), reduced by adding 0.25 g of formic acid, and 0.38 g of palladium was recovered. The grade of the recovered palladium was 99.9%. Example 2 To about 10 ml of aqua regia used in Example 1, 2 ml of nitric acid was added, and 0.3912 g of 99.9% grade palladium was added.
(3.7 × 10 −3 mol) and 0.0921 g (approximately 3.4 × 10 −3 mol) of aluminum having a grade of 99.9% were dissolved, and 2.1011 g (approximately 1.3) of potassium iodide was dissolved.
× 10 -2 mol), and after separating the generated palladium iodide, the reduced iodine ion-containing liquid 10 of Example 1 was added.
in 0.2 ml, reduced by adding 0.25 g of formic acid,
About 0.39 g of palladium was recovered. The grade of the recovered palladium was 99.9%. The same operation was repeated four times, but the quality of the recovered palladium was maintained at 99.9%, and it was confirmed that the palladium could withstand five repetitions. As shown in the above examples, according to the method of the present invention, palladium iodide is once separated, so that palladium can be recovered efficiently and with high quality. In addition, since aqua regia used to dissolve palladium can be used repeatedly, it is possible to remarkably reduce strongly acidic wastewater, and the burden of neutralization treatment and the like is significantly reduced as compared with the conventional method. In addition, there is no generation of harmful gas due to firing, the recovery operation is simplified, and an economically advantageous effect is obtained.
Claims (1)
ラジウムを王水等強酸性液に溶解させた後、ヨウ素(I
2)を添加して、ヨウ化パラジウムを生成後、分離する
ことを特徴とするパラジウムの回収方法。 【請求項2】 パラジウムを回収する方法であって、パ
ラジウムを王水等強酸性液に溶解させた後、ヨウ化カリ
ウム、ヨウ化ナトリウム、ヨウ化カルシウム,ヨウ化水
素酸等ヨウ素イオンを添加して、ヨウ化パラジウムを生
成後、分離することを特徴とするパラジウムの回収方
法。 【請求項3】上記〔請求項1〕及び〔請求項2〕にて添
加するヨウ素あるいはヨウ素イオンの添加量は反応式よ
り導きだされる当量の1.5倍までとするパラジウムの
回収方法。 【請求項4】 上記王水等強酸性液からヨウ化パラジウ
ムを分離した後、王水等強酸性液を繰り返しパラジウム
の溶解に使用することを特徴とするパラジウムの回収方
法。 【請求項5】 上記分離したヨウ化パラジウムをヨウ化
アルカリ水溶液に溶解させる時のヨウ化アルカリ水溶液
の濃度が10重量%〜飽和濃度とするパラジウムの回収
方法。 【請求項6】ヨウ化パラジウムをヨウ化アルカリ水溶液
に溶解させた後、水素化ホウ素ナトリウム、ヒドラジ
ン、ヒドラジン硫酸塩、ヒドラジン塩酸塩、亜硫酸、重
亜硫酸塩、ギ酸、蓚酸等の還元剤により還元してパラジ
ウムを回収した後の瀘液を、ヨウ素イオン含有液として
再度、上記〔請求項2〕及び〔請求項5〕にて、繰り返
し使用することを特徴とするパラジウムの回収方法。Claims: 1. A method for recovering palladium, comprising dissolving palladium in a strongly acidic liquid such as aqua regia and then adding iodine (I).
(2 ) A method for recovering palladium, which comprises adding palladium to produce palladium iodide and then separating. 2. A method for recovering palladium, which comprises dissolving palladium in a strongly acidic solution such as aqua regia and then adding iodide ions such as potassium iodide, sodium iodide, calcium iodide, and hydroiodic acid. Separating palladium iodide after its production. 3. A method for recovering palladium wherein the amount of iodine or iodine ion added in the above [claim 1] and [claim 2] is up to 1.5 times the equivalent derived from the reaction formula. 4. A method for recovering palladium, comprising separating palladium iodide from a strongly acidic solution such as aqua regia and repeatedly using a strongly acidic solution such as aqua regia for dissolving palladium. 5. A method for recovering palladium, wherein the concentration of the aqueous solution of alkali iodide is from 10% by weight to the saturation concentration when the separated palladium iodide is dissolved in the aqueous solution of alkali iodide. 6. A palladium iodide is dissolved in an aqueous alkali iodide solution and then reduced with a reducing agent such as sodium borohydride, hydrazine, hydrazine sulfate, hydrazine hydrochloride, sulfurous acid, bisulfite, formic acid, oxalic acid and the like. A method for recovering palladium, characterized in that the filtrate obtained after recovering palladium by filtration is used again as an iodine ion-containing liquid in the above [Claim 2] and [Claim 5].
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19265196A JPH108155A (en) | 1996-06-19 | 1996-06-19 | Method for recovering palladium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19265196A JPH108155A (en) | 1996-06-19 | 1996-06-19 | Method for recovering palladium |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH108155A true JPH108155A (en) | 1998-01-13 |
Family
ID=16294794
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19265196A Pending JPH108155A (en) | 1996-06-19 | 1996-06-19 | Method for recovering palladium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH108155A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004076697A1 (en) * | 2003-02-24 | 2004-09-10 | Lynntech, Inc. | Extraction of metals with diquaternary amines |
US7175818B2 (en) | 2002-02-07 | 2007-02-13 | Lynntech, Inc. | Extraction of metals with diquaternary ammonium salts |
WO2023153291A1 (en) * | 2022-02-10 | 2023-08-17 | 株式会社ガルデリア | Noble metal recovery agent and noble metal recovery method |
-
1996
- 1996-06-19 JP JP19265196A patent/JPH108155A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7175818B2 (en) | 2002-02-07 | 2007-02-13 | Lynntech, Inc. | Extraction of metals with diquaternary ammonium salts |
WO2004076697A1 (en) * | 2003-02-24 | 2004-09-10 | Lynntech, Inc. | Extraction of metals with diquaternary amines |
GB2415190A (en) * | 2003-02-24 | 2005-12-21 | Lynntech Inc | Extraction of metals with diquaternary amines |
WO2023153291A1 (en) * | 2022-02-10 | 2023-08-17 | 株式会社ガルデリア | Noble metal recovery agent and noble metal recovery method |
JP2023117124A (en) * | 2022-02-10 | 2023-08-23 | 株式会社ガルデリア | Noble metal recovery agent, and method for recovering noble metal |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6126720A (en) | Method for smelting noble metal | |
JP3430973B2 (en) | Method for recovering nickel and scandium from oxidized ore | |
JP3009253B2 (en) | Method for recovering and separating tantalum and niobium | |
JP2003201526A (en) | Method of refining ruthenium | |
JPH0772312B2 (en) | Rare earth element recovery method | |
JP5783536B2 (en) | Boron recovery method | |
US5137700A (en) | Processes employing iodine-iodide etching solutions | |
JP2017179562A (en) | Method of recovering vanadium from denitration catalyst | |
JP3387302B2 (en) | Method for producing high purity rare earth metal oxide | |
JPH108155A (en) | Method for recovering palladium | |
WO2024124712A1 (en) | Method for recovering manganese and fluorine from manganese salt solution | |
JP3307204B2 (en) | Concentration separation and recovery method of rare earth metal | |
JP4619955B2 (en) | Uranium waste treatment method | |
JP2001010815A (en) | Recovery of cerium from solution containing both chromium and cerium | |
JPH11293357A (en) | Selective recovery of cobalt compound | |
JPH02283614A (en) | Removal of thorium from raffinate | |
JP2982829B2 (en) | Recovery method for rare earth elements | |
JP7470977B2 (en) | Hydrogen generating agent and method for producing hydrogen using the same | |
JPS6259058B2 (en) | ||
JP3879226B2 (en) | Chemical separation of useful metals from combustion ash | |
JP2020015650A (en) | Method for producing new hydrofluoric acid treatment liquid using hydrofluoric acid treatment waste liquid | |
US20240308864A1 (en) | Method for producing lithium containing solution and method for producing lithium hydroxide | |
JP2619893B2 (en) | Precious metal recovery method | |
JP3273852B2 (en) | Method for producing ruthenium nitrate solution | |
JPH0632618A (en) | Purification of metal chloride |