JPS6259058B2 - - Google Patents

Info

Publication number
JPS6259058B2
JPS6259058B2 JP14176181A JP14176181A JPS6259058B2 JP S6259058 B2 JPS6259058 B2 JP S6259058B2 JP 14176181 A JP14176181 A JP 14176181A JP 14176181 A JP14176181 A JP 14176181A JP S6259058 B2 JPS6259058 B2 JP S6259058B2
Authority
JP
Japan
Prior art keywords
platinum group
platinum
group elements
recovering
hydrochloric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14176181A
Other languages
Japanese (ja)
Other versions
JPS5845125A (en
Inventor
Takashi Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP56141761A priority Critical patent/JPS5845125A/en
Publication of JPS5845125A publication Critical patent/JPS5845125A/en
Publication of JPS6259058B2 publication Critical patent/JPS6259058B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、白金系廃触媒から白金族元素を簡易
な操作で安価でかつ高収率にて回収する方法に関
する。 現在、白金族元素をアルミナ、シリカ等の担体
に担持せしめた白金系触媒は化学工業において水
素添加反応等に広く利用され、さらに、近年、自
動車排ガス規制の強化に伴い、自動車排ガスの浄
化に多量に利用されつつある。 特に、パラジウムは、白金族元素の中では活性
が強く、白金より安価なために利用度が高まつて
いる。又、白金族元素は資源的に少ないために、
資源が逼迫する事が十分考えられる。従つて、使
用済みの廃触媒から白金族元素を回収する必要が
あり、その回収方法の確立が急務である。 従来の白金系・廃触媒からの白金族元素の回収
法として、硝酸、王水等による鉱酸溶解法や苛性
ソーダにより担体を溶解処理後、その不溶性残渣
から白金族元素を溶解する方法等があるが、いず
れの方法も多量の酸やアルカリの水溶液を必要と
するために、回収費が大きい等の欠点を有してい
る。 さらに、白金族元素を溶解した溶液からの回収
法としてイオン交換樹脂を用いた方法及びイオン
置換反応による回収法等があるが、前者の方法で
は樹脂の再利用ができず、付加設備を必要とする
等により、工程が煩雑でしかも装置が大型化し、
収率が低い等の欠点を有している。又、後者の方
法は、溶液にフリーの酸が残存しているために、
置換に要する金属を多量に必要としかつ収率が低
い等の欠点がある。このため、従来法では回収率
が低くかつ回収費が大きい等の欠点を有してい
る。 本発明の目的は、上記従来法の欠点を解消し白
金系廃触媒から白金族元素を簡便かつ高収率で、
しかも安価に回収する方法を提供するものであ
る。 即ち、本発明によれば、 担体に白金族元素が担持せしめられている白金
系廃触媒から白金族元素を回収する方法におい
て、 (i) 塩酸中で塩素の存在下に廃触媒上の白金族元
素を溶解抽出する工程、及び (ii) 該容解抽出液中の白金族元素を還元性ガスに
より還元回収する工程、 からなることを特徴とする、白金系廃触媒からの
白金族元素の回収方法、が提供される。 白金系(廃)触媒の担体としては上記の如きア
ルミナ、シリカ等が代表的であるが、その他従来
使用されているもの全てが利用できる。 本発明における溶解抽出工程(i)は以下の様にし
て行われる(便宜上、白金族元素としてパラジウ
ムを用いた場合につき説明する。以下同じ): Cl2+H2O→HCl+HClO HClO→HCl+(O) Pd+2HCl+(O)→PdCl2+H2O 上記反応式の如く、塩素は塩酸中で水と反応し
て塩化水素と次亜塩素酸を生じ、さらに次亜塩素
酸は酸素を放ち分解し塩酸となる。そして、この
塩素の酸化力によりパラジウムが溶解抽出され
る。この工程(i)における塩酸濃度及び塩素の濃度
は反応の進行を促進するためには塩酸濃度1N及
び塩素濃度5容量%あれば十分であり、装置の材
質上からも工業上有利であるが、更に高収率を得
るためには塩酸濃度3〜7N及び塩素濃度20容量
%以上が適当である。 一方、本発明における還元回収工程(ii)は以下の
様にして行われる: (イ) COによる還元 PdCl2+CO+H2O→Pd+2HCl+CO2 (ロ) H2による還元 PdCl2+H2→Pd+2HCl 上記反応式の如く、溶解抽出パラジウムが還元
性ガスにより元素状パラジウムに転化され、この
際塩酸が生成する。この工程(ii)において用いられ
る還元性ガスとしては上記の如く一酸化炭素ガス
又は水素ガスが好適であるが、触媒を作用させれ
ば反応速度が増加し効果的である。その他エチレ
ンガス、メタンガス等が例示できる。工程(ii)にお
いてはその還元反応が極めて速やかであるため、
低濃度で少量の還元性ガスにより反応が促進され
る。 以上の如く、本発明方法は(i)及び(ii)の簡易な2
工程からなり、更に塩化水素と白金族元素のみを
生成し他の生成物が蓄積されることはないので酸
濃度が次第に増加しても塩酸の劣化がなく、従つ
て工程(ii)において生成する塩酸を更に工程(i)にお
いて繰り返し使用することができるので回収費用
の大幅低減が可能であり、同時に高い収率にて白
金族元素が回収されるという大きな利点を有す
る。 次に、本発明を実施例によつて具体的に説明す
るが、本発明はその要旨を超えない限り、以下の
実施例に限定されるものではない。 実施例 1〜4 アルミナ担体にパラジウムを0・72重量%担持
する廃触媒50gを1.0,3.0,6.0,11.7Nの各濃度
の塩酸1.0に懸濁させ、この懸濁液に塩素濃度
100容量%のガスを吹き込みながら4時間処理し
た。 そして、この抽出液中のパラジウムを原子吸光
にて分析を行い、抽出液中へのパラジウムの抽出
率を求めた。その結果を第1表に示す。
The present invention relates to a method for recovering platinum group elements from platinum-based waste catalysts using simple operations at low cost and in high yield. Currently, platinum-based catalysts, in which platinum group elements are supported on carriers such as alumina and silica, are widely used in hydrogenation reactions in the chemical industry. It is being used for In particular, palladium is increasingly used because it has the strongest activity among platinum group elements and is cheaper than platinum. In addition, since platinum group elements are scarce in terms of resources,
There is a strong possibility that resources will become tight. Therefore, it is necessary to recover platinum group elements from used waste catalysts, and there is an urgent need to establish a recovery method. Conventional methods for recovering platinum group elements from platinum-based/spent catalysts include a mineral acid dissolution method using nitric acid, aqua regia, etc., and a method of dissolving a carrier with caustic soda and then dissolving the platinum group elements from the insoluble residue. However, both methods require a large amount of acid or alkali aqueous solution, and therefore have drawbacks such as high recovery costs. Furthermore, there are methods for recovering platinum group elements from solutions in which they are dissolved, such as methods using ion exchange resins and methods using ion replacement reactions, but the former method does not allow reuse of the resin and requires additional equipment. The process becomes complicated and the equipment becomes large due to
It has drawbacks such as low yield. Also, in the latter method, since free acid remains in the solution,
It has drawbacks such as requiring a large amount of metal for substitution and low yield. For this reason, the conventional method has drawbacks such as a low recovery rate and high recovery costs. The purpose of the present invention is to eliminate the drawbacks of the above-mentioned conventional methods, and to easily and efficiently produce platinum group elements from platinum-based waste catalysts.
Moreover, it provides a method for recovering at low cost. That is, according to the present invention, in a method for recovering a platinum group element from a platinum-based waste catalyst in which a platinum group element is supported on a carrier, (i) the platinum group element on the spent catalyst is recovered in the presence of chlorine in hydrochloric acid; Recovery of platinum group elements from platinum-based waste catalyst, characterized by comprising the steps of dissolving and extracting the elements, and (ii) reducing and recovering the platinum group elements in the dissolved extract using a reducing gas. A method is provided. As carriers for platinum-based (waste) catalysts, alumina, silica, etc. as mentioned above are typical, but all other conventionally used carriers can be used. The dissolution and extraction step (i) in the present invention is carried out as follows (for convenience, the case where palladium is used as the platinum group element will be explained. The same applies hereinafter): Cl 2 + H 2 O → HCl + HClO HClO → HCl + (O) Pd+2HCl+(O)→PdCl 2 +H 2 O As shown in the above reaction formula, chlorine reacts with water in hydrochloric acid to produce hydrogen chloride and hypochlorous acid, and further, hypochlorous acid releases oxygen and decomposes to become hydrochloric acid. . Palladium is dissolved and extracted by the oxidizing power of this chlorine. Regarding the concentration of hydrochloric acid and chlorine in this step (i), a concentration of 1N of hydrochloric acid and a concentration of 5% by volume of chlorine are sufficient to promote the progress of the reaction, and it is industrially advantageous from the viewpoint of the material of the equipment. In order to obtain a higher yield, it is appropriate to use a hydrochloric acid concentration of 3 to 7N and a chlorine concentration of 20% by volume or more. On the other hand, the reduction recovery step (ii) in the present invention is carried out as follows: (a) Reduction with CO PdCl 2 +CO+H 2 O→Pd+2HCl+CO 2 (b) Reduction with H 2 PdCl 2 +H 2 →Pd+2HCl The above reaction formula As in, the dissolved extracted palladium is converted to elemental palladium by a reducing gas, with the formation of hydrochloric acid. The reducing gas used in this step (ii) is preferably carbon monoxide gas or hydrogen gas as described above, but it is effective to use a catalyst to increase the reaction rate. Other examples include ethylene gas and methane gas. In step (ii), the reduction reaction is extremely rapid;
The reaction is accelerated by a small amount of reducing gas at low concentration. As described above, the method of the present invention is a simple method of (i) and (ii).
Furthermore, since only hydrogen chloride and platinum group elements are produced and no other products are accumulated, there is no deterioration of hydrochloric acid even if the acid concentration gradually increases. Furthermore, since hydrochloric acid can be repeatedly used in step (i), recovery costs can be significantly reduced, and at the same time, platinum group elements are recovered at a high yield, which is a great advantage. Next, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to the following Examples unless it exceeds the gist thereof. Examples 1 to 4 50 g of a waste catalyst containing 0.72% by weight of palladium supported on an alumina carrier is suspended in 1.0% hydrochloric acid at each concentration of 1.0, 3.0, 6.0, and 11.7N.
The treatment was carried out for 4 hours while blowing 100% by volume of gas. Then, palladium in this extract was analyzed by atomic absorption to determine the extraction rate of palladium into the extract. The results are shown in Table 1.

【表】 実施例 5 アルミナ・シリカ担体にパラジウム0.25重量%
担持する廃触媒200gを実施例3と同様の方法で
パラジウムを抽出した。抽出液中のパラジウム
は、原子吸光分析の結果、400mgであり、抽出率
は80%であつた。 実施例 6.7 アルミナ担体に白金をそれぞれ0.18重量%、
0.22重量%担持する廃触媒50gを6.0N塩酸10に
懸濁させ、この懸濁液に塩素を吹き込みながら4
時間処理し抽出液中の白金を原子吸光分析により
測定し、抽出率を求めた。その結果を第2表に示
す。
[Table] Example 5 Palladium 0.25% by weight on alumina-silica carrier
Palladium was extracted from 200 g of the supported waste catalyst in the same manner as in Example 3. As a result of atomic absorption spectrometry, the amount of palladium in the extract was 400 mg, and the extraction rate was 80%. Example 6.7 0.18% by weight of platinum on an alumina carrier,
50g of waste catalyst supported at 0.22% by weight was suspended in 6.0N hydrochloric acid, and chlorine was blown into the suspension for 4 hours.
After time treatment, platinum in the extract was measured by atomic absorption spectrometry to determine the extraction rate. The results are shown in Table 2.

【表】 実施例 8〜10 アルミナ担体にパラジウムを0.72重量%担持す
る廃触媒50gを6.0N塩酸1.0に懸濁させ、この
懸濁液にそれぞれ塩素濃度5,15,30容量%の塩
素ガスを吹き込みながら4時間処理し、実施例1
〜4と同様にして抽出率を求めた。又、溶解後の
抽出液の酸濃度を苛性ソーダの中和適定により求
めた。その結果を第3表に示す。
[Table] Examples 8 to 10 50 g of a waste catalyst containing 0.72% by weight of palladium supported on an alumina carrier was suspended in 1.0% of 6.0N hydrochloric acid, and chlorine gas with a chlorine concentration of 5, 15, and 30% by volume was added to this suspension, respectively. Example 1
The extraction rate was determined in the same manner as in 4. In addition, the acid concentration of the extract after dissolution was determined by neutralization adjustment using caustic soda. The results are shown in Table 3.

【表】 実施例 11.12 実施例3と同様にして得られたパラジウム抽出
液(Pd0.353g/)1.0にそれぞれ濃度100容
量%の一酸化炭素、水素ガスを1時間吹き込み、
パラジウムを還元回収し、それぞれの回収率を求
めた。その結果を第4表に示す。但し、実施例12
では反応を促進させるため触媒として粉状Pdを
抽出液1に対し5g添加した。
[Table] Example 11.12 Carbon monoxide and hydrogen gas each having a concentration of 100% by volume were blown into 1.0 of the palladium extract (Pd0.353g/) obtained in the same manner as in Example 3 for 1 hour.
Palladium was reduced and recovered, and the respective recovery rates were determined. The results are shown in Table 4. However, Example 12
In order to promote the reaction, 5g of powdered Pd was added to 1 part of the extract as a catalyst.

【表】 実施例 13.14 実施例6,7により得られた白金抽出液(塩化
白金酸溶液)に、濃度100容量%の一酸化炭素ガ
スを1時間吹き込み白金を還元回収し、それぞれ
の回収率を求めた。その結果を第5表に示す。
[Table] Example 13.14 Carbon monoxide gas with a concentration of 100% by volume was blown into the platinum extracts (chloroplatinic acid solutions) obtained in Examples 6 and 7 for 1 hour to reduce and recover platinum, and the respective recovery rates were calculated. I asked for it. The results are shown in Table 5.

【表】【table】

Claims (1)

【特許請求の範囲】 1 担体に白金族元素が担持せしめられている白
金系廃触媒から白金族元素を回収する方法におい
て、 (i) 塩酸中で塩素の存在下に廃触媒上の白金族元
素を溶解抽出する工程、及び (ii) 該溶解抽出液中の白金族元素を還元性ガスに
より還元回収する工程、 からなることを特徴とする、白金系廃触媒からの
白金族元素の回収方法。 2 還元性ガスが一酸化炭素ガス又は水素ガスで
ある、第1項の方法。 3 工程(ii)において生成する塩酸を更に工程(i)に
おいて繰り返し使用する、第1項又は第2項の方
法。
[Scope of Claims] 1. A method for recovering platinum group elements from a platinum-based waste catalyst in which the platinum group elements are supported on a carrier, comprising: (i) recovering the platinum group elements on the waste catalyst in the presence of chlorine in hydrochloric acid; 1. A method for recovering platinum group elements from platinum-based waste catalyst, comprising: (ii) reducing and recovering the platinum group elements in the dissolved extract with a reducing gas. 2. The method of item 1, wherein the reducing gas is carbon monoxide gas or hydrogen gas. 3. The method of item 1 or 2, wherein the hydrochloric acid produced in step (ii) is further repeatedly used in step (i).
JP56141761A 1981-09-10 1981-09-10 Recovering method for platinum group element from waste platinum type catalyst Granted JPS5845125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56141761A JPS5845125A (en) 1981-09-10 1981-09-10 Recovering method for platinum group element from waste platinum type catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56141761A JPS5845125A (en) 1981-09-10 1981-09-10 Recovering method for platinum group element from waste platinum type catalyst

Publications (2)

Publication Number Publication Date
JPS5845125A JPS5845125A (en) 1983-03-16
JPS6259058B2 true JPS6259058B2 (en) 1987-12-09

Family

ID=15299568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56141761A Granted JPS5845125A (en) 1981-09-10 1981-09-10 Recovering method for platinum group element from waste platinum type catalyst

Country Status (1)

Country Link
JP (1) JPS5845125A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0515974U (en) * 1991-08-13 1993-03-02 横浜ゴム株式会社 Golf clubs for putters

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1223125A (en) * 1984-06-07 1987-06-23 George P. Demopoulos Direct recovery of precious metals by solvent extraction and selective removal
JPH0822748B2 (en) * 1987-03-10 1996-03-06 田中貴金属工業株式会社 Method for producing rhodium chloride
US5491247A (en) * 1994-11-14 1996-02-13 Elf Atochem North America, Inc. Preparation of a precious metal salt of a nonoxidizing acid by direct reaction
US9752208B2 (en) 2012-05-16 2017-09-05 Timothy W. Yarlott Extraction solvent for extracting metallic elements, method for producing same, and method for recovering metallic elements

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3985854A (en) * 1974-06-12 1976-10-12 Johnson Matthey & Co., Limited Recovery of PT/RH from car exhaust catalysts
JPS5328850A (en) * 1976-08-30 1978-03-17 Ishigaki Mech Ind Continuous type preecoat filter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3985854A (en) * 1974-06-12 1976-10-12 Johnson Matthey & Co., Limited Recovery of PT/RH from car exhaust catalysts
JPS5328850A (en) * 1976-08-30 1978-03-17 Ishigaki Mech Ind Continuous type preecoat filter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0515974U (en) * 1991-08-13 1993-03-02 横浜ゴム株式会社 Golf clubs for putters

Also Published As

Publication number Publication date
JPS5845125A (en) 1983-03-16

Similar Documents

Publication Publication Date Title
CN101331240B (en) Method for the recovery of ruthenium from used ruthenium oxide-containing catalysts
US6126720A (en) Method for smelting noble metal
CA1068487A (en) Method of recovering the constituents of catalysts comprising an aluminous carrier, platinum and iridium
US20080287282A1 (en) Process for recovery of ruthenium from a ruthenium-containing supported catalyst material
WO1989004210A1 (en) Catalyst for decomposing ammonia
CN104988319B (en) Method and system of the treatment support type containing Used palladium catalyst
CN104232900A (en) Method for recovering palladium from waste palladium/alumina catalyst
US20050056548A1 (en) Method for recovering trace elements from coal
CN112981105B (en) Method for recovering noble metal from waste alumina carrier noble metal catalyst
CA2396445C (en) Process for refining silver bullion with gold separation
CN109680154A (en) A method of gold-palladium is separated and recovered from dead catalyst
US5160711A (en) Cyanide leaching method for recovering platinum group metals from a catalytic converter catalyst
JPS5828209B2 (en) How to save money and save money
US4077800A (en) Method for the recovery of platinum from spent catalysts
US5478376A (en) Method for the separation of rhodium and/or iridium from solution
CN111321307A (en) Process for efficiently recovering palladium from palladium-containing waste catalyst
JPS6259058B2 (en)
Van Weert et al. Reagent recovery in chloride hydrometallurgy—some missing links
CN110592391A (en) Method for purifying crude gold powder
EP0504277B1 (en) Oxidative secondary rhodium recovery process
JPS6116326B2 (en)
US6337056B1 (en) Process for refining noble metals from auriferous mines
JP2003128634A (en) Method for preparing alkyl nitrite
CN110684905B (en) Method for leaching metal platinum in platinum alumina catalyst by wet method
US3463740A (en) Formaldehyde in the removal of nitrate ions from regenerated alkylation catalysts