JP2017179562A - Method of recovering vanadium from denitration catalyst - Google Patents

Method of recovering vanadium from denitration catalyst Download PDF

Info

Publication number
JP2017179562A
JP2017179562A JP2016073339A JP2016073339A JP2017179562A JP 2017179562 A JP2017179562 A JP 2017179562A JP 2016073339 A JP2016073339 A JP 2016073339A JP 2016073339 A JP2016073339 A JP 2016073339A JP 2017179562 A JP2017179562 A JP 2017179562A
Authority
JP
Japan
Prior art keywords
leaching
denitration catalyst
vanadium
salt
crushed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016073339A
Other languages
Japanese (ja)
Inventor
大塚 教正
Norimasa Otsuka
教正 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2016073339A priority Critical patent/JP2017179562A/en
Publication of JP2017179562A publication Critical patent/JP2017179562A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently separate tungsten and vanadium, which are valuable metal, and recover them separately.SOLUTION: A method of recovering vanadium (V) from a denitration catalyst includes the steps of: crushing a denitration catalyst comprising vanadium (V) and tungsten (W); allowing V to leach from the crushed denitration catalyst; adding Ca salt to a post-leaching liquid to allow V to be precipitated as calcium salt, and then allowing V to leach with a carboxylic acid; and recoverying V from the post-leaching liquid.SELECTED DRAWING: None

Description

本発明は、脱硝触媒からのバナジウムの回収方法に関する。   The present invention relates to a method for recovering vanadium from a denitration catalyst.

光化学スモッグや酸性雨等の原因物質であるNOxの除去方法として、アンモニア(NH3)を還元剤とした選択的接触還元による排煙脱硝法が火力発電所を中心に幅広く用いられている。この触媒には、バナジウム、モリブデン、タングステンを活性成分にした酸化チタン(TiO2)系触媒が使用されており、現在の脱硝触媒の主流になっている。現在、接触アンモニア還元脱硝法は主に発電用ボイラを始めとする大容量ボイラ、ガスタービン等の排ガス浄化に使用されており、プラント当たり数百〜数千m3という膨大な量の触媒が、2〜10数年間交換をせずに使用されている。これらの触媒は、使用年数を過ぎて廃触媒となった場合には新たな二次公害物質となるため、廃触媒の再使用は環境保護や資源の有効活用において非常に重要な課題となっている。 As a method for removing NO x which is a causative substance such as photochemical smog and acid rain, a flue gas denitration method using selective catalytic reduction using ammonia (NH 3 ) as a reducing agent is widely used mainly in thermal power plants. As this catalyst, a titanium oxide (TiO 2 ) -based catalyst containing vanadium, molybdenum, and tungsten as active components is used, and it is the mainstream of current denitration catalysts. At present, the catalytic ammonia reduction denitration method is mainly used for purification of exhaust gas from large-capacity boilers such as power generation boilers and gas turbines, and a huge amount of catalyst of several hundred to several thousand m 3 per plant, Used for 2-10 years without replacement. Since these catalysts become new secondary pollutants when they become waste catalysts after the years of use, the reuse of waste catalysts is a very important issue for environmental protection and effective use of resources. Yes.

バナジウム、モリブデン、タングステンは、超合金や金属材料などの原料としても大いに利用されている有価金属である。したがって廃触媒からこれらの金属を回収して再利用することは、資源の有効利用の観点から大変重要である。しかしながら、現在のところ廃触媒の大部分は埋立処分されていて、処分の際にもコストがかかっているのが現状である。   Vanadium, molybdenum, and tungsten are valuable metals that are widely used as raw materials for superalloys and metal materials. Therefore, it is very important to recover these metals from the spent catalyst and reuse them from the viewpoint of effective utilization of resources. However, at present, most of the waste catalyst is disposed of in landfills, and it is costly at the time of disposal.

また触媒が石油焚きボイラに利用される場合には、石油中に含まれるバナジウムがこの触媒にトラップされるため、バナジウムの更なる回収が見込める。   Further, when the catalyst is used in an oil-fired boiler, vanadium contained in the oil is trapped by the catalyst, so that further recovery of vanadium can be expected.

特許文献1には、触媒や超合金などから効果的に所望の金属成分が回収される一方、溶解温度が600℃〜1200℃と高く、抽出のためのプロセスコストが高くなる課題を解決するために、低温でも高収率でタングステン、モリブデン、バナジウムを触媒から分離回収する技術が開示されている。   In Patent Document 1, in order to solve a problem that a desired metal component is effectively recovered from a catalyst, a superalloy, or the like, while a melting temperature is as high as 600 ° C. to 1200 ° C., a process cost for extraction is increased. In addition, a technique for separating and recovering tungsten, molybdenum, and vanadium from a catalyst at a high yield even at a low temperature is disclosed.

具体的には、タングステン、モリブデン又はバナジウムの少なくとも一種の金属成分を含む部材から前記金属成分を分離回収する方法において、前記部材と、アルカリ金属水酸化物又はアルカリ土類金属水酸化物を含む第1の溶融物と、アルカリ金属水酸化物、アルカリ土類金属水酸化物、アルカリ金属塩又はアルカリ土類金属塩の少なくとも一種を含み前記第1の溶融物と異なる第2の溶融物とを混合して化合物を生成する工程と、前記化合物と水とを混合して前記金属成分の抽出液を生成する工程と、前記抽出液と固形分とを分離する工程とを含む金属分離回収方法が開示されている。より詳細には、例えば水酸化ナトリウムと水酸化カリウムとを混合して得られる混合物と、金属成分を含む部材とを混合して焼成して、さらに水と混合することにより部材に含まれる金属成分を抽出することを含む技術が開示されている。   Specifically, in the method for separating and recovering the metal component from the member containing at least one metal component of tungsten, molybdenum, or vanadium, the member and the first member containing an alkali metal hydroxide or an alkaline earth metal hydroxide. 1 melt and a second melt different from the first melt containing at least one of alkali metal hydroxide, alkaline earth metal hydroxide, alkali metal salt or alkaline earth metal salt A process for producing a compound, mixing the compound and water to produce an extract of the metal component, and separating the extract and the solid content are disclosed. Has been. More specifically, for example, a metal component contained in a member by mixing and baking a mixture obtained by mixing sodium hydroxide and potassium hydroxide and a member containing a metal component, and further mixing with water. A technique is disclosed that includes extracting.

国際公開2014/155547号パンフレットInternational Publication No. 2014/155547 Pamphlet

ところで、特許文献1も資源の有効利用の観点から、高収率でタングステン、モリブデン、バナジウムをこれら金属成分を含む部材、具体的には触媒成分から分離回収する観点から有用な技術であると考えられるが、タングステンとバナジウムとを一緒に溶解させることが必要であること、およびタングステンとバナジウムの分離のためにアンモニアまたはアンモニウム塩を用いるために環境負荷が高く、排ガス、排水処理工程が複雑になることという事情から、いまだ改良の余地があると言える。   By the way, from the viewpoint of effective use of resources, Patent Document 1 is considered to be a useful technique from the viewpoint of separating and recovering tungsten, molybdenum, and vanadium from a member containing these metal components, specifically, a catalyst component in a high yield. However, it is necessary to dissolve tungsten and vanadium together, and the use of ammonia or ammonium salt for the separation of tungsten and vanadium has a high environmental impact, and the exhaust gas and wastewater treatment processes become complicated. That is why there is still room for improvement.

本発明者は、上記課題を解決すべく鋭意研究を重ねた結果、従前はタングステンとバナジウムの両者を溶解させて溶解液から相互分離することを課題としていたところ、バナジウムとタングステンとを別々の段階でそれぞれ優先的に溶解させることが可能であることを見出し、バナジウムおよびタングステンのそれぞれを有効に分離回収するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventor had previously made it a problem to dissolve both tungsten and vanadium and to separate them from the solution. Thus, it was found that each can be preferentially dissolved, and each of vanadium and tungsten was effectively separated and recovered.

かかる知見を基礎として完成した本発明は以下のものである。   The present invention completed on the basis of such knowledge is as follows.

(1)タングステン(W)とバナジウム(V)とを含む脱硝触媒を破砕する工程、破砕された脱硝触媒からVを浸出する第一のV浸出工程、浸出後液にCa塩を添加してカルシウム塩として沈殿させた後、カルボン酸でVを浸出する第二のV浸出工程、および浸出後液からVを回収する工程を有する脱硝触媒からのVの回収方法。 (1) A step of crushing a denitration catalyst containing tungsten (W) and vanadium (V), a first V leaching step of leaching V from the crushed denitration catalyst, and adding Ca salt to the solution after leaching to add calcium A method for recovering V from a denitration catalyst, comprising: a second V leaching step of leaching V with carboxylic acid after precipitation as a salt; and a step of recovering V from the solution after leaching.

(2)(1)に記載の方法において、WとVを含む脱硝触媒を破砕する工程後の脱硝触媒のサイズが、5mm〜50mmであることを特徴とする方法。 (2) The method according to (1), wherein the size of the denitration catalyst after the step of crushing the denitration catalyst containing W and V is 5 mm to 50 mm.

(3)前記破砕された脱硝触媒からVを浸出する第一のV浸出工程におけるVの浸出率を90%以上、Wの浸出率を25%以下にすることを特徴とする(1)に記載の方法。 (3) The leaching rate of V is 90% or more and the leaching rate of W is 25% or less in the first V leaching step of leaching V from the crushed denitration catalyst. the method of.

(4)前記破砕された脱硝触媒からVを浸出する第一のV浸出工程において、NaOHの濃度が5〜10%であるアルカリ溶液を用いて温度40℃以下で浸出することを特徴とする(1)〜(3)のいずれか一項に記載の方法。 (4) In the first V leaching step of leaching V from the crushed denitration catalyst, leaching is performed at a temperature of 40 ° C. or less using an alkaline solution having a NaOH concentration of 5 to 10% ( The method according to any one of 1) to (3).

(5)タングステン(W)とバナジウム(V)とを含む脱硝触媒を破砕する工程、破砕された脱硝触媒からVを浸出する第一のV浸出工程、当該破砕された脱硝触媒からVを浸出する第一のV浸出工程の残渣からWを浸出する工程、および浸出後液にCa塩を添加する工程、タングステン酸カルシウムとしてWを回収する工程を有することを特徴とする、脱硝触媒からWを高純度で回収する方法。 (5) A step of crushing a denitration catalyst containing tungsten (W) and vanadium (V), a first V leaching step of leaching V from the crushed denitration catalyst, and leaching V from the crushed denitration catalyst The step of leaching W from the residue of the first V leaching step, the step of adding Ca salt to the solution after leaching, and the step of recovering W as calcium tungstate, increasing W from the denitration catalyst Recovering with purity.

(6)前記破砕された脱硝触媒からVを浸出する第一のV浸出工程の残渣を、NaOHの濃度が10%以上であるアルカリ溶液を用いて40℃よりも高い温度で浸出することを特徴とする(5)に記載の方法。 (6) The residue of the first V leaching step of leaching V from the crushed denitration catalyst is leached at a temperature higher than 40 ° C. using an alkaline solution having a NaOH concentration of 10% or more. The method according to (5).

(7)(1)に記載のギ酸又は酢酸でVを浸出する第二のV浸出工程の残渣、および(5)に記載の浸出後液をCa塩でカルシウム塩沈殿させる工程の残渣の少なくとも一方からタングステン酸カルシウムを回収することを特徴とする方法。 (7) At least one of the residue of the second V leaching step of leaching V with formic acid or acetic acid according to (1), and the residue of the step of calcium salt precipitation with Ca salt of the solution after leaching according to (5) Recovering calcium tungstate from the process.

本発明によれば、有価金属であるタングステンとバナジウムとを効率よく分離し、それぞれ回収することを可能にする。   According to the present invention, it is possible to efficiently separate and recover valuable metals such as tungsten and vanadium.

本発明の一実施形態を示すフローチャートである。It is a flowchart which shows one Embodiment of this invention.

以下、本発明について説明する。本明細書においては濃度の%の値は特段の断わりのないかぎり質量パーセントを意味する。   The present invention will be described below. In this specification, the value of% of concentration means weight percent unless otherwise specified.

図1は、本発明の一実施形態を示すフローチャートである。   FIG. 1 is a flowchart showing an embodiment of the present invention.

図1において、本発明の実施形態にかかる方法は、タングステン(W)とバナジウム(V)とを含む脱硝触媒を破砕する工程である脱硝触媒の破砕工程(ステップS10)、破砕された脱硝触媒からVを浸出する工程である第一のV浸出工程(ステップS12)、浸出後液をCa塩でカルシウム塩沈殿させたCa塩沈殿工程(ステップS14)後、ギ酸又は酢酸などのカルボン酸でVを浸出する工程である第二のV浸出工程(ステップS16)、および浸出後液からVを回収する工程(ステップS18)を有する。   In FIG. 1, the method according to the embodiment of the present invention includes a denitration catalyst crushing step (step S10), which is a step of crushing a denitration catalyst containing tungsten (W) and vanadium (V), and from the crushed denitration catalyst. After the first V leaching step (step S12), which is a step of leaching V, and a Ca salt precipitation step (step S14) in which the solution after leaching is calcium salt precipitated with Ca salt, V is added with carboxylic acid such as formic acid or acetic acid. It has the 2nd V leaching process (step S16) which is a process to leach, and the process (step S18) which collects V from the solution after leaching.

ステップS10では、WとVを含む脱硝触媒を破砕する。なお本願明細書において「破砕」とは技術用語であって、対象物を砕いて小さいサイズの破片(chunk)を得るが、粒や粉になるほどまでには細かくしない(粉砕しない)ことを意味する。この破砕工程では、後述の第一のV浸出工程の前処理として、溶液内で撹拌されやすいように脱硝触媒のサイズを小さくすることを目的とするが、細かくしすぎる(粉砕)と、第一のV浸出工程の実施時に、難溶性のWも溶解しやすくなり、VとWとを効率よく分離するという観点からは好ましくない。このような観点から、この破砕後の脱硝触媒のサイズは、5mm〜50mm、好ましくは10mm〜30mmである。   In step S10, the denitration catalyst containing W and V is crushed. In the specification of the present application, “crushing” is a technical term, and means that the object is crushed to obtain small-sized pieces (chunk), but not so fine (not crushed) that it becomes grains or powder. . In this crushing step, as a pretreatment for the first V leaching step described later, the purpose is to reduce the size of the denitration catalyst so that it can be easily stirred in the solution. When performing the V leaching step, hardly soluble W is easily dissolved, which is not preferable from the viewpoint of efficiently separating V and W. From such a viewpoint, the size of the denitration catalyst after crushing is 5 mm to 50 mm, preferably 10 mm to 30 mm.

ステップS12では、ステップS10で破砕された脱硝触媒からVを浸出し、固液分離して第一の浸出残渣と第一の浸出後液とを得る。この脱硝触媒からのVの浸出に際して、Vの浸出率を90%以上、Wの浸出率を25%以下にすることが、VとWとを効率よく分離するという観点から好ましい。   In step S12, V is leached from the denitration catalyst crushed in step S10, and solid-liquid separation is performed to obtain a first leaching residue and a first leached liquid. When leaching V from the denitration catalyst, it is preferable that the leaching rate of V is 90% or more and the leaching rate of W is 25% or less from the viewpoint of efficiently separating V and W.

このような浸出を実現する一態様としては、水酸化ナトリウム(NaOH)水溶液を浸出液として用いるのであるが、このときのNaOHの濃度を1〜10%、好ましくは5〜10%であるアルカリ溶液を用いる。また、VとWとの水酸化ナトリウムに対する溶解度の差異を考慮し、Vは溶解するがWは溶解しにくい環境となるよう、浸出を温度40℃以下で行うことが好ましい。また、反応時間には特に制限はないが、Vを溶解させてWを溶解させないようにするという観点から、1時間以上3時間以下で行うことが好ましい。   As one mode for realizing such leaching, an aqueous solution of sodium hydroxide (NaOH) is used as the leaching solution. An alkaline solution having a NaOH concentration of 1 to 10%, preferably 5 to 10% at this time is used. Use. Considering the difference in solubility between V and W in sodium hydroxide, leaching is preferably performed at a temperature of 40 ° C. or lower so that V dissolves but W is difficult to dissolve. Further, the reaction time is not particularly limited, but it is preferably performed for 1 hour or more and 3 hours or less from the viewpoint of dissolving V and not dissolving W.

ステップS14では、ステップS12で得られた第一の浸出後液にカルシウム(Ca)塩を添加し、有価金属のカルシウム塩を沈殿させる。ここで使用されるCa塩としては、例えば、水酸化カルシウムCa(OH)2、塩化カルシウムCaCl2、硝酸カルシウムCa(NO3)2、などカルシウムイオン(Ca2+)を含むものを加えることで、上記のCa塩と反応し、NaとCaが置換してVおよびWはそれぞれVおよびWのカルシウム塩として析出させる。
Na2WO4+CaCl2→CaWO4+2NaCl
2NaVO3+CaCl2→Ca(VO32+2NaCl
2Na3VO4+3CaCl2→Ca3(VO42+6NaCl
In step S14, calcium (Ca) salt is added to the first leached solution obtained in step S12 to precipitate a calcium salt of valuable metals. Examples of the Ca salt used here include adding calcium ion (Ca 2+ ) such as calcium hydroxide Ca (OH) 2 , calcium chloride CaCl 2 , calcium nitrate Ca (NO 3 ) 2 , etc. It reacts with the above Ca salt, Na and Ca are substituted, and V and W are precipitated as calcium salts of V and W, respectively.
Na 2 WO 4 + CaCl 2 → CaWO 4 + 2NaCl
2NaVO 3 + CaCl 2 → Ca (VO 3 ) 2 + 2NaCl
2Na 3 VO 4 + 3CaCl 2 → Ca 3 (VO 4 ) 2 + 6NaCl

ステップS16では、ステップS14で得られた析出物にギ酸、酢酸、クエン酸、マレイン酸などやその酸無水物といったカルボン酸を添加して、Vを浸出する。このとき、浸出液のpHを4〜8、好ましくは6〜7とする。なお、Vは浸出後液(第二の浸出後液)中に入るが、Wはタングステン酸カルシウムの形態で浸出残渣(第二の浸出残渣)に残る。このようにして、第一のV浸出工程(ステップS12)にて、多少浸出したWを、Vから分離することができる。   In step S16, a carboxylic acid such as formic acid, acetic acid, citric acid, maleic acid, or its acid anhydride is added to the precipitate obtained in step S14, and V is leached. At this time, the pH of the leachate is 4-8, preferably 6-7. In addition, V enters into the liquid after leaching (second liquid after leaching), but W remains in the leaching residue (second leaching residue) in the form of calcium tungstate. In this way, W that has been leached somewhat in the first V leaching step (step S12) can be separated from V.

ステップS18では、ステップS16で得られた第二の浸出後液からVを、従来公知の方法にて回収する。   In step S18, V is recovered by a conventionally known method from the second post-leaching solution obtained in step S16.

具体的には、例えば第二の浸出後液を酸性、例えば硫酸酸性にしてpH2.0〜2.5程度にして、Ca2+をCaSO4として沈殿させて除去した後、アンモニアまたはアンモニウム塩、例えば水酸化アンモニウム、塩化アンモニウムを添加し、pHを6〜8にして、Vをメタバナジン酸アンモニウムとして沈殿させて固液分離により回収することができる。 Specifically, for example, after the second leaching solution is acidified, for example, sulfuric acid acidity to pH 2.0 to 2.5, and Ca 2+ is precipitated and removed as CaSO 4 , ammonia or ammonium salt, For example, ammonium hydroxide and ammonium chloride can be added to adjust the pH to 6 to 8, and V can be precipitated as ammonium metavanadate and recovered by solid-liquid separation.

上記のようにVを回収することで、Wとの溶解度の差に基づきVを優先的に(選択的に)回収することが可能となる。また併せて、第二の浸出後液ではV濃度が高く液量が少ないので、アンモニアやアンモニウム塩の使用量も少なく済み、環境負荷を抑えるという効果も奏することができる。さらには、Vに混入する不純物の量も、分配の法則に鑑みて減らすことが可能となる。   By collecting V as described above, it becomes possible to collect V preferentially (selectively) based on the difference in solubility with W. In addition, since the second leaching solution has a high V concentration and a small amount of liquid, the amount of ammonia and ammonium salt used can be reduced and the environmental load can be reduced. Furthermore, the amount of impurities mixed into V can be reduced in view of the distribution law.

一方、ステップS12で得られた第一の浸出残渣から、Wが浸出される(ステップS20)。   On the other hand, W is leached from the first leaching residue obtained in step S12 (step S20).

ステップS20では、第一の浸出残渣を、NaOHの濃度が10%以上であるアルカリ溶液を用いて40℃よりも高い温度で浸出する。
WO3+2NaOH→Na2WO4+H2
In step S20, the first leaching residue is leached at a temperature higher than 40 ° C. using an alkaline solution having a NaOH concentration of 10% or more.
WO 3 + 2NaOH → Na 2 WO 4 + H 2 O

ステップS22では、ステップS20で得られた浸出後液にカルシウム(Ca)塩を添加し、Wのカルシウム塩を沈殿させる。ここで使用されるCa塩としては、水酸化カルシウムCa(OH)2、塩化カルシウムCaCl2、硝酸カルシウムCa(NO3)2、などカルシウムイオン(Ca2+)を含むものが挙げられる。ここで、上述と同様に、WはWのカルシウム塩として析出させる。
Na2WO4+CaCl2→CaWO4+2NaCl
In step S22, a calcium (Ca) salt is added to the post-leaching solution obtained in step S20 to precipitate W calcium salt. Examples of the Ca salt used herein include those containing calcium ions (Ca 2+ ) such as calcium hydroxide Ca (OH) 2 , calcium chloride CaCl 2 , calcium nitrate Ca (NO 3 ) 2 , and the like. Here, as described above, W is precipitated as a calcium salt of W.
Na 2 WO 4 + CaCl 2 → CaWO 4 + 2NaCl

ステップS24では、ステップS22で得られた沈殿物を回収し、CaWO4を得る。なお、ステップS14においても同様にタングステン酸のCa塩による沈殿が行われるため、ステップS16で得られる第二の浸出残渣に合わせて回収して、CaWO4を得てもよい。 In step S24, to collect the resulting precipitate in step S22, to obtain a CaWO 4. Since that similarly performed by precipitation with Ca salts of tungstic acid also in step S14, and recovered in accordance with the second leach residue obtained in step S16, may be obtained CaWO 4.

ステップS26では、ステップS24で回収したCaWO4からWを、従来公知の方法にて回収する。 In step S26, W from CaWO 4 recovered in step S24 is recovered by a conventionally known method.

具体的には、例えば回収したCaWO4を、塩酸を用いて、例えば80℃にて浸出し、タングステン酸(一水和物:H2WO4)を得る。このとき、カルシウムはカルシウムイオン(Ca2+)として液中に残る。続いて、pHを4程度に制御して、タングステンをW6+として保持してタングステン酸塩の再結晶を防ぐようにする。そこへ、過剰の水酸化アンモニウムを添加し、H2WO4を飽和アンモニウム溶液(pHは11.0超)にて保持するとともに、カルシウムおよび他の不純物を沈殿させて、除去する。不純物が除去されたアンモニウム溶液を蒸発乾固させてアンモニウムパラタングステン酸塩(APT)が結晶化により得られる。
CaWO4+2HCl→H2WO4+CaCl2
H2WO4+2NH3・H2O→(NH42WO4+2H2
12(NH42WO4→5(NH42O・12WO3・5H2O(APT)+14NH3+2H2
Specifically, for example, recovered CaWO 4 is leached with hydrochloric acid at, for example, 80 ° C. to obtain tungstic acid (monohydrate: H 2 WO 4 ). At this time, calcium remains in the liquid as calcium ions (Ca 2+ ). Subsequently, the pH is controlled to about 4 to keep tungsten as W 6+ to prevent recrystallization of tungstate. Thereto, excess ammonium hydroxide is added to keep H 2 WO 4 in a saturated ammonium solution (pH> 11.0) and precipitate and remove calcium and other impurities. The ammonium solution from which impurities have been removed is evaporated to dryness, and ammonium paratungstate (APT) is obtained by crystallization.
CaWO 4 + 2HCl → H 2 WO 4 + CaCl 2
H2WO 4 + 2NH 3 · H 2 O → (NH 4) 2 WO 4 + 2H 2 O
12 (NH 4 ) 2 WO 4 → 5 (NH 4 ) 2 O · 12 WO 3 · 5H 2 O (APT) + 14NH 3 + 2H 2 O

上述のように二段階の浸出残渣からWを回収することで、Vを優先的に回収していることの反作用として、Wを高純度で得られるという効果を奏することができる。   By recovering W from the two-stage leaching residue as described above, it is possible to obtain an effect that W can be obtained with high purity as a reaction to recovering V preferentially.

以下に本発明の実施例を示すが、以下の実施例に本発明が限定されることを意図するものではない。   Examples of the present invention are shown below, but the present invention is not intended to be limited to the following examples.

(実施例1)バナジウムの浸出(第一のV浸出工程)
四角目ハニカム状の脱硝触媒(五酸化バナジウム:0.5質量%、三酸化タングステン:10±5質量%、二酸化チタン:89.5±5質量%、酸性白土:3±3質量%、ガラス繊維:7±3質量%)を破砕して、10mm〜30mm程度の大きさになるまで破砕した。
(Example 1) Vanadium leaching (first V leaching step)
Square honeycomb honeycomb denitration catalyst (vanadium pentoxide: 0.5% by mass, tungsten trioxide: 10 ± 5% by mass, titanium dioxide: 89.5 ± 5% by mass, acidic clay: 3 ± 3% by mass, glass fiber : 7 ± 3 mass%) was crushed to a size of about 10 mm to 30 mm.

続いて、5%、10%、25%の濃度の水酸化ナトリウム水溶液300mlに、破砕資料を30gずつ加え、撹拌した。それぞれの濃度の水酸化ナトリウム水溶液を用いた浸出処理を室温(約23℃)、加温状態(約54℃)の両方にて行って、各浸出後液について1時間後、3時間後、6時間後、24時間後(および室温のサンプルについては48時間後)に30mlずつサンプリングを行って、誘導結合プラズマ(ICP)発光分析法によりタングステン(W)およびバナジウム(V)の含有量を測定した。結果を表1、表2に示す。   Subsequently, 30 g of the crushed material was added to 300 ml of 5%, 10% and 25% sodium hydroxide aqueous solution and stirred. The leaching treatment using each concentration of sodium hydroxide aqueous solution was performed at both room temperature (about 23 ° C.) and warmed state (about 54 ° C.). Sampling was performed 30 ml after 24 hours (and 48 hours for samples at room temperature), and the contents of tungsten (W) and vanadium (V) were measured by inductively coupled plasma (ICP) emission spectrometry. . The results are shown in Tables 1 and 2.

表1、表2によれば、バナジウムについては、水酸化ナトリウム水溶液の濃度、浸出温度に関係なく、ほぼ100%の高い浸出率を示した。一方で、タングステンについては、水酸化ナトリウム水溶液の濃度が5%、10%の場合、室温、54℃ともに30%程度の浸出率を示し、さらに水酸化ナトリウム水溶液の濃度が25%の場合、常温、54℃ともに40%程度の浸出率を示した。   According to Tables 1 and 2, vanadium exhibited a high leaching rate of almost 100% regardless of the concentration of sodium hydroxide aqueous solution and the leaching temperature. On the other hand, with respect to tungsten, when the concentration of the aqueous sodium hydroxide solution is 5% and 10%, the leaching rate is about 30% at both room temperature and 54 ° C. Further, when the concentration of the aqueous sodium hydroxide solution is 25%, The leaching rate was about 40% at 54 ° C.

(実施例2)Ca塩によるカルシウム塩沈殿
続いて、実施例1で得られた浸出後液60mLに水40mLを追加した溶液に対して、塩化カルシウムをWに対して1当量、10当量、54当量にて添加して、室温で3時間撹拌した。浸出後液に含まれるバナジウム、タングステンは、それぞれ塩であるバナジウム酸カルシウム、タングステン酸カルシウムとして沈殿し、この沈殿物を回収し、そのろ液を誘導結合プラズマ(ICP)発光分析法によりタングステン(W)およびバナジウム(V)の含有量を測定した。
(Example 2) Calcium salt precipitation with Ca salt Subsequently, with respect to a solution obtained by adding 40 mL of water to 60 mL of the post-leaching solution obtained in Example 1, calcium chloride is 1 equivalent to W, 10 equivalents, 54 Equivalent amount was added and stirred at room temperature for 3 hours. Vanadium and tungsten contained in the solution after leaching are precipitated as calcium vanadate and calcium tungstate, which are salts, respectively, and the precipitate is collected, and the filtrate is obtained by inductively coupled plasma (ICP) emission spectrometry. ) And vanadium (V) content.

ろ液中のW、Vの各含有量と、残留率を測定し、結果を表3に示す。   Each content of W and V and the residual ratio in the filtrate were measured, and the results are shown in Table 3.

(実施例3)バナジウムの浸出(第二のV浸出工程)〜V回収
純水100mlに、実施例2で得られた塩に相当する試料10gを加えた溶液を二つ用意し、溶液1にギ酸を、溶液2に酢酸をそれぞれ滴下し、pH6に調整した。酸の滴下を開始してpHを下げていくと液が黄色に変化し、その後pHが上昇に転じて液が白くなるので、2時間撹拌しながら酸を滴下してpHを6に維持したところ、溶液1、溶液2ともに6.3であった。さらに、1時間静置し、ろ過し残渣を乾燥させ、第二の浸出残渣を回収した。
(Example 3) Vanadium leaching (second V leaching step) to V recovery Two solutions were prepared by adding 10 g of a sample corresponding to the salt obtained in Example 2 to 100 ml of pure water. Formic acid was added dropwise to Solution 2 and acetic acid was adjusted to pH 6. When the acid dropping is started and the pH is lowered, the liquid turns yellow, and then the pH starts to rise and the liquid becomes white. Therefore, the acid was dropped while maintaining the pH at 6 while stirring for 2 hours. Both solution 1 and solution 2 were 6.3. Furthermore, it left still for 1 hour, it filtered, the residue was dried, and the 2nd leaching residue was collect | recovered.

また、ギ酸による浸出、酢酸による浸出の差異を把握するため、誘導結合プラズマ(ICP)発光分析法により第二の浸出後液中のタングステン(W)の含有量を測定した。結果を表5に示す。   In order to grasp the difference between leaching with formic acid and leaching with acetic acid, the content of tungsten (W) in the second leached solution was measured by inductively coupled plasma (ICP) emission spectrometry. The results are shown in Table 5.

(実施例4)タングステンの浸出−Ca塩による沈殿(W浸出工程)
実施例1で得られた第一の浸出残渣に、10%以上、例えば10%、25%の濃度の水酸化ナトリウム水溶液300mlを添加し、撹拌する。このときの液温を40℃以上、例えば50℃程度にて行って、タングステン(W)を浸出する。
続いて、Wに浸出後液に対して、塩化カルシウムを10当量以上となるよう添加して、室温で3時間撹拌する。浸出後液に含まれるタングステンは、タングステン酸カルシウムとして沈殿し、この沈殿物を回収する。
(Example 4) Tungsten leaching-precipitation with Ca salt (W leaching step)
To the first leaching residue obtained in Example 1, 300 ml of an aqueous sodium hydroxide solution having a concentration of 10% or more, for example, 10% or 25% is added and stirred. The liquid temperature at this time is 40 ° C. or higher, for example, about 50 ° C., and tungsten (W) is leached.
Subsequently, calcium chloride is added to the liquid after leaching in W so as to be 10 equivalents or more, and the mixture is stirred at room temperature for 3 hours. Tungsten contained in the liquid after leaching is precipitated as calcium tungstate, and this precipitate is collected.

(実施例5)Wの回収
実施例3の第二のV浸出により得られる残渣(第二の浸出残渣)、および実施例4で得られる沈殿物の少なくとも一方からタングステン酸カルシウム(CaWO4)を回収し、塩酸酸性にし、80℃にて浸出し、タングステン酸一水和物を得る。その後、pHを4程度に維持し、過剰の水酸化アンモニウムを添加し、生じた沈殿物をろ過により除去する。沈殿物を除去したアンモニウム溶液を蒸発乾固させてアンモニウムパラタングステン酸塩(APT)を結晶化させて回収する。
(Example 5) Recovery of W Calcium tungstate (CaWO4) is recovered from at least one of the residue obtained by the second V leaching of Example 3 (second leaching residue) and the precipitate obtained in Example 4 Acidified with hydrochloric acid and leached at 80 ° C. to obtain tungstic acid monohydrate. Thereafter, the pH is maintained at about 4, excess ammonium hydroxide is added, and the resulting precipitate is removed by filtration. The ammonium solution from which the precipitate has been removed is evaporated to dryness to crystallize and recover ammonium paratungstate (APT).

Claims (7)

タングステン(W)とバナジウム(V)とを含む脱硝触媒を破砕する工程と、
破砕された脱硝触媒からVを浸出する第一のV浸出工程と、
浸出後液にCa塩を添加してVをカルシウム塩として沈殿させた後、カルボン酸でVを浸出する第二のV浸出工程と、
浸出後液からVを回収する工程と
を有することを特徴とする、脱硝触媒からVを優先的に回収する方法。
Crushing a denitration catalyst containing tungsten (W) and vanadium (V);
A first V leaching step of leaching V from the crushed denitration catalyst;
A second V leaching step of leaching V with carboxylic acid after adding Ca salt to the solution after leaching to precipitate V as a calcium salt;
And a step of recovering V from the liquid after leaching, and a method of preferentially recovering V from the denitration catalyst.
請求項1に記載の方法において、WとVを含む脱硝触媒を破砕する工程後の脱硝触媒のサイズが、5mm〜50mmであることを特徴とする方法。   The method according to claim 1, wherein the size of the denitration catalyst after the step of crushing the denitration catalyst containing W and V is 5 mm to 50 mm. 前記破砕された脱硝触媒からVを浸出する第一のV浸出工程におけるVの浸出率を90%以上、Wの浸出率を25%以下にすることを特徴とする請求項1に記載の方法。   2. The method according to claim 1, wherein a leaching rate of V is 90% or more and a leaching rate of W is 25% or less in the first V leaching step of leaching V from the crushed denitration catalyst. 前記破砕された脱硝触媒からVを浸出する第一のV浸出工程において、NaOHの濃度が5〜10%であるアルカリ溶液を用いて温度40℃以下で浸出することを特徴とする請求項1〜3のいずれか一項に記載の方法。   The first V leaching step of leaching V from the crushed denitration catalyst is leached at a temperature of 40 ° C or lower using an alkaline solution having a NaOH concentration of 5 to 10%. 4. The method according to any one of 3. タングステン(W)とバナジウム(V)とを含む脱硝触媒を破砕する工程と、
破砕された脱硝触媒からVを浸出する第一のV浸出工程と、
当該破砕された脱硝触媒からVを浸出する第一のV浸出工程の残渣からWを浸出する工程と、
浸出後液にCa塩を添加する工程と、
タングステン酸カルシウムとしてWを回収する工程と
を有することを特徴とする、脱硝触媒からWを高純度で回収する方法。
Crushing a denitration catalyst containing tungsten (W) and vanadium (V);
A first V leaching step of leaching V from the crushed denitration catalyst;
Leaching W from the residue of the first V leaching step of leaching V from the crushed denitration catalyst;
Adding Ca salt to the liquid after leaching;
A process for recovering W with high purity from a denitration catalyst, comprising the step of recovering W as calcium tungstate.
前記破砕された脱硝触媒からVを浸出する第一のV浸出工程の残渣を、NaOHの濃度が10%以上であるアルカリ溶液を用いて40℃よりも高い温度で浸出することを特徴とする請求項5に記載の方法。   The residue of the first V leaching step of leaching V from the crushed denitration catalyst is leached at a temperature higher than 40 ° C. using an alkaline solution having a NaOH concentration of 10% or more. Item 6. The method according to Item 5. 請求項1に記載のギ酸又は酢酸でVを浸出する第二のV浸出工程の残渣、および請求項5に記載の浸出後液をCa塩でカルシウム塩沈殿させる工程の残渣の少なくとも一方からタングステン酸カルシウムを回収することを特徴とする方法。   The tungstic acid from at least one of the residue of the second V leaching step of leaching V with formic acid or acetic acid according to claim 1 and the residue of the step of calcium salt precipitation of the post-leaching solution with Ca salt according to claim 5 A method characterized by recovering calcium.
JP2016073339A 2016-03-31 2016-03-31 Method of recovering vanadium from denitration catalyst Pending JP2017179562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016073339A JP2017179562A (en) 2016-03-31 2016-03-31 Method of recovering vanadium from denitration catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016073339A JP2017179562A (en) 2016-03-31 2016-03-31 Method of recovering vanadium from denitration catalyst

Publications (1)

Publication Number Publication Date
JP2017179562A true JP2017179562A (en) 2017-10-05

Family

ID=60003783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016073339A Pending JP2017179562A (en) 2016-03-31 2016-03-31 Method of recovering vanadium from denitration catalyst

Country Status (1)

Country Link
JP (1) JP2017179562A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109652664A (en) * 2018-12-18 2019-04-19 信丰华锐钨钼新材料有限公司 A kind of method of tungsten in high efficiency extraction waste denitration catalyst
CN110218882A (en) * 2019-05-31 2019-09-10 中国地质调查局武汉地质调查中心(中南地质科技创新中心) Interior circulation second level counterflow leaching extraction vanadium method based on Rock coal containing alum
CN111534698A (en) * 2020-06-12 2020-08-14 攀钢集团研究院有限公司 Method for preparing vanadium product from sodium vanadium solution without ammonium precipitation
CN112609079A (en) * 2020-12-15 2021-04-06 武汉工程大学 Treatment and recovery method for regenerated waste liquid of inactivated denitration catalyst and application thereof
CN115194163A (en) * 2022-07-15 2022-10-18 北京科技大学 Method for preparing titanium-tungsten powder by recovering waste SCR denitration catalyst
CN115950845A (en) * 2023-03-09 2023-04-11 国能龙源环保有限公司 Method for determining tetravalent vanadium content in pickle liquor of waste denitration catalyst

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109652664A (en) * 2018-12-18 2019-04-19 信丰华锐钨钼新材料有限公司 A kind of method of tungsten in high efficiency extraction waste denitration catalyst
CN110218882A (en) * 2019-05-31 2019-09-10 中国地质调查局武汉地质调查中心(中南地质科技创新中心) Interior circulation second level counterflow leaching extraction vanadium method based on Rock coal containing alum
CN111534698A (en) * 2020-06-12 2020-08-14 攀钢集团研究院有限公司 Method for preparing vanadium product from sodium vanadium solution without ammonium precipitation
CN112609079A (en) * 2020-12-15 2021-04-06 武汉工程大学 Treatment and recovery method for regenerated waste liquid of inactivated denitration catalyst and application thereof
CN115194163A (en) * 2022-07-15 2022-10-18 北京科技大学 Method for preparing titanium-tungsten powder by recovering waste SCR denitration catalyst
CN115194163B (en) * 2022-07-15 2023-05-30 北京科技大学 Method for preparing titanium tungsten powder by recycling waste SCR denitration catalyst
CN115950845A (en) * 2023-03-09 2023-04-11 国能龙源环保有限公司 Method for determining tetravalent vanadium content in pickle liquor of waste denitration catalyst

Similar Documents

Publication Publication Date Title
JP2017179562A (en) Method of recovering vanadium from denitration catalyst
JP6955621B2 (en) Selective recovery method of valuable metals from waste denitrification catalyst by alkaline melting
CN104831075B (en) A kind of vanadium of useless vanadium molybdenum system SCR catalyst, molybdenum are separated and method of purification
RU2456241C2 (en) Method of producing vanadium oxide through extraction
JP5151072B2 (en) Method for recovering metal constituting electrode from lithium battery
WO2017208471A1 (en) Method for producing vanadium compound, method for producing vanadium solution, and method for producing redox flow battery electrolytic solution
JP6352669B2 (en) Lithium-ion battery waste treatment method
CN106048230B (en) The separation of tungsten and vanadium, recovery method in a kind of useless SCR denitration
CN111485106A (en) Method for recovering titanium, vanadium and tungsten in waste denitration catalyst
CN104263946A (en) Method for recovering tungsten, vanadium and titanium from waste SCR (selective catalytic reduction) denitration catalyst
JP5495418B2 (en) Method for recovering manganese
JP4339647B2 (en) Method for producing tetravalent vanadyl sulfate aqueous solution
EA034318B1 (en) Method for recovering ash from waste incineration
CN111575478B (en) Method for separating metal in heavy oil
WO2020250989A1 (en) Method and apparatus for producing vanadium compound, and method and apparatus for producing redox-flow battery electrolyte
CN106947872A (en) method for purifying zinc oxide
CN111778398A (en) Method for extracting vanadium and tungsten from waste SCR denitration catalyst
JP6909826B2 (en) A method for producing a vanadium compound, a method for producing an electrolytic solution for a redox flow battery, an apparatus for producing a vanadium compound, and an apparatus for producing an electrolytic solution for a redox flow battery.
JP2017179563A (en) Method for treating denitration catalyst
CN103880630B (en) A kind of scrap lead cream is used to prepare high-purity lead acetate and the method for nanometer Hydrocerussitum (Ceruse)
JP4859970B2 (en) Molybdenum refining method
US7718147B2 (en) Chemical beneficiation of raw material containing tantalum-niobium
WO2020138137A1 (en) Method for purifying vanadium oxide
JP6860628B2 (en) Vanadium compound manufacturing method and manufacturing equipment, and redox flow battery electrolyte manufacturing method and manufacturing equipment
Han et al. Preparation of V 2 O 5 from converter slag containing vanadium