JPH0632618A - Purification of metal chloride - Google Patents

Purification of metal chloride

Info

Publication number
JPH0632618A
JPH0632618A JP20945292A JP20945292A JPH0632618A JP H0632618 A JPH0632618 A JP H0632618A JP 20945292 A JP20945292 A JP 20945292A JP 20945292 A JP20945292 A JP 20945292A JP H0632618 A JPH0632618 A JP H0632618A
Authority
JP
Japan
Prior art keywords
chloride
impurities
metal chloride
metal
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20945292A
Other languages
Japanese (ja)
Inventor
Shinji Tazaki
真司 田崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP20945292A priority Critical patent/JPH0632618A/en
Publication of JPH0632618A publication Critical patent/JPH0632618A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B9/00General methods of preparing halides
    • C01B9/02Chlorides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/48Halides, with or without other cations besides aluminium
    • C01F7/56Chlorides
    • C01F7/62Purification

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Water Treatments (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PURPOSE:To easily obtain a high-purity chloride at a low cost from a metal chloride containing impurities such as iron, cobalt and copper without using hydrochloric acid. CONSTITUTION:A metal chloride containing a small amount of impurity is dissolved in water at a concentration to attain a chlorine ion concentration of >=6mol/L and the impurities in the metal chloride are separated by extracting with a solvent.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金属塩化物中に含有す
る微量の不純物を分離、除去し、高純度の金属塩化物を
得る方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for separating and removing a trace amount of impurities contained in a metal chloride to obtain a high-purity metal chloride.

【0002】[0002]

【従来の技術】従来、塩化ニッケル,塩化アルミニウム
等の金属塩化物中に50〜100ppmの範囲で微量に
含有する鉄,コバルト,銅等の不純物を分離、除去し
て、高純度の金属塩化物を得る方法としては、例えば金
属塩化物を塩酸水溶液中に溶解し、不純物を塩化物錯体
に転換せしめた後、陰イオン交換樹脂に不純物を吸着せ
しめる方法が一般的である。
2. Description of the Related Art Conventionally, a high-purity metal chloride is obtained by separating and removing impurities such as iron, cobalt, and copper contained in a trace amount of 50 to 100 ppm in a metal chloride such as nickel chloride and aluminum chloride. As a method for obtaining the above, for example, a method in which a metal chloride is dissolved in an aqueous hydrochloric acid solution to convert impurities into a chloride complex and then the impurities are adsorbed to an anion exchange resin is generally used.

【0003】[0003]

【発明が解決しようとする課題】しかし、塩酸を用いる
方法は、塩酸中に含まれる不純物がイオン交換樹脂によ
って除去されず、このため金属塩化物を汚染したり、イ
オン交換操作の後工程において塩酸を除去しなければな
らない等の欠点がある。一方、赤外線加熱等により蒸留
して精製した高純度塩酸を用いるときは、塩酸の費用が
高く、また作業の際に危険性が高い等の欠点もある。
However, in the method using hydrochloric acid, the impurities contained in the hydrochloric acid are not removed by the ion exchange resin, so that the metal chloride is contaminated and the hydrochloric acid is used in the subsequent step of the ion exchange operation. Has the drawback that it must be removed. On the other hand, when using high-purity hydrochloric acid distilled and purified by infrared heating or the like, there are drawbacks such that the cost of hydrochloric acid is high and the danger during the work is high.

【0004】本発明は塩酸を用いることなく、低い費用
で簡単に金属塩化物を高純度に精製する方法を提供する
ことを目的とする。
An object of the present invention is to provide a method for easily purifying metal chlorides to high purity at low cost without using hydrochloric acid.

【0005】[0005]

【課題を解決するための手段】本発明は、微量の不純物
を含有する金属塩化物を、塩素イオン濃度が6モル/l
以上となるように、水に溶解した後、有機溶媒法により
金属塩化物中の不純物を分離する点に特徴がある。また
本発明の方法では、金属塩化物として塩化ニッケル,塩
化アルミニウム等が挙げられ、不純物として鉄,コバル
ト,銅又はこれら二種以上の金属イオン等が対象にな
る。
According to the present invention, a metal chloride containing a trace amount of impurities has a chloride ion concentration of 6 mol / l.
As described above, it is characterized in that impurities in the metal chloride are separated by the organic solvent method after being dissolved in water. Further, in the method of the present invention, nickel chloride, aluminum chloride and the like can be mentioned as metal chlorides, and iron, cobalt, copper or metal ions of two or more of these can be used as impurities.

【0006】[0006]

【作用】本発明は、金属塩化物中に含有する微量の不純
物の存在形態が塩化物になっていることから、金属塩化
物を水に溶解するとき、不純物も簡単に水に溶解し、塩
化物錯体になることから見い出されたものである。例え
ば図1に示すように、塩化ニッケル中に含有する微量の
鉄は塩化ニッケル水溶液中の塩素イオン濃度が高くなる
にしたがって有機溶媒層中に抽出され易くなり、塩素イ
オン濃度が6モル/l以上の範囲では著しく高く抽出さ
れる。
According to the present invention, since a trace amount of impurities contained in metal chlorides is chloride, when the metal chlorides are dissolved in water, the impurities are easily dissolved in water to form chlorides. It was discovered from the fact that it becomes a substance complex. For example, as shown in FIG. 1, a trace amount of iron contained in nickel chloride is more easily extracted into the organic solvent layer as the chloride ion concentration in the nickel chloride aqueous solution becomes higher, and the chloride ion concentration is 6 mol / l or more. In the range of, the extraction is extremely high.

【0007】また、本発明の方法では、高濃度の金属塩
化物水溶液について不純物を高い効率で分離、除去でき
るので、不純物を除去した後、蒸発、濃縮、晶析結晶化
などの操作により高純度金属塩化物を簡単に得ることが
できる。塩素イオン濃度が6モル/l以上の範囲で水に
溶解する金属塩化物としては、ニッケル,アルミニウム
が好ましく、水に溶解し分離し易い不純物としては、
鉄,コバルト,銅が好ましい。
In addition, according to the method of the present invention, impurities can be separated and removed with high efficiency from a high-concentration metal chloride aqueous solution. The metal chloride can be easily obtained. Nickel and aluminum are preferable as the metal chlorides that dissolve in water when the chlorine ion concentration is in the range of 6 mol / l or more, and as the impurities that are easily dissolved and separated in water,
Iron, cobalt and copper are preferred.

【0008】[0008]

【実施例】塩化ニッケル及び塩化第二鉄を、塩素イオン
濃度として各々2モル/l,4モル/l,6モル/l,
8モル/lになるように、また鉄濃度として各々50p
pmになるように水に溶解した。各々の溶液から20m
lを分液ロート中に採取し、これらにメチルイソブチル
ケトン10mlを加えた後、2分間振とうし、10分間
静置して有機層と水層の二層を得た。水層を除いた後、
有機層中に純水を加えて振とうし、鉄を水層中に逆抽出
した。水層中に逆抽出された鉄を吸光光度法により測定
し、また有機層中の鉄が完全に逆抽出されたことを確か
めた後塩化ニッケル水溶液中の鉄の除去率を求めたとこ
ろ各々3%,26%,86%,93%であった。これら
の結果を図1に示す。
EXAMPLE Nickel chloride and ferric chloride were used as chlorine ion concentrations of 2 mol / l, 4 mol / l, 6 mol / l, and
8 mol / l and iron concentration of 50 p each
It was dissolved in water to pm. 20m from each solution
l was collected in a separating funnel, 10 ml of methyl isobutyl ketone was added thereto, and the mixture was shaken for 2 minutes and allowed to stand for 10 minutes to obtain two layers of an organic layer and an aqueous layer. After removing the water layer,
Pure water was added to the organic layer and shaken to back extract iron into the aqueous layer. The iron back-extracted in the aqueous layer was measured by absorptiometry, and after confirming that the iron in the organic layer was completely back-extracted, the removal rate of iron in the nickel chloride aqueous solution was determined to be 3 each. %, 26%, 86%, 93%. The results are shown in FIG.

【0009】図1より塩化ニッケル水溶液中の塩素イオ
ン濃度が6モル/l以上の範囲で不純物である鉄の除去
率が著しく高くなることが判る。塩化ニッケルに代えて
塩化アルミニウムを用いるときも同様の結果が得られ、
また、鉄に代えてコバルト,銅又はこれら二種以上の金
属イオンを用いるときも同様の結果が得られた。
It can be seen from FIG. 1 that the removal rate of iron as an impurity is significantly increased when the chloride ion concentration in the nickel chloride aqueous solution is in the range of 6 mol / l or more. Similar results are obtained when using aluminum chloride instead of nickel chloride,
Similar results were obtained when cobalt, copper or two or more kinds of metal ions were used instead of iron.

【0010】[0010]

【発明の効果】本発明によれば、微量の鉄,コバルト,
銅等を含有する金属塩化物から、低コストで簡単に高純
度金属塩化物を得ることが可能になる。
According to the present invention, trace amounts of iron, cobalt,
A high-purity metal chloride can be easily obtained at low cost from a metal chloride containing copper or the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による塩化ニッケル溶液中の塩素イオン
濃度と鉄の除去百分率の関係を示す図である。
FIG. 1 is a diagram showing the relationship between the concentration of chlorine ions in a nickel chloride solution and the percentage of iron removed according to the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 微量の不純物を含有する金属塩化物を、
塩素イオン濃度が6モル/l以上となるように、水に溶
解した後、溶媒抽出法により金属塩化物中の不純物を分
離することを特徴とする金属塩化物の精製方法。
1. A metal chloride containing a trace amount of impurities,
A method for purifying a metal chloride, which comprises dissolving impurities in water so that the chloride ion concentration is 6 mol / l or more and then separating impurities in the metal chloride by a solvent extraction method.
【請求項2】 金属塩化物が塩化ニッケル又は塩化アル
ミニウムであり、不純物が鉄,コバルト,銅又はこれら
二種以上の金属イオンからなることを特徴とする請求項
1記載の精製方法。
2. The purification method according to claim 1, wherein the metal chloride is nickel chloride or aluminum chloride, and the impurities are iron, cobalt, copper, or a metal ion of two or more kinds thereof.
JP20945292A 1992-07-15 1992-07-15 Purification of metal chloride Pending JPH0632618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20945292A JPH0632618A (en) 1992-07-15 1992-07-15 Purification of metal chloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20945292A JPH0632618A (en) 1992-07-15 1992-07-15 Purification of metal chloride

Publications (1)

Publication Number Publication Date
JPH0632618A true JPH0632618A (en) 1994-02-08

Family

ID=16573110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20945292A Pending JPH0632618A (en) 1992-07-15 1992-07-15 Purification of metal chloride

Country Status (1)

Country Link
JP (1) JPH0632618A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007509885A (en) * 2003-10-30 2007-04-19 ビーエーエスエフ アクチェンゲゼルシャフト Use of nickel (II) halide dried by azeotropic distillation
JP2013530909A (en) * 2010-04-27 2013-08-01 チャイナ シェンフア エナジー カンパニー リミテッド Process for preparing industrial alumina using fluidized bed fly ash
WO2017126442A1 (en) * 2016-01-21 2017-07-27 Jx金属株式会社 Anhydrous nickel chloride and method for producing same
KR101973658B1 (en) * 2018-05-24 2019-04-29 한국지질자원연구원 Method for producing high purity aluminum using aqueous aluminium chloride solution

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007509885A (en) * 2003-10-30 2007-04-19 ビーエーエスエフ アクチェンゲゼルシャフト Use of nickel (II) halide dried by azeotropic distillation
JP2013530909A (en) * 2010-04-27 2013-08-01 チャイナ シェンフア エナジー カンパニー リミテッド Process for preparing industrial alumina using fluidized bed fly ash
WO2017126442A1 (en) * 2016-01-21 2017-07-27 Jx金属株式会社 Anhydrous nickel chloride and method for producing same
KR101973658B1 (en) * 2018-05-24 2019-04-29 한국지질자원연구원 Method for producing high purity aluminum using aqueous aluminium chloride solution

Similar Documents

Publication Publication Date Title
JP3122948B1 (en) Method for producing high purity cobalt
JPH0632618A (en) Purification of metal chloride
JPS5928614B2 (en) Method for separating and purifying platinum and/or palladium
JPH06279883A (en) Method for separating and recovering lithium
JPS5842737A (en) Recovering method for gallium
JPH02283614A (en) Removal of thorium from raffinate
JPS6037059B2 (en) Method for purifying gallium solutions by liquid-liquid extraction with quaternary ammonium salts
JP2018070927A (en) Method for recovering bismuth
JPH11229052A (en) Method of separating and removing platinum and palladium
RU2211871C1 (en) Method of processing loparite concentrate
CN105253866A (en) Method for removing organic matter from ketazine process hydrazine hydrate
JPH04118593A (en) Method of recovering plutonium
JPS5319130A (en) Recovering and separating method of noble metals
JP4395589B2 (en) Method for selectively separating and recovering uranium (VI) present in aqueous solution with branched N, N-dialkylmonoamide
JPH0375617B2 (en)
JP2009102679A (en) Method for recovering indium
JPS6049139B2 (en) How to collect tin
CA2318823A1 (en) Solvent extraction of ferric chloride
JPS6112010B2 (en)
KR20150024019A (en) Method of recovery of high purity platinum from a leaching solution of spent catalyst
RU2156818C1 (en) Method of preparing platinum group metals from tin- containing solution
JP3164262B2 (en) Noble metal extractant and method for separating noble metal using the extractant
JPS63118025A (en) Method for removing or recovering silver
WO2002002833A3 (en) Preparation of pure ferric chloride from hydrochloric acid solutions by solvent extraction
JP4179673B2 (en) Method for concentrating aqueous solution containing heavy metal elements