JPS5842737A - Recovering method for gallium - Google Patents

Recovering method for gallium

Info

Publication number
JPS5842737A
JPS5842737A JP14135081A JP14135081A JPS5842737A JP S5842737 A JPS5842737 A JP S5842737A JP 14135081 A JP14135081 A JP 14135081A JP 14135081 A JP14135081 A JP 14135081A JP S5842737 A JPS5842737 A JP S5842737A
Authority
JP
Japan
Prior art keywords
gallium
ion exchange
exchange resin
resin
chelating ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14135081A
Other languages
Japanese (ja)
Other versions
JPH0121212B2 (en
Inventor
Hirotaka Amimoto
網本 博孝
Toshimi Shibata
柴田 俊美
Masahide Hirai
平井 雅英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP14135081A priority Critical patent/JPS5842737A/en
Publication of JPS5842737A publication Critical patent/JPS5842737A/en
Publication of JPH0121212B2 publication Critical patent/JPH0121212B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To efficiently recover Ga from an Al salt soln. contg. Ga by passing the soln. through a column packed with a chelating ion exchange resin at a specified space velocity or below to allow Ga to be adsorbed on the resin and eluting the Ga. CONSTITUTION:An Al salt soln. contg. Ga such as a soln. of an Al compound manufactured by the Bayer process using Al(OH)3 or alumina as starting material is adjusted to <=3.5pH, and the soln. is passed through a column packed with a chelating ion exchange resin at <= about 5.01/hr space velocity (SV) to allow Ga to be adsorbed on the resin. The chelating ion exchange resin is prepared by introducing an aminocarboxylic acid such as iminodiacetic acid as a functional group into phenol, styrene or epoxy resin. The adsorbed Ga is eluted with >=6 N hydrochloric acid or the like.

Description

【発明の詳細な説明】 本発明は、ガリウムの回収方法に関するものである。[Detailed description of the invention] The present invention relates to a method for recovering gallium.

ガリウムは近来、電子技術の発展などにより。Gallium has been produced in recent years due to the development of electronic technology.

1要が増加しつつあるが、ガリウムあるいはガリウム化
合物を主成分とする鉱石はいまだ発見さ、れておらず、
他の金属の鉱石などに微量随伴している。例えば、アル
ミニウムの磁石であるボーキサイトにもガリウムは微量
含有されている。また。
Although the number of minerals containing gallium or gallium compounds as a main component has not yet been discovered,
It is accompanied by trace amounts of other metal ores. For example, bauxite, which is an aluminum magnet, also contains a small amount of gallium. Also.

石炭の煙灰、亜鉛製練時の@渣、ゲルマン鉱石中などに
も微量含有されている。これら微量に含有されるガリウ
ふを分離9回収しようとする試みがなされて来ており、
溶媒抽出法、水銀アマルガム法、炭酸がス吹込法などが
提唱され、あるいは用いられている。しかる#!:、こ
れらの諸方法にはそれぞれ欠点がある。すなわち、溶媒
抽出法では。
It is also found in trace amounts in coal smoke ash, slag from zinc smelting, and Germanic ore. Attempts have been made to separate and recover these trace amounts of galifu.
Solvent extraction methods, mercury amalgam methods, carbonic acid blowing methods, etc. have been proposed or used. Scold #! : Each of these methods has its drawbacks. That is, in the solvent extraction method.

用いる溶媒の取扱いの難かしさと溶媒の単価及び抽出対
象がアルミニウム塩溶液である場合には。
Difficulties in handling the solvent used, the unit cost of the solvent, and when the extraction target is an aluminum salt solution.

ガリウム抽出後のアルミニウム塩の有機物汚染などが欠
点となり、水銀アマルガム法では、水銀による種々の汚
染、また炭酸ガス吹込法では、操作が繁雑であるという
欠点があり、これら既存の方法は共通してガリウムの回
収効率が悪いという欠点を有している。
Disadvantages include organic contamination of aluminum salts after gallium extraction, mercury amalgam method has various contaminations caused by mercury, and carbon dioxide gas blowing method has drawbacks such as complicated operations. It has the disadvantage of poor gallium recovery efficiency.

一方、キL/−)性イオン交換[1i1を用いてガリウ
ームを分離9回収することも考えられるが、ガリラムと
アルミニウムとの分離効率が悪X、実用に6供せられる
ものではなかった。
On the other hand, it is conceivable to separate and recover gallium using ion exchange [1i1], but the separation efficiency of gallium and aluminum is poor and this method cannot be put to practical use.

そこで1本願発明者らは、これらの欠点を解消して力゛
リウムを含有するアルミニウム塩溶液から効率良くガリ
ウムを回収する方法について鋭意研究した結果、キレー
ト性イオン交換樹脂を充填したイオン交換樹脂塔に特定
の空間速度で通液すると、ガリウムとアルミニウムとが
効率良く分離することを見い出し9本発明に到達した。
Therefore, as a result of intensive research into a method for efficiently recovering gallium from an aluminum salt solution containing chloride by eliminating these drawbacks, the inventors of the present application have developed an ion exchange resin column filled with a chelating ion exchange resin. The present inventors have discovered that gallium and aluminum can be efficiently separated when the liquid is passed at a specific space velocity.

すなわち9本発明は、ガリウムを含有するアルミニウム
塩溶液を、キレート−性イオン交換樹脂を充填したイオ
ン交換樹脂塔に空間速度(以下Svという。)約5.0
1/Hr以下で通液してキレート性イオン交換樹脂にガ
リウムを吸着させ9次いで吸着させたガリウムを溶離さ
せることを特徴とするガリウムの回収方法である。
That is, in the present invention, an aluminum salt solution containing gallium is fed into an ion exchange resin column filled with a chelating ion exchange resin at a space velocity (hereinafter referred to as Sv) of about 5.0.
This method of recovering gallium is characterized by adsorbing gallium onto a chelating ion exchange resin by passing a liquid through the resin at a rate of 1/Hr or less, and then eluting the adsorbed gallium.

本発明におけるガリウムを含有するアルミニウム塩浴液
としては9例えば、バイヤー法によって製造された水1
俊化アルミニウム又はアルミナを出発原料とするアルミ
ニウム化合物の溶液、含ガリウムアルミナ資源の酸性な
いし弱アルカリ性抽出液があげられる。
As the aluminum salt bath solution containing gallium in the present invention, for example, water produced by the Bayer process,
Examples include solutions of aluminum compounds using aluminized aluminum or alumina as starting materials, and acidic or weakly alkaline extracts of gallium-containing alumina resources.

本発明に用いられるキレート性イオン交換樹脂としては
9例えば、樹脂母体としてフェノール系スチレン系、エ
ポキシ系、アクリμエステ/I/糸に官能基としてジエ
チレントリアミン、トリエチレンテトフミン、テトフエ
チレンペンタミン、ペンタエチレンへキサミン等のアミ
ン類、イミノジ酢酸等のアミノカルボン酸類、ジブロバ
ノールアミ。
Examples of chelating ion exchange resins used in the present invention include phenolic styrene, epoxy, and acrylic μ-ester/I/threads as functional groups such as diethylenetriamine, triethylenetethumine, tetofethylenepentamine, and pentafluoride. Amines such as ethylenehexamine, aminocarboxylic acids such as iminodiacetic acid, dibrobanolamine.

ン等のアルコールアミン類あるいは尿素、チオ尿素、リ
ン酸を導入したキレート性イオン交換樹脂があげられ、
特にガリウムに対する選択性の高いアミツカpボン酸を
導入したキレート性イオン交換樹脂が望ましい。
Examples include chelating ion exchange resins incorporating alcohol amines such as urea, thiourea, and phosphoric acid.
In particular, a chelating ion exchange resin incorporating Amitsuka p-boxylic acid, which has high selectivity for gallium, is desirable.

本発明でガリウムを含有するアルミニウム塩溶液からガ
リウムを回収するには、まず、キレート性イオン交換樹
脂を充填したイオン交換樹脂塔にSvで約5.01/H
r以下で通液させるが、一般にキレート性イオン交換樹
脂やイオン交換樹脂を充填したイオン交換樹脂塔に通常
の溶液を通液する時のSVは、概ね10.01/Hr前
後である。この10.01/Hr前後のSVで、ガリウ
ムを含有するアルミニウム塩溶液を通液させると、ガリ
ウムとアtV ミニラムとの分離効率が非常に悪く、実
用に供せられるものではないが、これを約5.01/)
(r以下にすれば9分離効率が良くなり、特に約2.0
1/Hr前後、さらに約1.01/Hr前後で通液させ
ると分離効率は非常に良くなる。そのときの通液方向と
しては、上向流でもよいし、下向流でもよい。また、ア
ルミニウム塩溶液の温度としては、高ければ高いほどガ
リウムとアルミニウムとの分離が良いが、有機物である
キレート性イオン交換樹脂の保護を考えると10〜60
 Cが望ましく、アルミニウム塩溶液のpHとしては、
ガリウムが充分溶解しており、かつキレート樹脂が陽イ
オン交換樹脂の一種であることを考えあわせると6.5
以下に調整することが好ましく、特に1〜5に調整する
ことが望ましい。
In order to recover gallium from an aluminum salt solution containing gallium in the present invention, first, an ion exchange resin tower filled with a chelating ion exchange resin is charged at an Sv of about 5.01/H.
The SV is generally around 10.01/Hr when a normal solution is passed through an ion exchange resin tower filled with a chelating ion exchange resin or an ion exchange resin. When an aluminum salt solution containing gallium is passed through at an SV of around 10.01/Hr, the separation efficiency between gallium and AtV miniram is very poor, and it cannot be put to practical use. Approximately 5.01/)
(Separation efficiency improves if the value is less than r, especially about 2.0
If the liquid is passed at around 1/Hr, further around 1.01/Hr, the separation efficiency will be very improved. The direction of liquid flow at this time may be either an upward flow or a downward flow. Regarding the temperature of the aluminum salt solution, the higher the temperature, the better the separation of gallium and aluminum, but considering the protection of the chelating ion exchange resin, which is an organic substance,
C is desirable, and the pH of the aluminum salt solution is:
Considering that gallium is sufficiently dissolved and the chelate resin is a type of cation exchange resin, it is 6.5.
It is preferable to adjust it to the following, and it is especially desirable to adjust it to 1-5.

このよう1こすれば、キレート性イオン交換樹脂にほと
んどガリウムのみを吸着させることができる。
By rubbing once in this manner, almost only gallium can be adsorbed onto the chelating ion exchange resin.

次に本発明では、吸着させたガリウムを溶離させること
が必要である。そのためには9例えば。
Next, in the present invention, it is necessary to elute the adsorbed gallium. For example, 9.

酸溶液で溶離させるが、その溶離させる方法としてカフ
ム法でもパッチ法でも可能であるが、吸着時にカフ五法
を採用している関係上、カフ五法が望ましい。この時の
酸溶液とキレート性イオン交換樹脂との接触速度として
は、空間速度(!’3V )で21/Hr以下、特に0
.5〜11/Hrが賽用的で効率よく溶離できるので好
ましい。
Elution is carried out with an acid solution, and the cuff method or patch method can be used as the elution method, but the five-cuff method is preferable because the five-cuff method is used during adsorption. At this time, the contact speed between the acid solution and the chelating ion exchange resin is 21/Hr or less in space velocity (!'3V), especially 0.
.. 5 to 11/Hr is preferable because it is convenient and allows efficient elution.

本発明でガリウムの溶離に用いる酸溶液としては例えば
、塩酸、硝酸などの強解離性の鉱酸水溶液酢酸、クエン
酸などの有機酸の水溶液あるいは士Vン酸、フッ化水素
などの水溶液のいずれも用いることが可能であるが、6
規定以上の濃度の塩酸で溶離するときが、酸の作用に加
えて、塩酸の錯体形成力もはだらぎ、高濃度のガリウム
塩溶液を比較的短時間で得られるので最も望ましい。
Examples of the acid solution used to elute gallium in the present invention include aqueous solutions of strongly dissociative mineral acids such as hydrochloric acid and nitric acid, aqueous solutions of organic acids such as acetic acid and citric acid, and aqueous solutions of hydrochloric acid and hydrogen fluoride. It is also possible to use 6
It is most desirable to elute with hydrochloric acid at a concentration above the specified level because in addition to the action of the acid, the complex-forming power of hydrochloric acid is also sluggish, and a highly concentrated gallium salt solution can be obtained in a relatively short time.

本発明によれば、効率良くガリウムとアルミニウムを分
離することができ、特に回収液中のガリウム濃度300
0 N7g以上の濃度となるので、これを電解して金属
ガリウムを得ることができる。また回収液中のガリウム
濃度が3000 W/g以下であっても、ガリウムとア
ルミニウムとの濃度比(重量)で1=14前後であれば
、これを蒸発などの物理的な濃縮でアルミニウムを晶析
させることができるため、これを上記と同様にして金属
ガリウムを得ることができる。
According to the present invention, gallium and aluminum can be efficiently separated, and in particular, the gallium concentration in the recovered liquid is 300.
Since the concentration is more than 7g of 0N, metal gallium can be obtained by electrolyzing this. Even if the gallium concentration in the recovered liquid is 3000 W/g or less, if the concentration ratio (weight) of gallium and aluminum is around 1 = 14, it is possible to crystallize aluminum by physical concentration such as evaporation. Since metal gallium can be analyzed in the same manner as above, metallic gallium can be obtained.

次tこ実施例により本発明を具体的に説明する。The present invention will be specifically explained using the following examples.

実施例1 ガリウム含有のアルミニウム塩溶液を硫酸水溶液でpH
2,5に調整した後、定性濾紙にて濾過した次いで濾液
をキレート性イオン交換樹脂ユニセレック■LIR−5
0(官能基がイミノジ酢酸、ユニチカ株式会社ail)
K−下向流で5V11/Hrで樹脂の180倍量通液し
た後、  S V 21/Hrで樹脂を1.5時間水洗
し、6規定の塩酸水溶液を5V11/Hrで6時間通液
してガリウムを回収した。
Example 1 pH of gallium-containing aluminum salt solution with sulfuric acid aqueous solution
After adjusting to 2.5, it was filtered using qualitative filter paper, and the filtrate was treated with chelating ion exchange resin UNISEREC LIR-5.
0 (Functional group is iminodiacetic acid, Unitika Co., Ltd. ail)
After passing 180 times the amount of the resin in a K-downward flow at 5V11/Hr, the resin was washed with water for 1.5 hours at S V 21/Hr, and a 6N hydrochloric acid aqueous solution was passed at 5V11/Hr for 6 hours. gallium was recovered.

その結果を表1に示す。The results are shown in Table 1.

表1 表1よりあきらかなどとく9回収液中のガリウム濃度が
非常に高く、これを電解して金属ガリウムを得ることが
できた。
Table 1 It is clear from Table 1 that the concentration of gallium in the recovered solution 9 was extremely high, and it was possible to electrolyze this to obtain metallic gallium.

実施例2 ガリウムを10 q/II含有するアルミニウム塩溶液
をキレート性イオン交換樹騙、ユニセレツク■UR−5
0(官能基としてイミノジ酢酸を有する。
Example 2 An aluminum salt solution containing 10 q/II of gallium was treated with a chelating ion exchange resin, Uniselect UR-5.
0 (has iminodiacetic acid as a functional group)

ユニチカ株式会社製)を60−充填した内径9鎮長さ1
gl 5 Q ellのガラス製のカラムに下向流で5
v51/Hrで樹脂の120倍量まで通液し、ガリウム
とアルミニウムを吸着させた。次いでS V 51/i
(rで樹脂を′50分間水洗し、6規定塩酸を5V11
/Hrで下向流で4時間通液し、ガリウムを回収した。
(manufactured by Unitika Co., Ltd.) filled with 60 mm inner diameter 9 mm length 1
gl 5 Qell glass column with downward flow.
A volume of liquid up to 120 times that of the resin was passed at v51/Hr to adsorb gallium and aluminum. Then S V 51/i
(Rinse the resin with water for 50 minutes at
/Hr in a downward flow for 4 hours to recover gallium.

その結果を表2に示す。The results are shown in Table 2.

表2 表2よりあきらかなどとく、アルミニウム塩溶液中のガ
リウムの除去率が7296となり、原液のガリウムとア
ルミニウムとの比が1 /460であったものが9回収
液では1/10.5となっている。この回収液を濃縮し
て金属ガリウムを得ることができへ比較例1 g リウA ヲ10 q/l 含有するアルミニウム塩
溶液をSV 101 /Hrで通液した以外は、実施例
2と全く同様にして回収液を得た。
Table 2 It is clear from Table 2 that the removal rate of gallium in the aluminum salt solution was 7296, and the ratio of gallium to aluminum in the stock solution was 1/460, but in the 9 recovered solution it was 1/10.5. ing. This recovered solution could be concentrated to obtain metallic gallium. Comparative Example 1 The process was carried out in exactly the same manner as in Example 2, except that the aluminum salt solution containing 10 q/l of liu A was passed through at SV 101 /Hr. A recovered liquid was obtained.

その結果を表3に示す。The results are shown in Table 3.

表3 表3よりアルミニウム塩溶液中のカリウムの除去率は3
2%であり、キレート性イオン交換樹脂への吸着率は半
分以下で、吸着操作のメリットは少なく、また原液のガ
リウムとアルミニウムとの比が1/460であったもの
が1回収液では1/24.5になったにすぎず、これを
濃縮しても金属がリウムは得られなかった。
Table 3 From Table 3, the removal rate of potassium in the aluminum salt solution is 3
2%, the adsorption rate on the chelating ion exchange resin is less than half, and there is little merit in the adsorption operation, and the ratio of gallium to aluminum in the stock solution was 1/460, but in the recovered solution it was 1/2%. 24.5, and even if this was concentrated, the metal lithium could not be obtained.

特許出願人  ユニチカ株式会社Patent applicant: Unitika Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)°ガリウムを含有するアルミニウム塩溶液を、キ
レーF性イオン交換118Mを充填したイオン交換樹脂
塔に空間速度(87)約5.01/Hr以下で通液して
キレート性イオン交換樹脂にガリウムを吸着させ9次い
で吸着させたガリウムを溶離させることを特徴とするガ
リウムの回収方法。
(1) An aluminum salt solution containing gallium is passed through an ion exchange resin column filled with 118M of chelating ion exchange resin at a space velocity (87) of approximately 5.01/Hr or less to convert it into a chelating ion exchange resin. A method for recovering gallium, which comprises adsorbing gallium and then eluting the adsorbed gallium.
(2)ガリウムを含ゼするアルミニウム塩溶液のpRを
3.5以下會こ調整する特許請求の範囲第1XjI記載
の回収方法。
(2) The recovery method according to claim 1, wherein the pR of the aluminum salt solution containing gallium is adjusted to 3.5 or less.
JP14135081A 1981-09-07 1981-09-07 Recovering method for gallium Granted JPS5842737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14135081A JPS5842737A (en) 1981-09-07 1981-09-07 Recovering method for gallium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14135081A JPS5842737A (en) 1981-09-07 1981-09-07 Recovering method for gallium

Publications (2)

Publication Number Publication Date
JPS5842737A true JPS5842737A (en) 1983-03-12
JPH0121212B2 JPH0121212B2 (en) 1989-04-20

Family

ID=15289920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14135081A Granted JPS5842737A (en) 1981-09-07 1981-09-07 Recovering method for gallium

Country Status (1)

Country Link
JP (1) JPS5842737A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5852450A (en) * 1981-09-19 1983-03-28 Sumitomo Chem Co Ltd Recovering method for gallium
JPS59169932A (en) * 1983-03-15 1984-09-26 Sumitomo Chem Co Ltd Collection of gallium
DE3413081A1 (en) * 1983-04-07 1984-10-11 Dowa Mining Co. Ltd., Tokyo METHOD FOR SELECTIVE SEPARATION AND CONCENTRATION OF GALLIUM AND / OR INDIUM FROM SOLUTIONS WITH A LOW CONTENT OF THESE METALS AND A HIGH CONTENT OF OTHER METAL IONS
JPS59186208U (en) * 1983-05-31 1984-12-11 株式会社 寺岡精工 label pasting device
JPS6070023U (en) * 1983-10-19 1985-05-17 横河電機株式会社 Electromagnetic flowmeter with low frequency excitation method
JPS61111652A (en) * 1984-11-05 1986-05-29 Shikatoo Sangyo Kk Preparation of dried beef
JPS6355117A (en) * 1986-08-26 1988-03-09 Agency Of Ind Science & Technol Fractional recovery of gallium and indium
US4999171A (en) * 1987-04-03 1991-03-12 Sumitomo Chemical Co. Ltd. Process for recovery of gallium by chelate resin
CN101875004A (en) * 2010-06-23 2010-11-03 西安蓝晓科技有限公司 Chelating resin special for adsorbing of gallium and preparation method and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04305252A (en) * 1991-01-22 1992-10-28 Nippon Steel Corp Production of crushed type metallic carrier

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6157899B2 (en) * 1981-09-19 1986-12-09 Sumitomo Chemical Co
JPS5852450A (en) * 1981-09-19 1983-03-28 Sumitomo Chem Co Ltd Recovering method for gallium
JPS59169932A (en) * 1983-03-15 1984-09-26 Sumitomo Chem Co Ltd Collection of gallium
JPH0521846B2 (en) * 1983-03-15 1993-03-25 Sumitomo Chemical Co
DE3413081A1 (en) * 1983-04-07 1984-10-11 Dowa Mining Co. Ltd., Tokyo METHOD FOR SELECTIVE SEPARATION AND CONCENTRATION OF GALLIUM AND / OR INDIUM FROM SOLUTIONS WITH A LOW CONTENT OF THESE METALS AND A HIGH CONTENT OF OTHER METAL IONS
JPS59186208U (en) * 1983-05-31 1984-12-11 株式会社 寺岡精工 label pasting device
JPS6328095Y2 (en) * 1983-05-31 1988-07-29
JPH0450507Y2 (en) * 1983-10-19 1992-11-27
JPS6070023U (en) * 1983-10-19 1985-05-17 横河電機株式会社 Electromagnetic flowmeter with low frequency excitation method
JPS61111652A (en) * 1984-11-05 1986-05-29 Shikatoo Sangyo Kk Preparation of dried beef
JPS6355117A (en) * 1986-08-26 1988-03-09 Agency Of Ind Science & Technol Fractional recovery of gallium and indium
JPH0313170B2 (en) * 1986-08-26 1991-02-21 Kogyo Gijutsuin
US4999171A (en) * 1987-04-03 1991-03-12 Sumitomo Chemical Co. Ltd. Process for recovery of gallium by chelate resin
CN101875004A (en) * 2010-06-23 2010-11-03 西安蓝晓科技有限公司 Chelating resin special for adsorbing of gallium and preparation method and application thereof

Also Published As

Publication number Publication date
JPH0121212B2 (en) 1989-04-20

Similar Documents

Publication Publication Date Title
JPS5842737A (en) Recovering method for gallium
US3970737A (en) Metal, particularly gold, recovery from adsorbed cyanide complexes
CA1218529A (en) Method of selective separation and concentration of gallium and/or indium from solutions containing low levels of them and high levels of other metal ions
US3037841A (en) Process for separating ions by ion exchange
JPS6351975B2 (en)
US4243641A (en) Method for recovering lithium from sea water
US2863717A (en) Recovery of uranium values from copper-bearing solutions
JP2780098B2 (en) How to collect thallium
JP2003313620A (en) Thallium-containing liquid treatment system
JPH0354118A (en) Method for recovering rhenium
GB1573685A (en) Recovery of metal values
JP2590494B2 (en) Rare earth element precipitation recovery method
JPH0339013B2 (en)
JPS6355117A (en) Fractional recovery of gallium and indium
RU2049545C1 (en) Method of extraction of cesium from nitrate solutions
RU2684663C1 (en) Method of producing scandium concentrate from scandium-containing solution
JPS632894B2 (en)
JPH04259341A (en) Method fore refining iridium
RU2248405C2 (en) Method of recovering palladium from solutions
JP2661648B2 (en) Purification method of complex forming agent aqueous solution
JPS63118025A (en) Method for removing or recovering silver
JPS58110625A (en) Recovering method for noble metal
JPH0465014B2 (en)
JPS62182113A (en) Fractionation and recovery of gallium and indium
JPH0248489B2 (en)