JPH06279883A - Method for separating and recovering lithium - Google Patents

Method for separating and recovering lithium

Info

Publication number
JPH06279883A
JPH06279883A JP9216693A JP9216693A JPH06279883A JP H06279883 A JPH06279883 A JP H06279883A JP 9216693 A JP9216693 A JP 9216693A JP 9216693 A JP9216693 A JP 9216693A JP H06279883 A JPH06279883 A JP H06279883A
Authority
JP
Japan
Prior art keywords
lithium
extraction
solution
mixture
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9216693A
Other languages
Japanese (ja)
Other versions
JP2500352B2 (en
Inventor
Yoshitaka Miyai
良孝 宮井
Kenta Oi
健太 大井
Hirobumi Kano
博文 加納
Ki Hiyou
旗 馮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP5092166A priority Critical patent/JP2500352B2/en
Publication of JPH06279883A publication Critical patent/JPH06279883A/en
Application granted granted Critical
Publication of JP2500352B2 publication Critical patent/JP2500352B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To obtain high-purity lithium at a high recovery rate at the time of separating and recovering lithium with the solvent extraction process by using a mixture of specified org. compds. as the extractant. CONSTITUTION:Lithium is extracted by solvent from an aq. lithium-contg. soln. such as a residual crystallization soln. of lithium carbonate and lithium phosphate in the lithium-related industries and a lithium-contg. waste water in the glass industry. In this case, a mixture of alpha-perfluoroalkanoyl-m- dodecylacetophenone and tri-n-butyl phosphate is used as the extractant. In this case, an aq. lithium soln. is advantageously kept at pH7-12.5. Lithium is extracted at a high rate by the synergistic effect of both compds. and recovered, the water phase and org. phase are extremely easily separated after extraction, and lithium is stable in repeated use.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、リチウム含有水溶液か
らのリチウムの分離、回収方法の改良に関するものであ
る。さらに詳しくいえば、本発明は、リチウム含有水溶
液、例えばリチウム関連工業における炭酸リチウム晶析
残液、リン酸リチウム晶析残液、あるいはガラス製造工
業における含有排水などから、溶媒抽出法により、高い
回収率で、かつ高純度のリチウムを得る経済的に有利な
リチウムの分離、回収方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improved method for separating and recovering lithium from an aqueous solution containing lithium. More specifically, the present invention provides high recovery by a solvent extraction method from a lithium-containing aqueous solution, for example, a lithium carbonate crystallization residual liquid in a lithium-related industry, a lithium phosphate crystallization residual liquid, or a contained wastewater in the glass manufacturing industry. The present invention relates to an economically advantageous method for separating and recovering lithium that yields high-purity lithium at a high rate.

【0002】[0002]

【従来の技術】リチウム関連工業における炭酸リチウム
晶析残液やリン酸リチウム晶析残液、あるいはガラス製
造工業におけるリチウム含有排水などから、リチウムを
分離、回収することは、資源の有効利用面から重要なこ
とである。
2. Description of the Related Art Separating and recovering lithium from lithium carbonate crystallization residual liquid or lithium phosphate crystallization residual liquid in the lithium-related industry, or lithium-containing wastewater in the glass manufacturing industry is effective resource utilization. It's important.

【0003】リチウム含有水溶液からリチウムを分離、
回収する方法としては、通常溶媒抽出法が用いられてい
る。この溶媒抽出法により、リチウムを分離・回収する
ための抽出剤としては、これまで種々のβ‐ジケトンと
中性有機リン酸との混合物が使用されている[「分析化
学」第1506ページ(1974年)、「日本金属学会
誌」第82ページ(1975年)、「化学工学論文集」
第857ページ(1989年)、「化学工学論文集」第
504ページ(1989年)]。
Separation of lithium from an aqueous solution containing lithium,
A solvent extraction method is usually used as a method of recovery. Mixtures of various β-diketones and neutral organic phosphoric acids have been used as extraction agents for separating and recovering lithium by this solvent extraction method [Analytical Chemistry, page 1506 (1974). ), "Journal of the Japan Institute of Metals", page 82 (1975), "Chemical Engineering Papers"
857 (1989), "Chemical Engineering Papers", 504 (1989)].

【0004】しかしながら、このような従来の抽出剤に
おいては、同族のアルカリ金属元素との分離が困難であ
って、高純度のリチウムを回収することができない上、
抽出剤の繰り返し使用により抽出剤の損失を伴い、抽出
率が低下するなどの欠点があった。
However, in such a conventional extractant, it is difficult to separate it from a homologous alkali metal element, and high-purity lithium cannot be recovered.
Due to repeated use of the extractant, the extractant is lost and the extraction rate is lowered.

【0005】このように、従来の溶媒抽出法によるリチ
ウムの分離、回収方法は、技術的及び経済的にも十分に
満足できるものではなかったため、簡単な操作で効率よ
くリチウムを抽出しうる方法が要望されていた。
As described above, the conventional method for separating and recovering lithium by the solvent extraction method has not been sufficiently satisfactory in terms of technology and economically. Therefore, there is a method capable of efficiently extracting lithium by a simple operation. It was requested.

【0006】[0006]

【発明が解決しようとする課題】本発明は、このような
事情のもとで、リチウム含有水溶液から、溶媒抽出法に
より、高い回収率で、かつ高純度のリチウムが得られる
リチウムの分離、回収方法を提供することを目的として
なされたものである。
Under the circumstances described above, the present invention provides separation and recovery of lithium from a lithium-containing aqueous solution by a solvent extraction method with high recovery rate and high-purity lithium. The purpose is to provide a method.

【0007】[0007]

【課題を解決するための手段】本発明者らは、リチウム
の溶媒抽出に関し、種々研究を重ねた結果、α‐ペルフ
ルオロアルカノイル‐m‐ドデシルアセトフェノンとリ
ン酸トリ‐n‐ブチルとの混合物は、リチウムに対して
高い抽出率及び優れた選択性を有し、かつ繰り返し使用
に対し安定であって、混合物を用いることにより、その
目的を達成しうることを見出し、この知見に基づいて本
発明を完成するに至った。
The inventors of the present invention have conducted various studies on solvent extraction of lithium, and as a result, a mixture of α-perfluoroalkanoyl-m-dodecylacetophenone and tri-n-butyl phosphate was found to be It has been found that it has a high extraction rate with respect to lithium and excellent selectivity, and is stable against repeated use, and that the object can be achieved by using a mixture, and the present invention is based on this finding. It came to completion.

【0008】すなわち、本発明は、リチウム含有水溶液
中のリチウムを抽出するに当り、抽出剤としてα‐ペル
フルオロアルカノイル‐m‐ドデシルアセトフェノンと
リン酸トリ‐n‐ブチルとの混合物を用いることを特徴
とするリチウムの分離、回収方法を提供するものであ
る。
That is, the present invention is characterized by using a mixture of α-perfluoroalkanoyl-m-dodecylacetophenone and tri-n-butyl phosphate as an extractant in extracting lithium in an aqueous solution containing lithium. The present invention provides a method for separating and recovering lithium.

【0009】本発明のリチウムの分離、回収方法におい
ては、抽出剤としてα‐ペルフルオロアルカノイル‐m
‐ドデシルアセトフェノンとリン酸トリ‐n‐ブチルと
の混抽出剤を用いることが必要である。前記α‐ペルフ
ルオロアルカノイル‐m‐ドデシルアセトフェノンは、
市販品のX1‐51(ヘンケル社製、商品名)として入
手が可能である。
In the method for separating and recovering lithium according to the present invention, α-perfluoroalkanoyl-m is used as an extractant.
It is necessary to use a mixed extractant of -dodecylacetophenone and tri-n-butyl phosphate. The α-perfluoroalkanoyl-m-dodecylacetophenone is
It is available as a commercially available product X1-51 (trade name, manufactured by Henkel).

【0010】該α‐ペルフルオロアルカノイル‐m‐ド
デシルアセトフェノンのみを用いてリチウムを抽出する
場合、pH10.5〜12.5の範囲において、抽出率
85〜95%が得られるが、抽出処理に伴って白色粘性
物が生成し、水相と有機相との分離が極めて困難であ
る。一方、リン酸トリ‐n‐ブチルのみを用いて抽出処
理する場合、全アルカリ性領域において、リチウム抽出
率が35%以下と低い。
When lithium is extracted using only the α-perfluoroalkanoyl-m-dodecylacetophenone, an extraction rate of 85 to 95% can be obtained in the pH range of 10.5 to 12.5. A white viscous substance is formed, and it is extremely difficult to separate the aqueous phase and the organic phase. On the other hand, when the extraction treatment is performed using only tri-n-butyl phosphate, the lithium extraction rate is as low as 35% or less in the entire alkaline region.

【0011】これに対して、本発明において用いられる
α‐ペルフルオロアルカノイル‐m‐ドデシルアセトフ
ェノンとリン酸トリ‐n‐ブチルとの混合物は、その協
同効果により、pH10.0〜12.5の範囲において
抽出率99%以上が得られる上、抽出処理後の水相と有
機相との分離が極めて容易であり、しかもくり返し使用
に対して安定であるという特徴を有している。
On the other hand, the mixture of α-perfluoroalkanoyl-m-dodecylacetophenone and tri-n-butyl phosphate used in the present invention has a synergistic effect in the range of pH 10.0 to 12.5. An extraction rate of 99% or more is obtained, and it is extremely easy to separate the aqueous phase and the organic phase after the extraction treatment, and it is stable against repeated use.

【0012】該混合物におけるα‐ペルフルオロアルカ
ノイル‐m‐ドデシルアセトフェノンとリン酸トリ‐n
‐ブチルとの混合割合については、リチウムの抽出化学
種がLi・α‐ペルフルオロアルカノイル‐m‐ドデシ
ルアセトフェン・2リン酸トリ‐n‐ブチルであること
が確認されたので、α‐ペルフルオロアルカノイル‐m
‐ドデシルアセトフェノンとリン酸トリ‐n‐ブチルの
モル比は実質上1:2でよい。
Α-Perfluoroalkanoyl-m-dodecylacetophenone and tri-n phosphate in the mixture
With regard to the mixing ratio with -butyl, it was confirmed that the extraction chemical species of lithium was Li.α-perfluoroalkanoyl-m-dodecylacetophene tri-n-butyl diphosphate, so α-perfluoroalkanoyl- m
The molar ratio of -dodecyl acetophenone and tri-n-butyl phosphate may be substantially 1: 2.

【0013】本発明方法においては、抽出処理に供され
るリチウム含有水溶液のpHは7〜12.5の範囲に調
整するのが有利である。
In the method of the present invention, it is advantageous to adjust the pH of the lithium-containing aqueous solution used for the extraction treatment within the range of 7 to 12.5.

【0014】また、本発明方法においては、通常前記混
合物とともに有機溶媒が併用される。この有機溶媒の種
類については特に制限はなく、例えばケロシン、シクロ
ヘキサン、p‐キシレンなど、該α‐ペルフルオロ‐m
‐ドデシルアセトフェノン及びリン酸トリ‐n‐ブチル
を溶解し、かつ水と非混和性のものであればよいが、安
価でかつ水との非混和性の点からケロシンが好適であ
る。該混合物と有機溶媒との混合液における混合物の濃
度については、α‐ペルフルオロ‐m‐ドデシルアセト
フェノン濃度が0.01〜1Mの範囲にあるのが好まし
い。
In the method of the present invention, an organic solvent is usually used together with the mixture. The type of the organic solvent is not particularly limited, and examples thereof include kerosene, cyclohexane and p-xylene such as α-perfluoro-m.
-Dodecylacetophenone and tri-n-butyl phosphate can be dissolved and immiscible with water, but kerosene is preferable from the viewpoint of being inexpensive and immiscible with water. Regarding the concentration of the mixture in the mixed liquid of the mixture and the organic solvent, the concentration of α-perfluoro-m-dodecylacetophenone is preferably in the range of 0.01 to 1M.

【0015】本発明における抽出処理に際しては、前記
の混合物と有機溶媒との混合液は、リチウム含有水溶液
100容量部に対して10〜1000容量部、好ましく
は30〜300容量部の割合で用いるのが望ましい。
In the extraction treatment of the present invention, the mixture of the mixture and the organic solvent is used in a proportion of 10 to 1000 parts by volume, preferably 30 to 300 parts by volume, relative to 100 parts by volume of the lithium-containing aqueous solution. Is desirable.

【0016】抽出処理時のリチウム水溶液のpHを適切
に調整することにより、リチウムと他のアルカリ金属元
素との分離は可能であるが、抽出処理の有機相を0.1
M以下の濃度の希酸溶液で洗浄することにより、共存す
るナトリウムの90%程度を容易に除去することができ
る。また、このようにして抽出処理を、次いで場合によ
り0.1M以下の濃度の希酸溶液で洗浄した後の有機相
中のリチウムは、1M以上の濃度の鉱酸溶液を用いて逆
抽出処理することにより、定量的に回収することができ
る。この逆抽出処理においては、該鉱酸溶液は、有機層
100容量部に対し、通常1〜100容量部、好ましく
は3〜50容量部の割合で用いられる。
Lithium and other alkali metal elements can be separated by appropriately adjusting the pH of the aqueous lithium solution during the extraction treatment, but the organic phase of the extraction treatment is 0.1%.
By washing with a dilute acid solution having a concentration of M or less, about 90% of coexisting sodium can be easily removed. In addition, the lithium in the organic phase after the extraction treatment as described above, and optionally after washing with a dilute acid solution having a concentration of 0.1 M or less, is back-extracted with a mineral acid solution having a concentration of 1 M or more. By doing so, it can be quantitatively recovered. In this back extraction treatment, the mineral acid solution is used usually in a ratio of 1 to 100 parts by volume, preferably 3 to 50 parts by volume, relative to 100 parts by volume of the organic layer.

【0017】このような処理により、リチウム濃度を原
液に比べて約10倍に濃縮することが可能である。
By such treatment, the lithium concentration can be concentrated to about 10 times that of the stock solution.

【0018】[0018]

【発明の効果】本発明において用いられる混合物は、リ
チウムに対する親和性が他のアルカリ金属元素に対する
親和性よりも強く、したがってリチウムと他のアルカリ
金属との分離が可能である。また、該混合物は、反復使
用においても抽出性能の低下はほとんど認められない。
INDUSTRIAL APPLICABILITY The mixture used in the present invention has a stronger affinity for lithium than that for other alkali metal elements, and therefore it is possible to separate lithium from other alkali metals. In addition, the mixture shows almost no deterioration in extraction performance even after repeated use.

【0019】したがって、該混合物を用いる本発明方法
によると、リチウムを含む水溶液、例えば炭酸リチウム
晶析残液、リン酸リチウム晶析残液、使用ずみのリチウ
ム電池からの回収リチウム溶液など、リチウム関連工業
における種々のリチウム含有水溶液、あるいはガラス製
造工業におけるリチウム含有排水から、高純度のリチウ
ムを効率よく経済的有利に分離・回収することができ
る。
Therefore, according to the method of the present invention using the mixture, an aqueous solution containing lithium, for example, a lithium carbonate crystallization residual liquid, a lithium phosphate crystallization residual liquid, a lithium solution recovered from a used lithium battery, or the like is used. High-purity lithium can be efficiently and economically separated and recovered from various lithium-containing aqueous solutions in industry or lithium-containing wastewater in the glass manufacturing industry.

【0020】[0020]

【実施例】次に、実施例により本発明をさらに詳細に説
明する。
EXAMPLES Next, the present invention will be described in more detail by way of examples.

【0021】実施例1 α‐ペルフルオロアルカノイル‐m‐ドデシルアセトフ
ェノン(ヘンケル社製:X1‐51、商品名)及びリン
酸トリ‐n‐ブチル(以下、TBPと略記する)をケロ
シンに溶解して、それぞれ0.1M溶液を調製した。さ
らに、0.1MX1‐51ケロシン溶液1容量部と0.
1MTBPケロシン溶液2容量部との混合溶液(以下、
0.1M混合物溶液と称する)を調製した。これら3種
の抽出剤を用いた場合のリチウムの抽出性について調べ
た。また、リチウム含有水溶液としては、塩化リチウム
を水に溶解してリチウム濃度31mMに調整したものを
用いた。
Example 1 α-perfluoroalkanoyl-m-dodecylacetophenone (Henkel: X1-51, trade name) and tri-n-butyl phosphate (hereinafter abbreviated as TBP) were dissolved in kerosene, A 0.1 M solution was prepared for each. Further, 1 volume part of 0.1MX1-51 kerosene solution and 0.
1 MTBP kerosene solution mixed solution with 2 parts by volume (hereinafter,
A 0.1 M mixture solution was prepared). The extractability of lithium when these three types of extractants were used was investigated. Further, as the lithium-containing aqueous solution, one prepared by dissolving lithium chloride in water to adjust the lithium concentration to 31 mM was used.

【0022】前記リチウム含有水溶液5mlと0.2M
の各種緩衝溶液5mlとを混合してpH6〜13.5の
試料溶液を調製した。この試料溶液10mlと上記3種
類の抽出剤溶液10mlとを100ml容量の三角フラ
スコにとり、振幅3cm、1分間に100回の水平振と
うを15分間行い、水相中のリチウムを有機相へ抽出し
た。
5 ml of the lithium-containing aqueous solution and 0.2M
5 ml of the various buffer solutions described above were mixed to prepare a sample solution having a pH of 6 to 13.5. 10 ml of this sample solution and 10 ml of the above three kinds of extractant solutions were placed in a 100 ml Erlenmeyer flask, horizontal shaking was performed 100 times per minute with an amplitude of 3 cm for 15 minutes, and lithium in the aqueous phase was extracted into the organic phase. .

【0023】処理前後の水相中のリチウム濃度を原子吸
光分析法で定量し、その差から抽出率を求めた。抽出後
のpHとリチウムの抽出率との関係を図1に示す。
The lithium concentration in the aqueous phase before and after the treatment was quantified by atomic absorption spectrometry, and the extraction rate was calculated from the difference. The relationship between the pH after extraction and the extraction rate of lithium is shown in FIG.

【0024】X1‐51の場合はpH9以上において抽
出性を示すが、その抽出率は95%以下であった。しか
も抽出処理後には白色粘性物が生成し、これが水相と有
機相中に混入して両相の分離は極めて困難であった。両
相の分離には遠心分離機を用いて3000rpmで10
分間処理して行った。また、TBPの場合は、リチウム
の抽出率は35%以下で抽出効率が悪い。
In the case of X1-51, the extractability was exhibited at pH 9 or higher, but the extraction rate was 95% or lower. Moreover, a white viscous substance was generated after the extraction treatment, and this was mixed in the aqueous phase and the organic phase, and it was extremely difficult to separate both phases. Use a centrifuge to separate both phases at 3000 rpm for 10
It was processed for 1 minute. In the case of TBP, the extraction efficiency of lithium is 35% or less and the extraction efficiency is poor.

【0025】混合物溶液の場合には、pH10〜12.
5の広い範囲において、抽出率99%以上が得られた。
また、抽出処理後の両相の分離は数秒間の静置により可
能となり、極めて容易であった。このように、本発明の
混合物による協同効果は明瞭であり、有役なリチウムの
溶媒抽出法である。
In the case of a mixture solution, pH 10-12.
In a wide range of 5, an extraction rate of 99% or more was obtained.
Further, the separation of both phases after the extraction treatment was possible by allowing the mixture to stand for a few seconds, which was extremely easy. Thus, the synergistic effect of the mixture of the present invention is clear and is a useful solvent extraction method for lithium.

【0026】実施例2 0.1Mの混合物溶液によるリチウムの抽出性能につい
て調べた。リチウム濃度2〜142mMの水溶液5ml
とpH12の緩衝溶液5ml及び0.1M混合物溶液1
0mlとを三角フラスコにとり、実施例1と同様な条件
で抽出実験を行った。そのときのリチウム濃度と抽出率
との関係を図2に示す。
Example 2 The extraction performance of lithium with a 0.1 M mixture solution was investigated. Lithium concentration 2-142mM aqueous solution 5ml
And pH 12 buffer solution 5 ml and 0.1 M mixture solution 1
0 ml was placed in an Erlenmeyer flask, and an extraction experiment was conducted under the same conditions as in Example 1. The relationship between the lithium concentration and the extraction rate at that time is shown in FIG.

【0027】この結果から明らかなようにリチウム濃度
16mM以下において99%以上の抽出率が得られた。
実用的にはリチウム濃度に対応して混合物濃度も変化さ
せることが望ましい。
As is clear from this result, an extraction rate of 99% or more was obtained at a lithium concentration of 16 mM or less.
Practically, it is desirable to change the mixture concentration according to the lithium concentration.

【0028】実施例3 リチウムと同種のアルカリ金属元素との分離性について
調べた。5mMのリチウム、ナトリウム、カリウム、ル
ビジウム、セシウムの各水溶液5mlと0.2Mの各種
緩衝溶液5ml及び0.1M混合物溶液10mlとを三
角フラスコにとり、実施例1と同様な条件で抽出実験を
行った。そのときのpHと各元素の抽出率との関係を図
3に示す。
Example 3 The separability between lithium and the same kind of alkali metal element was investigated. 5 ml of 5 mM aqueous solutions of lithium, sodium, potassium, rubidium and cesium, 5 ml of 0.2 M various buffer solutions and 10 ml of 0.1 M mixture solution were placed in an Erlenmeyer flask, and an extraction experiment was performed under the same conditions as in Example 1. . The relationship between the pH and the extraction rate of each element at that time is shown in FIG.

【0029】ナトリウム、カリウム、ルビジウム、セシ
ウムはpH9.5から抽出性を示し、それらの最大抽出
率はナトリウム80%、カリウム42%、ルビジウム2
3%、セシウム21%であった。一方リチウムはpH6
以上において抽出性を示し、特にpH10〜12.5で
は抽出率99%以上が得られた。
Sodium, potassium, rubidium and cesium show extractability from pH 9.5, and their maximum extraction rates are 80% sodium, 42% potassium and 2 rubidium.
It was 3% and cesium 21%. On the other hand, lithium has a pH of 6
In the above, the extractability was exhibited, and particularly at pH 10 to 12.5, the extraction rate was 99% or more.

【0030】このように、混合物溶液はリチウムに対し
て広いpH範囲において高い抽出率を示し、他元素に比
べ親和性が大きいことが考察される。したがって、共存
するアルカリ金属元素の種類に対応して、抽出pHを調
整することにより分離が可能である。例えば、pH9に
おいては他のアルカリ金属元素の抽出はほとんどなくな
り、リチウムのみが90%程度抽出でき、高純度のリチ
ウムが得られる。
As described above, it is considered that the mixture solution has a high extraction rate for lithium in a wide pH range and has a higher affinity than other elements. Therefore, separation is possible by adjusting the extraction pH according to the type of coexisting alkali metal element. For example, at pH 9, extraction of other alkali metal elements is almost eliminated, only about 90% of lithium can be extracted, and high-purity lithium can be obtained.

【0031】実施例4 実施例3において、リチウムと他のアルカリ金属元素と
の抽出pHによる分離性について調べた。しかし、本発
明の混合物溶液はリチウムに次いでナトリウムに対して
も親和性が強い。したがって、多量のナトリウム共存水
溶液(例えば炭酸リチウム晶析残液)をpH9.5以上
において抽出処理した場合には、ナトリウムも同時に抽
出される。そこで、この有機相中に共存するナトリウム
の除去、すなわち、溶媒相の洗浄条件について調べた。
Example 4 In Example 3, the separability of lithium and other alkali metal elements by extraction pH was examined. However, the mixture solution of the present invention has a strong affinity for sodium as well as lithium. Therefore, when a large amount of sodium coexisting aqueous solution (for example, lithium carbonate crystallization residual liquid) is subjected to extraction treatment at pH 9.5 or higher, sodium is also extracted at the same time. Therefore, the removal of sodium coexisting in the organic phase, that is, the washing condition of the solvent phase was examined.

【0032】リチウム濃度8.0mM溶液20mlとナ
トリウム濃度193mM溶液(ナトリウム系緩衝溶液を
含む)20ml及び0.1M混合物溶液40mlとを三
角フラスコにとり、実施例1と同様な条件で抽出実験を
行った。抽出後のpHは10.0で、各元素の抽出率は
リチウム97%、ナトリウム18%であった。したがっ
て、有機相中にはリチウム3.9mM、ナトリウム1
7.4mMを含有する。
20 ml of a 8.0 mM lithium concentration solution, 20 ml of a 193 mM sodium concentration solution (including a sodium buffer solution) and 40 ml of a 0.1 M mixture solution were placed in an Erlenmeyer flask, and an extraction experiment was conducted under the same conditions as in Example 1. . The pH after extraction was 10.0, and the extraction rate of each element was 97% lithium and 18% sodium. Therefore, in the organic phase, lithium 3.9 mM, sodium 1
It contains 7.4 mM.

【0033】この有機相試料溶液10容量部と0.08
M塩酸溶液1容量部とを三角フラスコにとり、実施例1
と同様な振とう条件で60分間振とうした。振とう後の
有機相10容量部と新しい0.08M塩酸溶液1容量部
を再び三角フラスコにとり、同様な条件で振とうした。
この溶媒相の洗浄操作を3回行った。そのときの有機相
中のリチウム及びナトリウム濃度の変化並びにナトリウ
ムの除去率を図4に示す。
10 parts by volume of this organic phase sample solution and 0.08
Example 1 was prepared by placing 1 volume part of M hydrochloric acid solution in an Erlenmeyer flask.
It was shaken for 60 minutes under the same shaking conditions as described above. After shaking, 10 parts by volume of the organic phase and 1 part by volume of a fresh 0.08 M hydrochloric acid solution were placed again in an Erlenmeyer flask and shaken under the same conditions.
This solvent phase washing operation was repeated three times. FIG. 4 shows the changes in the lithium and sodium concentrations in the organic phase and the sodium removal rate at that time.

【0034】図4から明らかなように、2回の洗浄処理
により有機相中のナトリウム濃度は17.4mMから
1.6mMまでに低下し、その除去率は約90%であっ
た。一方、有機相中のリチウム濃度は2回までの洗浄処
理においてほとんど変化が認められなかった。ただし、
3回の洗浄処理では、水相中へ逆抽出されることが分か
った。このように、適切な溶媒相の洗浄処理により、大
部分の共存ナトリウムを除去することができ、リチウム
の精製効果が得られた。
As is clear from FIG. 4, the concentration of sodium in the organic phase was reduced from 17.4 mM to 1.6 mM by the two washing treatments, and the removal rate was about 90%. On the other hand, the lithium concentration in the organic phase hardly changed during the washing treatment up to twice. However,
It was found that three washing treatments led to back extraction into the aqueous phase. Thus, most of the coexisting sodium was able to be removed by the appropriate washing treatment of the solvent phase, and the purification effect of lithium was obtained.

【0035】実施例5 有機相中のリチウム濃度5.1mMの試料溶液につい
て、逆抽出条件を調べた。試料溶液10容量部と各種濃
度の塩酸溶液1容量部とを三角フラスコにとり、実施例
1と同様な条件で60分間振とうした。そのときの塩酸
溶液中のリチウム濃度を原子吸光法で定量し逆抽出率を
求めた。その結果を図5に示す。
Example 5 The back extraction conditions were examined for a sample solution having a lithium concentration of 5.1 mM in the organic phase. 10 volume parts of the sample solution and 1 volume part of hydrochloric acid solution having various concentrations were placed in an Erlenmeyer flask and shaken for 60 minutes under the same conditions as in Example 1. The lithium concentration in the hydrochloric acid solution at that time was quantified by an atomic absorption method to obtain the back extraction rate. The result is shown in FIG.

【0036】塩酸濃度0.5M以下では逆抽出率は96
%以下であるが、1M以上では逆抽出率99%以上が得
られた。このように、有機相からのリチウムの逆抽出は
定量的に行うことができた。さらに、この処理により、
リチウム濃度を約10倍に濃縮することができる。実用
的には、有機相容積と塩酸容積との比をさらに大きくす
ることが望ましい。なお、逆抽出時間について検討した
結果、有機相10容量部と塩酸溶液1容量部との場合に
は、振とう時間40分以上で抽出平衡に達することが分
かった。
At a hydrochloric acid concentration of 0.5 M or less, the back extraction rate is 96.
% Or less, a back extraction rate of 99% or more was obtained at 1 M or more. Thus, the back extraction of lithium from the organic phase could be performed quantitatively. In addition, this process
The lithium concentration can be concentrated about 10 times. Practically, it is desirable to further increase the ratio of the organic phase volume to the hydrochloric acid volume. As a result of studying the back extraction time, it was found that the extraction equilibrium was reached when the shaking time was 40 minutes or more when the organic phase was 10 parts by volume and the hydrochloric acid solution was 1 part by volume.

【0037】実施例6 混合物溶液のくり返し使用による抽出性能の変化につい
て調べた。まず、実施例5において、1M塩酸溶液で逆
抽出した後の有機相(0.1M混合物溶液)を用いて実
施例2と同様に種々のリチウム濃度の溶液についてその
抽出性能を求めた。その結果、図2と全く変化がなく、
抽出性能の低下は認められなかった。
Example 6 Changes in extraction performance due to repeated use of the mixture solution were investigated. First, in Example 5, using the organic phase (0.1 M mixture solution) after back-extracting with a 1 M hydrochloric acid solution, the extraction performance was determined for solutions with various lithium concentrations as in Example 2. As a result, there is no change from Figure 2,
No decrease in extraction performance was observed.

【0038】次に、リチウム濃度16mM(抽出率99
%が得られる最大濃度)の水溶液を更新し、抽出剤溶液
は同一のものを繰り返し使用し、抽出‐逆抽出を7回行
った。その過程での抽出率及び逆抽出率を求めた結果を
図6に示す。
Next, the lithium concentration was 16 mM (extraction rate 99
%) (Maximum concentration at which%) was obtained, the same extractant solution was repeatedly used, and extraction-back extraction was performed 7 times. The results of obtaining the extraction rate and the back extraction rate in the process are shown in FIG.

【0039】水溶液からの抽出は7回のくり返し使用に
おいても抽出率97%以上が得られた。また、逆抽出率
は定量的でよい結果が得られた。
Extraction from an aqueous solution gave an extraction rate of 97% or more even after repeated use 7 times. In addition, the back extraction rate was quantitative and good results were obtained.

【0040】このように、本発明の混合物は半永久的に
くり返し使用の可能性が考えられ、経済的にも極めて有
望なリチウム抽出剤である。
As described above, the mixture of the present invention is considered as a lithium extractant which is extremely promising economically, because it is possible to use it repeatedly semipermanently.

【0041】実施例7 炭酸リチウム晶析残液からのリチウムの回収について検
討した。実験に供した晶析残液にはリチウム0.22
M、ナトリウム1.28Mを含有し、ナトリウムはリチ
ウムの約6倍の共存量であった。
Example 7 Recovery of lithium from the lithium carbonate crystallization residual liquid was examined. Lithium 0.22 was used as the crystallization residual liquid used in the experiment.
M and sodium 1.28M were contained, and sodium was about 6 times the coexisting amount of lithium.

【0042】この溶液を水で約8倍に希釈し、さらにp
H9.1に調整した。この試料溶液(リチウム濃度28
mM、ナトリウム濃度160mM)10mlと0.1M
混合物溶液20mlとを三角フラスコにとり、実施例1
と同様な条件で抽出実験を行った。抽出後のpHは8.
8で、リチウムの抽出率は84%、ナトリウムの抽出率
は0%であった。
This solution was diluted with water to about 8 times, and p
It was adjusted to H9.1. This sample solution (lithium concentration 28
mM, sodium concentration 160 mM) 10 ml and 0.1 M
20 ml of the mixture solution was placed in an Erlenmeyer flask, and Example 1 was used.
An extraction experiment was conducted under the same conditions as above. The pH after extraction is 8.
8, the extraction rate of lithium was 84% and the extraction rate of sodium was 0%.

【0043】次に、抽出処理後の水溶液(リチウム濃度
4.6mM)5mlと0.1M混合物溶液5mlとを三
角フラスコにとり、実施例1と同様な条件で再度抽出処
理を行った。抽出後のpHは8.7で、リチウムの抽出
率は80%であった。2回の抽出処理により、試料溶液
からのリチウムの抽出率は97%に達した。さらに、こ
の抽出処理により、多量に共存するナトリウムとリチウ
ムとを完全に分離することができた。
Next, 5 ml of the aqueous solution (lithium concentration: 4.6 mM) after the extraction treatment and 5 ml of the 0.1 M mixture solution were placed in an Erlenmeyer flask, and the extraction treatment was performed again under the same conditions as in Example 1. The pH after extraction was 8.7, and the extraction rate of lithium was 80%. The extraction rate of lithium from the sample solution reached 97% by the two extraction treatments. Furthermore, this extraction treatment made it possible to completely separate sodium and lithium that coexist in large amounts.

【0044】実施例8 ガラス製造工業におけるリチウム含有排水からのリチウ
ムの回収について検討した。試料水溶液はpH7.2
で、リチウム8.7mM、ナトリウム4.0Mを含む濃
厚ナトリウム水溶液である。
Example 8 Recovery of lithium from lithium-containing wastewater in the glass manufacturing industry was examined. PH of sample solution is 7.2
It is a concentrated aqueous sodium solution containing 8.7 mM lithium and 4.0 M sodium.

【0045】この溶液20mlを三角フラスコにとり、
1M水酸化ナトリウム溶液0.7mlを加えpH12.
5に調整した。さらに、0.1M混合物溶液20mlを
加えて、実施例1と同様な条件で抽出実験を行った。抽
出後のpHは9.1で、リチウムの抽出率は82%、ナ
トリウムの抽出率は1%以下であった。
20 ml of this solution was placed in an Erlenmeyer flask,
Add 1 ml of 1M sodium hydroxide solution to pH 12.
Adjusted to 5. Furthermore, 20 ml of a 0.1 M mixture solution was added, and an extraction experiment was conducted under the same conditions as in Example 1. The pH after extraction was 9.1, the lithium extraction rate was 82%, and the sodium extraction rate was 1% or less.

【0046】次に、抽出後の有機相10mlを三角フラ
スコにとり、これに1M塩酸溶液1mlを加えて、実施
例5と同様な条件で逆抽出実験を行った。その結果、逆
抽出率は99%で、有機相からのリチウムを定量的に回
収することができた。
Next, 10 ml of the extracted organic phase was placed in an Erlenmeyer flask, 1 ml of a 1M hydrochloric acid solution was added thereto, and a back extraction experiment was conducted under the same conditions as in Example 5. As a result, the back extraction rate was 99%, and lithium could be quantitatively recovered from the organic phase.

【図面の簡単な説明】[Brief description of drawings]

【図1】 各種リチウム抽出剤における、リチウム含有
水溶液の抽出後のpHとリチウム抽出率との関係を示す
グラフ。
FIG. 1 is a graph showing the relationship between the pH after extraction of a lithium-containing aqueous solution and the lithium extraction rate in various lithium extraction agents.

【図2】 リチウム濃度とリチウム抽出率との関係を示
すグラフ。
FIG. 2 is a graph showing the relationship between lithium concentration and lithium extraction rate.

【図3】 各種アルカリ金属元素におけるpHと抽出率
との関係を示すグラフ。
FIG. 3 is a graph showing the relationship between pH and extraction rate for various alkali metal elements.

【図4】 溶媒相の洗浄によるナトリウムの除去性を示
すグラフ。
FIG. 4 is a graph showing the removability of sodium by washing the solvent phase.

【図5】 塩酸濃度とリチウム逆抽出率との関係を示す
グラフ。
FIG. 5 is a graph showing the relationship between hydrochloric acid concentration and lithium back extraction rate.

【図6】 抽出剤のくり返し使用回数とリチウム抽出率
及びリチウム逆抽出率との関係を示すグラフ。
FIG. 6 is a graph showing the relationship between the number of times the extractant is repeatedly used and the lithium extraction rate and lithium back extraction rate.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 馮 旗 香川県高松市花ノ宮町二丁目3番3号 工 業技術院四国工業技術試験所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Feng Qi, 2-3-3 Hananomiya-cho, Takamatsu City, Kagawa Prefecture Shikoku Institute of Industrial Technology Laboratory

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 リチウム含有水溶液中のリチウムを抽出
するに当り、抽出剤としてα‐ペルフルオロアルカノイ
ル‐m‐ドデシルアセトフェノンとリン酸トリ‐n‐ブ
チルとの混合物を用いることを特徴とするリチウムの分
離、回収方法。
1. Separation of lithium, characterized in that a mixture of α-perfluoroalkanoyl-m-dodecylacetophenone and tri-n-butyl phosphate is used as an extractant for extracting lithium in an aqueous solution containing lithium. , Recovery method.
【請求項2】 リチウム含有水溶液をpH7〜12.5
に調整して抽出処理する請求項1記載のリチウムの分
離、回収方法。
2. A lithium-containing aqueous solution having a pH of 7 to 12.5.
The method for separating and recovering lithium according to claim 1, wherein the extraction treatment is carried out after adjusting to.
【請求項3】 抽出処理して得られた有機相を0.1M
以下の濃度の希酸溶液で洗浄する請求項1又は2記載の
リチウムの分離、回収方法。
3. The organic phase obtained by the extraction treatment is 0.1M.
The method for separating and recovering lithium according to claim 1 or 2, which is washed with a dilute acid solution having the following concentration.
【請求項4】 抽出処理して得られた有機相中のリチウ
ムを、1M以上の濃度の鉱酸溶液を用いて逆抽出処理す
る請求項1、2又は3記載のリチウムの分離、回収方
法。
4. The method for separating and recovering lithium according to claim 1, 2 or 3, wherein lithium in the organic phase obtained by the extraction treatment is back-extracted with a mineral acid solution having a concentration of 1 M or more.
JP5092166A 1993-03-25 1993-03-25 Separation and recovery method of lithium Expired - Lifetime JP2500352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5092166A JP2500352B2 (en) 1993-03-25 1993-03-25 Separation and recovery method of lithium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5092166A JP2500352B2 (en) 1993-03-25 1993-03-25 Separation and recovery method of lithium

Publications (2)

Publication Number Publication Date
JPH06279883A true JPH06279883A (en) 1994-10-04
JP2500352B2 JP2500352B2 (en) 1996-05-29

Family

ID=14046853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5092166A Expired - Lifetime JP2500352B2 (en) 1993-03-25 1993-03-25 Separation and recovery method of lithium

Country Status (1)

Country Link
JP (1) JP2500352B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006057142A (en) * 2004-08-20 2006-03-02 Sumitomo Metal Mining Co Ltd Method for recovering lithium
JP2007122885A (en) * 2005-10-25 2007-05-17 Sumitomo Metal Mining Co Ltd Valuable metal recovery method from lithium ion battery
JP2012072464A (en) * 2010-09-29 2012-04-12 Sumitomo Metal Mining Co Ltd Method of recovering lithium
WO2013089400A1 (en) * 2011-12-12 2013-06-20 Research Institute Of Industrial Science & Technology Method for extraction of lithium from lithium bearing solution
KR101326174B1 (en) * 2011-12-12 2013-11-07 재단법인 포항산업과학연구원 Method for economical extraction of lithium from solution including lithium
KR101326172B1 (en) * 2011-12-12 2013-11-07 재단법인 포항산업과학연구원 Method for economical extraction of lithium from solution including lithium
KR101363616B1 (en) * 2011-12-28 2014-02-20 재단법인 포항산업과학연구원 Method for economical extraction of lithium from solution including lithium
KR101367843B1 (en) * 2011-12-28 2014-02-27 재단법인 포항산업과학연구원 Method for economical extraction of lithium from solution including lithium
JP2020164969A (en) * 2019-03-29 2020-10-08 Jx金属株式会社 Lithium concentration method and method for producing lithium hydroxide

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108298514A (en) * 2017-12-11 2018-07-20 中国科学院过程工程研究所 A kind of method of lithium in high temperature solid-state method selective recovery waste lithium iron phosphate positive electrode

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS634027A (en) * 1986-06-23 1988-01-09 Miyoshi Oil & Fat Co Ltd Solvent extracting agent
JPH01160820A (en) * 1987-12-18 1989-06-23 Lion Corp Composite carrier
JPH02503575A (en) * 1987-05-20 1990-10-25 クイーンズランド ニツケル ピーテイワイ リミテツド Separation and recovery of nickel and cobalt in ammoniacal systems

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS634027A (en) * 1986-06-23 1988-01-09 Miyoshi Oil & Fat Co Ltd Solvent extracting agent
JPH02503575A (en) * 1987-05-20 1990-10-25 クイーンズランド ニツケル ピーテイワイ リミテツド Separation and recovery of nickel and cobalt in ammoniacal systems
JPH01160820A (en) * 1987-12-18 1989-06-23 Lion Corp Composite carrier

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006057142A (en) * 2004-08-20 2006-03-02 Sumitomo Metal Mining Co Ltd Method for recovering lithium
JP4581553B2 (en) * 2004-08-20 2010-11-17 住友金属鉱山株式会社 Lithium recovery method
JP2007122885A (en) * 2005-10-25 2007-05-17 Sumitomo Metal Mining Co Ltd Valuable metal recovery method from lithium ion battery
JP2012072464A (en) * 2010-09-29 2012-04-12 Sumitomo Metal Mining Co Ltd Method of recovering lithium
WO2013089400A1 (en) * 2011-12-12 2013-06-20 Research Institute Of Industrial Science & Technology Method for extraction of lithium from lithium bearing solution
KR101326174B1 (en) * 2011-12-12 2013-11-07 재단법인 포항산업과학연구원 Method for economical extraction of lithium from solution including lithium
KR101326172B1 (en) * 2011-12-12 2013-11-07 재단법인 포항산업과학연구원 Method for economical extraction of lithium from solution including lithium
CN103998633A (en) * 2011-12-12 2014-08-20 浦项产业科学研究院 Method for extraction of lithium from lithium bearing solution
US10017838B2 (en) 2011-12-12 2018-07-10 Research Institute Of Industrial Science & Technology Method for extraction of lithium from lithium bearing solution
KR101363616B1 (en) * 2011-12-28 2014-02-20 재단법인 포항산업과학연구원 Method for economical extraction of lithium from solution including lithium
KR101367843B1 (en) * 2011-12-28 2014-02-27 재단법인 포항산업과학연구원 Method for economical extraction of lithium from solution including lithium
JP2020164969A (en) * 2019-03-29 2020-10-08 Jx金属株式会社 Lithium concentration method and method for producing lithium hydroxide

Also Published As

Publication number Publication date
JP2500352B2 (en) 1996-05-29

Similar Documents

Publication Publication Date Title
JP2500352B2 (en) Separation and recovery method of lithium
BR112017001370B1 (en) method for recovery of rare earths by fractional extraction
JP3950968B2 (en) Method for separating and recovering Y and Eu
CN106756023A (en) The method that depth separates calcium and magnesium impurity in manganese sulfate
US4372923A (en) Purification of solutions of gallium values by liquid/liquid extraction
EP0879212B1 (en) A method for extracting antimony from elemental phosphorus
CA1136423A (en) Method for reclaiming uranium from raw phosphoric acid
RU2211871C1 (en) Method of processing loparite concentrate
WO2012042525A1 (en) A tributyl phosphate-nitrate solvent extraction process for producing high purity nuclear grade rare earth metal oxides
JP2011195935A (en) Method for separating and recovering platinum group element
US3529932A (en) Process for removing titanium from titanium-containing phosphoric acid
JP2009102679A (en) Method for recovering indium
JPH0357052B2 (en)
RU2807411C1 (en) Extraction method for isolation of lithium from aqueous solutions containing lithium, magnesium and calcium chlorides
JPH0375617B2 (en)
EP0331188B1 (en) Process for removing iron, chromium and vanadium from phosphoric acid
RU2069170C1 (en) Process for purification of aqueous hydrogen peroxide solution from acetic acid
JPWO2003072503A1 (en) Method for purifying niobium compound and/or tantalum compound
JP2000128531A (en) Separation of indium
IE872332L (en) Recovering gallium by liquid- liquid extraction
JPS5924169B2 (en) Selective separation method for indium
CN1639069A (en) Purification method for producing high purity niobium compound and/or tantalum compound
RU2731951C2 (en) Method of producing scandium concentrate
RU2156819C1 (en) Method of purifying rhodium and iridium
JPH0632618A (en) Purification of metal chloride