JP3879226B2 - Chemical separation of useful metals from combustion ash - Google Patents

Chemical separation of useful metals from combustion ash Download PDF

Info

Publication number
JP3879226B2
JP3879226B2 JP02457698A JP2457698A JP3879226B2 JP 3879226 B2 JP3879226 B2 JP 3879226B2 JP 02457698 A JP02457698 A JP 02457698A JP 2457698 A JP2457698 A JP 2457698A JP 3879226 B2 JP3879226 B2 JP 3879226B2
Authority
JP
Japan
Prior art keywords
solution
precipitate
combustion ash
separated
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02457698A
Other languages
Japanese (ja)
Other versions
JPH11222631A (en
Inventor
由美 早川
正忠 山下
敬一 三輪
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP02457698A priority Critical patent/JP3879226B2/en
Publication of JPH11222631A publication Critical patent/JPH11222631A/en
Application granted granted Critical
Publication of JP3879226B2 publication Critical patent/JP3879226B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、燃焼灰からの有用金属の化学的分離方法に係り、特に、有用金属を含む燃焼灰から有用金属を化学的に分離する方法に関するものである。
【0002】
【従来の技術】
南米のベネズエラのオリノコ川流域に多量埋蔵されているオリノコタールは、新規燃料として、その利用が種々検討されている。特に、水エマルジョン(オリマルジョンと称されている)として直接燃料に用いる方法が注目されている。
【0003】
オリマルジョンはV、Ni、Mgなどの有用金属を多量に含んでいるため、その燃焼灰中にもV、Ni、Mgなどの有用金属が多量に含まれる。ここで、燃焼灰をそのまま廃棄すると、灰廃棄量の増大を招くため廃棄コストが上昇し、また、Vが重金属であることから環境上も好ましくない。そのため、廃棄コストの削減を図ると共に、資源の有効利用を図るべく、有用金属を含んだ燃焼灰中から、V、Ni、Mgなどの有用金属を回収している。
【0004】
有用金属を含んだ各種燃料の燃料灰中からV、Ni、Mgなどの有用金属を回収するための方法としては、一般に、有機溶媒による化学的抽出分離法(特願平7−128392号、燃焼灰からの有用金属の連続的抽出分離方法;参照)、凝集沈殿法とイオン交換法又は電位調整法或いは吸着法などとの併用法が用いられている。
【0005】
【発明が解決しようとする課題】
しかしながら、有機溶媒による化学的抽出分離法の場合、高純度の回収物(有用金属)が得られるものの、装置構成が複雑になると共に、イニシャルコストやランニングコストが高くなるという問題がある。
【0006】
また、凝集沈殿法とイオン交換法又は電位調整法或いは吸着法などとの併用法の場合、前記した化学的抽出分離法に比べて装置構成はシンプルになるものの、多種類の試薬(酸、アルカリ、酸化剤、還元剤など)を必要とする。
【0007】
これらの試薬の中には毒性が高いものや高価なものもあるため、取扱い性が難しく、かつ、分離コストの上昇を招く。
【0008】
そこで本発明は、上記課題を解決し、燃焼灰中に含まれる有用金属および分離の際に生じる副産物を、高純度に、かつ、安価に分離するための燃焼灰からの有用金属の化学的分離方法を提供することにある。
【0009】
【課題を解決するための手段】
上記課題を解決するために請求項1の発明は、オリマルジョン燃料の燃焼灰中からV,Ni,Mgなどの有用金属とCaとを化学的に分離する方法において、上記燃焼灰を硫酸で溶解した溶解液をCa分の沈殿物と溶液分とに分離し、その溶液分を、アルカリ水溶液又は酸化剤を添加したアルカリ水溶液を用いてpH7〜10に調整して沈殿物と溶液分とに分離し、分離した沈殿物から上記有用金属であるNi分を回収した後、再びアルカリ水溶液又は酸化剤を添加したアルカリ水溶液を用いてpH10以上に調整して沈殿物と溶液分とに分離し、分離した沈殿物から上記有用金属であるMg分を回収した後、溶液分から晶析法により上記有用金属であるV分を回収するものである。
【0011】
以上の構成によれば、オリマルジョン燃料の燃焼灰中からV,Ni,Mgなどの有用金属とCaとを化学的に分離する方法において、上記燃焼灰を硫酸で溶解した溶解液をCa分の沈殿物と溶液分とに分離し、その溶液分を、アルカリ水溶液又は酸化剤を添加したアルカリ水溶液を用いてpH7〜10に調整して沈殿物と溶液分とに分離し、分離した沈殿物から上記有用金属であるNi分を回収した後、再びアルカリ水溶液又は酸化剤を添加したアルカリ水溶液を用いてpH10以上に調整して沈殿物と溶液分とに分離し、分離した沈殿物から上記有用金属であるMg分を回収した後、溶液分から晶析法により上記有用金属であるV分を回収するため、燃焼灰中に含まれる有用金属および分離の際に生じる副産物を、高純度に、かつ、安価に分離することができる。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。
【0013】
先ず、本発明者らは、燃焼灰としてオリマルジョン灰を用い、オリマルジョン灰の主要構成元素の沈殿特性を確認すべく、下記に示す試薬を用い、その構成元素の沈殿生成とpHとの関係を調べた。
【0014】
Mg2+:MgSO4
Ni2+:NiSO4
4+ :VOSO4 ・nH2
5+ :V2 5
上記の各試薬5gを500mlの純水に溶解すると共に、その100mlを採取して供試液とし、水酸化ナトリウム水溶液を用いてpHを変化させ、沈殿物の生成状況を肉眼で確認する。尚、V2 5 については、5gのV2 5 を水500mlと硫酸20mlで溶解した後、その100mlを採取して供試液とし、pHの調整液や沈殿物生成状況の確認は上記と同様の方法で行う。
【0015】
オリマルジョン灰の主要構成元素の沈殿生成とpHとの関係を図に示す。図中の△印は水溶液のpH値を示し、▲印は沈殿物生成時のpH値を示している。
【0016】
に示すように、MgSO4からの沈殿物生成時のpH値は10前後であった。NiSO4からの沈殿物生成時のpH値は7〜8であった。VOSO4からの沈殿物生成時のpH値は4前後であった。V25水溶液は全領域(pH1〜14)において溶解するため沈殿物の生成がなかった。
【0017】
ここで、燃焼灰中のV分の大部分はV5+であり、V4+は殆ど含まれていないため、pH値が10以上であれば、V以外の主要構成元素は沈殿物として水溶液中に沈殿することになる。V4+が存在する場合は、酸化剤を添加してV5+に変化させることができる。
【0018】
また、硫酸、水酸化ナトリウム、およびアンモニアの各5%水溶液200mlに1gのV2 5 を添加し、酸水溶液およびアルカリ水溶液に対するV2 5 の溶解性についての試験を行った。その結果、各水溶液に対するV2 5 の溶解反応は短時間で進行し、V2 5 は酸水溶液およびアルカリ水溶液に完全に溶解することが確認された。
【0019】
さらに、1%H2 SO4 水溶液100mlを撹拌しながらCaCO3 を少しづつ添加し、CaSO4 沈殿物の生成状況、及びその反応に伴う気泡の発生状況とpHの変化を観察した。その結果、CaSO4 の生成は、CaCO3 を添加すると同時に確認され、また、pHの上昇やCO2 ガス(気泡)の発生も認められた。この時、pH値が6になるとCaSO4 の生成は殆ど認められなくなると共に、CO2 ガスの発生も停止した。
【0020】
すなわち、pH6がCaSO4 生成反応の終了点と考えられ、このことから、CaSO4 生成反応はpH6以下で行う必要がある。また、CaSO4 の生成反応に寄与しなかった過剰のCaCO3 は、その溶解度から沈殿物として存在することが想定される。
【0021】
本検討において得られた結果から、pH調整によるオリマルジョンを含む各種燃料の燃焼灰からの有用金属回収・分離プロセスについては、次のように考えることができる。本実施の形態の燃焼灰からの有用金属の化学的分離方法のフローを示す図を図1に示す。
【0022】
実施の形態の燃焼灰からの有用金属の化学的分離方法は、図1に示すように、オリマルジョン燃料の燃焼灰を硫酸で溶解するものである。
【0023】
すなわち、燃焼灰を硫酸(pH6以下)を用いて溶解処理し、Ni分、Mg分、およびV分を酸水溶液中に溶解すると共に、Ca分をCaSO 4 として沈殿させる。その後、この溶解液の溶液分(Ni,Mg,V溶液)と沈殿物であるCaSO 4 とを分離してCa分を回収する。
【0024】
次に、先ず、水酸化ナトリウムなどのアルカリ水溶液又は酸化剤を添加したアルカリ水溶液を用いてNi,Mg,V溶液のpHを7〜10(例えば、pH7)に調整してNi(OH) 2 を沈殿分離させる。その後、この溶解液の溶液分(Mg,V溶液)と沈殿物であるNi(OH) 2 とを分離してNi分を回収する。
【0025】
次に、再びアルカリ水溶液又は酸化剤を添加したアルカリ水溶液を用いてMg,V溶液のpHを10以上(例えば、pH10)に調整してMg(OH) 2 を沈殿分離させる。その後、この溶解液の溶液分(V溶液)と沈殿物であるMg(OH) 2 とを分離してMg分を回収する。
【0026】
最後に、V溶液から晶析法によりV分を回収する。
【0027】
尚、本実施の形態においては、Ni分とMg分を、Ni(OH) 2 、Mg(OH) 2 と別々に回収しているが、Ni,Mg水酸化物(Ni(OH) 2 およびMg(OH) 2 の混合物)として回収してもよい。
【0028】
すなわち、本実施の形態によれば、オリマルジョン燃料の燃焼灰中からV,Ni,Mgなどの有用金属とCaとを化学的に分離する方法において、上記燃焼灰を硫酸で溶解した溶解液をCa分の沈殿物と溶液分とに分離し、その溶液分を、アルカリ水溶液又は酸化剤を添加したアルカリ水溶液を用いてpH7〜10に調整して沈殿物と溶液分とに分離し、分離した沈殿物から上記有用金属であるNi分を回収した後、再びアルカリ水溶液又は酸化剤を添加したアルカリ水溶液を用いてpH10以上に調整して沈殿物と溶液分とに分離し、分離した沈殿物から上記有用金属であるMg分を回収した後、溶液分から晶析法により上記有用金属であるV分を回収するため、高純度の有用金属および分離の際に生じる副産物を低コストで得ることができる。
【0029】
また、各有用金属および分離の際に生じる副産物の沈殿生成時のpHがそれぞれ異なっていることを利用して分離を行うため、分離工程の簡略化を図ることができる。
【0030】
さらに、最終的に回収された溶液を燃焼灰の溶解液として再利用していると共に、分離に使用する試薬は全て安価なものであるため、試薬の使用量を減らすことができると共に、分離コストを低減することができる。
【0052】
【発明の効果】
以上要するに本発明によれば、オリマルジョン燃料の燃焼灰中からV,Ni,Mgなどの有用金属とCaとを化学的に分離する方法において、上記燃焼灰を硫酸で溶解した溶解液をCa分の沈殿物と溶液分とに分離し、その溶液分を、アルカリ水溶液又は酸化剤を添加したアルカリ水溶液を用いてpH7〜10に調整して沈殿物と溶液分とに分離し、分離した沈殿物から上記有用金属であるNi分を回収した後、再びアルカリ水溶液又は酸化剤を添加したアルカリ水溶液を用いてpH10以上に調整して沈殿物と溶液分とに分離し、分離した沈殿物から上記有用金属であるMg分を回収した後、溶液分から晶析法により上記有用金属であるV分を回収することで、高純度の有用金属および分離の際に生じる副産物を得ることができるという優れた効果を発揮する。
【図面の簡単な説明】
【図1】 本実施の形態の燃焼灰からの有用金属の化学的分離方法のフローを示す図である。
【図2】 オリマルジョン灰の主要構成元素の沈殿生成とpHとの関係を示す図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for chemically separating useful metals from combustion ash, and more particularly to a method for chemically separating useful metals from combustion ash containing useful metals.
[0002]
[Prior art]
The use of orinocotal, which is buried in the Orinoco River basin in Venezuela, South America, as a new fuel is being studied in various ways. In particular, a method of directly using it as a fuel as a water emulsion (referred to as an oral emulsion) has attracted attention.
[0003]
Since Olimulsion contains a large amount of useful metals such as V, Ni and Mg, the combustion ash also contains a large amount of useful metals such as V, Ni and Mg. Here, if the combustion ash is discarded as it is, an increase in the amount of ash disposal is caused, resulting in an increase in disposal cost, and since V is a heavy metal, it is not environmentally preferable. Therefore, useful metals such as V, Ni, and Mg are recovered from the combustion ash containing useful metals in order to reduce disposal costs and effectively use resources.
[0004]
As a method for recovering useful metals such as V, Ni, and Mg from fuel ash of various fuels containing useful metals, generally, a chemical extraction separation method using an organic solvent (Japanese Patent Application No. 7-128392, combustion A method of continuous extraction and separation of useful metals from ash; see), a coagulation precipitation method and an ion exchange method, a potential adjustment method, an adsorption method or the like.
[0005]
[Problems to be solved by the invention]
However, in the case of the chemical extraction separation method using an organic solvent, a high-purity recovered product (useful metal) can be obtained, but there are problems that the apparatus configuration is complicated and the initial cost and running cost are increased.
[0006]
Further, in the case of the combined method of the coagulation precipitation method and the ion exchange method, the potential adjustment method or the adsorption method, the apparatus configuration is simpler than the chemical extraction separation method described above, but a variety of reagents (acids, alkalis) are used. , Oxidizing agent, reducing agent, etc.).
[0007]
Since some of these reagents are highly toxic or expensive, handling is difficult and the separation cost increases.
[0008]
Therefore, the present invention solves the above-mentioned problems, and chemically separates useful metals from combustion ash for separating the useful metals contained in the combustion ash and by-products generated during the separation with high purity and low cost. It is to provide a method.
[0009]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the invention of claim 1 is a method for chemically separating Ca and useful metals such as V, Ni, Mg, etc. from combustion ash of an oriental fuel, and dissolving the combustion ash with sulfuric acid. The dissolved solution is separated into a precipitate of Ca and a solution, and the solution is adjusted to pH 7 to 10 using an alkaline aqueous solution or an alkaline aqueous solution to which an oxidizing agent is added, and separated into a precipitate and a solution. After recovering the Ni content , which is a useful metal, from the separated precipitate, the pH is adjusted to 10 or higher again using an alkaline aqueous solution or an alkaline aqueous solution to which an oxidizing agent is added, and the precipitate and the solution are separated and separated. After recovering the Mg content which is the useful metal from the precipitate , the V content which is the useful metal is recovered from the solution by a crystallization method.
[0011]
According to the above configuration, in the method of chemically separating Ca and useful metals such as V, Ni, Mg, etc. from the combustion ash of the origin fuel, the solution obtained by dissolving the combustion ash with sulfuric acid is precipitated with Ca. The solution is separated into a precipitate and a solution by adjusting the pH to 7 to 10 using an alkaline aqueous solution or an alkaline aqueous solution to which an oxidizing agent is added. After recovering the Ni content which is a useful metal, the pH is adjusted to 10 or more again using an alkaline aqueous solution or an alkaline aqueous solution to which an oxidizing agent is added, and separated into a precipitate and a solution component. After recovering a certain Mg content, the useful metal contained in the combustion ash and the by-products generated during the separation are recovered in high purity and at low cost in order to recover the V content, which is the above-mentioned useful metal, from the solution by crystallization. In Can be separated.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
[0013]
First of all, the present inventors use orimulsion ash as combustion ash, and in order to confirm the precipitation characteristics of the main constituent elements of the oral ash, the following reagents are used, and the relationship between the precipitation of the constituent elements and the pH is investigated. It was.
[0014]
Mg 2+ : MgSO 4
Ni 2+ : NiSO 4
V 4+ : VOSO 4 · nH 2 O
V 5+ : V 2 O 5
Dissolve 5 g of each of the above reagents in 500 ml of pure water, collect 100 ml of the solution as a test solution, change the pH using an aqueous sodium hydroxide solution, and visually confirm the state of precipitate formation. For V 2 O 5 , 5 g of V 2 O 5 was dissolved in 500 ml of water and 20 ml of sulfuric acid, and then 100 ml of the sample was taken as a test solution. The same method is used.
[0015]
FIG. 2 shows the relationship between the precipitation of the main constituent elements of the oral ash and the pH. The triangle mark in the figure indicates the pH value of the aqueous solution, and the triangle mark indicates the pH value when the precipitate is generated.
[0016]
As shown in FIG. 2 , the pH value when the precipitate was formed from MgSO 4 was around 10. The pH value when the precipitate was formed from NiSO 4 was 7-8. The pH value when the precipitate was formed from VOSO 4 was around 4. Since the V 2 O 5 aqueous solution was dissolved in the entire region (pH 1 to 14), no precipitate was formed.
[0017]
Here, most of the V component in the combustion ash is V 5+ and almost no V 4+ is contained, so if the pH value is 10 or more, the main constituent elements other than V are aqueous solutions as precipitates. Will settle inside. If V 4+ is present, it can be changed to V 5+ by adding an oxidizing agent.
[0018]
In addition, 1 g of V 2 O 5 was added to 200 ml of 5% aqueous solution of sulfuric acid, sodium hydroxide, and ammonia, respectively, and the solubility of V 2 O 5 in acid aqueous solution and alkaline aqueous solution was tested. As a result, it was confirmed that the dissolution reaction of V 2 O 5 in each aqueous solution proceeded in a short time, and V 2 O 5 was completely dissolved in the acid aqueous solution and the alkaline aqueous solution.
[0019]
Furthermore, CaCO 3 was added little by little while stirring 100 ml of 1% H 2 SO 4 aqueous solution, and the generation state of CaSO 4 precipitate, the generation state of bubbles accompanying the reaction and the change in pH were observed. As a result, the formation of CaSO 4 was confirmed simultaneously with the addition of CaCO 3 , and the increase in pH and generation of CO 2 gas (bubbles) were also observed. At this time, when the pH value reached 6, almost no generation of CaSO 4 was observed, and generation of CO 2 gas was also stopped.
[0020]
That is, pH 6 is considered to be the end point of the CaSO 4 production reaction, and therefore, the CaSO 4 production reaction needs to be performed at pH 6 or less. Moreover, it is assumed that the excess CaCO 3 that has not contributed to the CaSO 4 production reaction exists as a precipitate from its solubility.
[0021]
From the results obtained in this study, the useful metal recovery / separation process from the combustion ash of various fuels including the origin by adjusting the pH can be considered as follows. FIG. 1 shows a flow chart of a method for chemically separating useful metals from combustion ash according to the present embodiment .
[0022]
As shown in FIG. 1, the method for chemically separating useful metals from combustion ash according to the present embodiment dissolves combustion ash of orimulsion fuel with sulfuric acid .
[0023]
That is, the combustion ash is dissolved using sulfuric acid (pH 6 or less), and Ni, Mg, and V are dissolved in an acid aqueous solution, and Ca is precipitated as CaSO 4 . Thereafter, the solution portion (Ni, Mg, V solution) of this solution and CaSO 4 that is a precipitate are separated to recover the Ca portion.
[0024]
Next, the pH of the Ni, Mg, V solution is adjusted to 7 to 10 (for example, pH 7) using an alkaline aqueous solution such as sodium hydroxide or an alkaline aqueous solution to which an oxidizing agent is added, and Ni (OH) 2 is changed. Separate by precipitation. Thereafter, the solution (Mg, V solution) of this solution and Ni (OH) 2 that is a precipitate are separated to recover the Ni.
[0025]
Next, the pH of the Mg, V solution is adjusted to 10 or more (for example, pH 10) using an alkaline aqueous solution or an alkaline aqueous solution to which an oxidizing agent is added again to precipitate and separate Mg (OH) 2 . Thereafter, the solution portion (V solution) of this solution and the Mg (OH) 2 that is the precipitate are separated to recover the Mg portion.
[0026]
Finally, V content is recovered from the V solution by crystallization.
[0027]
In this embodiment, the Ni minutes Mg content, Ni (OH) 2, Mg (OH) 2 and has been separately collected, Ni, Mg hydroxide (Ni (OH) 2 and Mg (OH) 2 mixture).
[0028]
That is, according to the present embodiment, in the method of chemically separating Ca, useful metals such as V, Ni, Mg and the like from the combustion ash of the origin fuel, a solution obtained by dissolving the combustion ash with sulfuric acid is added to the Ca. The precipitate is separated into a precipitate and a solution, and the solution is adjusted to pH 7 to 10 using an alkaline aqueous solution or an alkaline aqueous solution to which an oxidizing agent is added, and separated into a precipitate and a solution. After recovering the Ni content which is the useful metal from the product, the pH is adjusted to 10 or higher again using an alkaline aqueous solution or an alkaline aqueous solution to which an oxidizing agent is added, and separated into a precipitate and a solution. After collecting the useful metal Mg content, the above-mentioned useful metal V content is recovered from the solution by crystallization, so that it is possible to obtain high-purity useful metals and by-products generated during separation at low cost. wear.
[0029]
Moreover, since the separation is performed by utilizing the pH at the time of precipitation of each useful metal and by-products generated during the separation, the separation process can be simplified.
[0030]
Furthermore, since the solution finally recovered is reused as a dissolved solution of combustion ash and all the reagents used for separation are inexpensive, the amount of reagent used can be reduced and the separation cost can be reduced. Can be reduced.
[0052]
【The invention's effect】
In short, according to the present invention, in the method of chemically separating Ca and useful metals such as V, Ni, Mg, etc. from the combustion ash of the origin fuel, a solution obtained by dissolving the combustion ash with sulfuric acid is used as a Ca component. The precipitate is separated into a solution and the solution is adjusted to a pH of 7 to 10 using an alkaline aqueous solution or an alkaline aqueous solution to which an oxidizing agent is added, and separated into a precipitate and a solution. After recovering the Ni that is the useful metal, the pH is adjusted to 10 or more again using an alkaline aqueous solution or an alkaline aqueous solution to which an oxidizing agent is added, and separated into a precipitate and a solution, and the useful metal is separated from the separated precipitate. After recovering the Mg content, it is possible to obtain a high-purity useful metal and a by-product generated during the separation by recovering the V content, which is the useful metal, from the solution by crystallization. Exert the effect.
[Brief description of the drawings]
FIG. 1 is a diagram showing a flow of a method for chemically separating useful metals from combustion ash according to the present embodiment .
FIG. 2 is a diagram showing the relationship between the formation of precipitates of the main constituent elements of olimar John ash and pH.

Claims (1)

オリマルジョン燃料の燃焼灰中からV,Ni,Mgなどの有用金属とCaとを化学的に分離する方法において、上記燃焼灰を硫酸で溶解した溶解液をCa分の沈殿物と溶液分とに分離し、その溶液分を、アルカリ水溶液又は酸化剤を添加したアルカリ水溶液を用いてpH7〜10に調整して沈殿物と溶液分とに分離し、分離した沈殿物から上記有用金属であるNi分を回収した後、再びアルカリ水溶液又は酸化剤を添加したアルカリ水溶液を用いてpH10以上に調整して沈殿物と溶液分とに分離し、分離した沈殿物から上記有用金属であるMg分を回収した後、溶液分から晶析法により上記有用金属であるV分を回収することを特徴とする燃焼灰からの有用金属の化学的分離方法。In a method of chemically separating Ca, useful metals such as V, Ni, Mg, etc. from combustion ash of an orimar fuel, the solution obtained by dissolving the combustion ash with sulfuric acid is separated into a Ca precipitate and a solution. and, the solution content, a pH 7 to 10 adjusted to the separated into precipitate and solution component and, Ni content is above useful metals from the separated precipitate with an alkaline aqueous solution prepared by adding an aqueous alkali solution or an oxidizing agent After the recovery, the pH is adjusted to 10 or higher again using an alkaline aqueous solution or an alkaline aqueous solution to which an oxidizing agent is added, and separated into a precipitate and a solution, and after the Mg, which is the useful metal, is recovered from the separated precipitate A method for chemically separating a useful metal from combustion ash, which comprises recovering the useful metal V from the solution by crystallization.
JP02457698A 1998-02-05 1998-02-05 Chemical separation of useful metals from combustion ash Expired - Fee Related JP3879226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02457698A JP3879226B2 (en) 1998-02-05 1998-02-05 Chemical separation of useful metals from combustion ash

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02457698A JP3879226B2 (en) 1998-02-05 1998-02-05 Chemical separation of useful metals from combustion ash

Publications (2)

Publication Number Publication Date
JPH11222631A JPH11222631A (en) 1999-08-17
JP3879226B2 true JP3879226B2 (en) 2007-02-07

Family

ID=12142003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02457698A Expired - Fee Related JP3879226B2 (en) 1998-02-05 1998-02-05 Chemical separation of useful metals from combustion ash

Country Status (1)

Country Link
JP (1) JP3879226B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5742130B2 (en) * 2010-08-04 2015-07-01 住友金属鉱山株式会社 Method for producing vanadium pentoxide
JP2013014789A (en) * 2011-06-30 2013-01-24 Mitsubishi Materials Corp Method for treating flue cinder
KR101979419B1 (en) * 2017-12-26 2019-08-28 케이지에너켐(주) Manufacturing Method of Highly Purified Nickel Sulfate from the raw materials of high Calcium Content Nickel, Cobalt and Manganese Mixed Hydroxide Precipitation

Also Published As

Publication number Publication date
JPH11222631A (en) 1999-08-17

Similar Documents

Publication Publication Date Title
JP3085173B2 (en) Concentration separation and recovery method of rare earth metal from oxidized ore
WO2016026344A1 (en) Method for recovering lead oxide from waste lead plaster
JP3756687B2 (en) Method for removing and fixing arsenic from arsenic-containing solutions
JP7128836B2 (en) How to recover lithium
JP2003201526A (en) Method of refining ruthenium
JPH11277075A (en) Method for removing/fixing arsenic existing in iron sulfate solution
JP3879226B2 (en) Chemical separation of useful metals from combustion ash
CN110451539B (en) New method for neutralization aluminum removal and high-value utilization of aluminum resources of rare earth feed liquid
CN1321200C (en) Method for separating copper, arsenic and zinc from copper-smelting high-arsenic flue dust sulphuric acid leach liquor
KR900003065A (en) Method of producing titanium oxide
JPS5928614B2 (en) Method for separating and purifying platinum and/or palladium
CN107502762B (en) Method for extracting rare earth by one-step precipitation and impurity removal of ionic rare earth leaching mother liquor
CN102345016B (en) Method for recovering arsenic and heavy metals from contaminated acid generated by metallurgical off-gas
US5885535A (en) Process for extracting and recovering silver
WO2024000614A1 (en) Method for recovering hafnium and other metals from hafnium-containing waste residues
CN110339592B (en) Heavy metal ion extracting agent based on fatty acid, preparation method and extraction method
CN102350201B (en) Ion precipitation separating agent for flue gas desulphurization solution and use method thereof
JP2003253352A (en) Process for refining cadmium
JPH11106842A (en) Method for washing copper electrolyte using solvent extraction method
US20030138366A1 (en) Method of recovering copper
JP5799340B2 (en) Method for recovering precious metals from liquid containing precious metals
JP4336921B2 (en) Back extraction of titanium from acidic extractants.
JP2004052006A (en) Method for recovering cerium from chromium etching solution
JPS6112010B2 (en)
JP2000129364A (en) Method for recovering metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061030

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees