JP5799340B2 - Method for recovering precious metals from liquid containing precious metals - Google Patents

Method for recovering precious metals from liquid containing precious metals Download PDF

Info

Publication number
JP5799340B2
JP5799340B2 JP2011031375A JP2011031375A JP5799340B2 JP 5799340 B2 JP5799340 B2 JP 5799340B2 JP 2011031375 A JP2011031375 A JP 2011031375A JP 2011031375 A JP2011031375 A JP 2011031375A JP 5799340 B2 JP5799340 B2 JP 5799340B2
Authority
JP
Japan
Prior art keywords
water
noble metal
mercapto group
compound containing
soluble compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011031375A
Other languages
Japanese (ja)
Other versions
JP2012158830A (en
Inventor
景山 忠
忠 景山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Senka Corp
Original Assignee
Senka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Senka Corp filed Critical Senka Corp
Priority to JP2011031375A priority Critical patent/JP5799340B2/en
Publication of JP2012158830A publication Critical patent/JP2012158830A/en
Application granted granted Critical
Publication of JP5799340B2 publication Critical patent/JP5799340B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Removal Of Specific Substances (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

発明の詳細な説明Detailed Description of the Invention

本発明は、貴金属をリサイクルするための技術分野に属し、メルカプト基を含有する水溶性化合物を用いた貴金属の回収方法に関する。  The present invention belongs to a technical field for recycling noble metals, and relates to a method for recovering noble metals using a water-soluble compound containing a mercapto group.

希少であり価格的にも高価な貴金属を効率的に利用するためには、使用済みの貴金属含有液から貴金属を分離・回収する技術が不可欠であり、様々な方法が提案されている。例えば、イオン交換樹脂に貴金属を吸着させた後、イオン交換樹脂に塩化ナトリウム又は塩化アンモニウムの水溶液を接触させ、イオン交換樹脂から貴金属を脱離させる方法(特許文献1)、(非特許文献1)、貴金属含有液中に還元剤を添加し、貴金属の粒子を形成させ、分離回収する方法(特許文献2)、貴金属の選択的抽出剤を含有する抽出溶媒を貴金属含有液と液−液接触させて貴金属を選択的に抽出する方法(特許文献3、4)、(非特許文献2)、アミノ化合物又はアミノ化合物とヘテロポリ酸を組み合わせた選択沈澱剤を使用する方法(特許文献5)、高分子基体にキレート形成基を導入した吸着剤に貴金属を吸着させた後、吸着剤に無機酸、有機酸又は有機溶剤を接触させることによって吸着剤から貴金属を脱離させる方法(特許文献6)がある。
しかしながら、特許文献1や特許文献6に記載のイオン交換基やキレート基に貴金属を吸着させる方法では後段に吸着した貴金属を溶離させる工程があるため、溶離液の処理が問題となり、特許文献2に記載の還元剤を添加する方法ではスズや銅等の卑金属も還元され沈殿を生成するため、貴金属の選択的分離は困難である。また、特許文献3や特許文献4に記載の抽出剤を用いる方法では抽出溶媒に有機溶媒の使用が必須であることが問題であり、特許文献5に記載の選択的沈殿剤を使用する方法では使用するアミノ化合物が低分子であるため臭気の問題があり、実用に際しては困難である。このため簡便、低コスト且つ選択性に優れた貴金属の分離・回収プロセスが切望されている。
In order to efficiently use rare and expensive noble metals, techniques for separating and recovering noble metals from used noble metal-containing liquids are indispensable, and various methods have been proposed. For example, a method in which a noble metal is adsorbed on an ion exchange resin, and then an aqueous solution of sodium chloride or ammonium chloride is contacted with the ion exchange resin to desorb the noble metal from the ion exchange resin (Patent Document 1), (Non-Patent Document 1) , A method of adding a reducing agent to a noble metal-containing liquid, forming noble metal particles, separating and recovering (Patent Document 2), bringing an extraction solvent containing a noble metal selective extractant into liquid-liquid contact with the noble metal-containing liquid (Patent Documents 3 and 4), (Non-Patent Document 2), a method using a selective precipitation agent combining an amino compound or an amino compound and a heteropoly acid (Patent Document 5), a polymer A method for desorbing a noble metal from an adsorbent by adsorbing the adsorbent with an inorganic acid, an organic acid or an organic solvent after adsorbing the noble metal to the adsorbent having a chelate-forming group introduced into the substrate Patent Document 6) there is.
However, in the method of adsorbing the noble metal to the ion exchange group or chelate group described in Patent Document 1 or Patent Document 6, there is a step of eluting the noble metal adsorbed in the latter stage, so the treatment of the eluent becomes a problem. In the method in which the described reducing agent is added, base metals such as tin and copper are also reduced and precipitates are formed, so that selective separation of noble metals is difficult. In addition, in the method using the extractant described in Patent Document 3 and Patent Document 4, it is a problem that the use of an organic solvent as the extraction solvent is necessary. In the method using the selective precipitant described in Patent Document 5, Since the amino compound used has a low molecular weight, there is a problem of odor, which is difficult in practical use. For this reason, there is an urgent need for a process for separating and recovering precious metals that is simple, low-cost and excellent in selectivity.

特開2000−192162号公報JP 2000-192162 A 芝田準次、奥田晃彦「貴金属のリサイクル技術」資源と素材、118巻1号、p.1−8(2002)Junji Shibata, Yasuhiko Okuda “Precious Metal Recycling Technology” Resources and Materials, Vol. 118, No. 1, p. 1-8 (2002) 特開2001−032025号公報JP 2001-032025 A 特開2001−115216号公報JP 2001-115216 A 特開2006−233317号公報JP 2006-233317 A 越村英雄「貴金属、回収技術の現状」化学技術誌MOL、4号、p.76−81(1986)Hideo Koshimura “Precious Metals, Current Status of Recovery Technology” Chemical Technology Magazine MOL No. 4, p. 76-81 (1986) 特開2005−194546号公報JP 2005-194546 A 特開2006−026588号公報Japanese Patent Laid-Open No. 2006-026588

本発明の目的は、貴金属と卑金属とを含む液中からの貴金属の凝集沈殿・卑金属との分別・回収が効率的に実施できる、貴金属の回収方法を提供することにある。  An object of the present invention is to provide a method for recovering a noble metal capable of efficiently carrying out agglomeration and precipitation of the noble metal from the liquid containing the noble metal and the base metal, and separation and recovery from the base metal.

本発明者は、鋭意研究を積み重ねた結果、強酸性の貴金属含有液に対してメルカプト基を含有する水溶性化合物を混合することにより、貴金属含有液中からの貴金属の凝集沈殿・卑金属との分別・回収が、効率的に実現できることを見出し、本発明を完成するに至った。  As a result of intensive research, the present inventor mixed a water-soluble compound containing a mercapto group with a strongly acidic noble metal-containing liquid, thereby separating and precipitating the noble metal from the noble metal-containing liquid.・ Recovery can be realized efficiently, and the present invention has been completed.

即ち本発明の貴金属の回収方法は、貴金属と卑金属とを含有する強酸性液中にメルカプト基を含有する水溶性化合物を添加して貴金属を含有する凝集体を形成させ、これを分離回収して貴金属と卑金属を分別することを特徴とする。  That is, the method for recovering a noble metal of the present invention is to add a water-soluble compound containing a mercapto group to a strongly acidic liquid containing a noble metal and a base metal to form an aggregate containing the noble metal, and separate and recover this. It is characterized by separating precious metals and base metals.

また、本発明の貴金属の回収方法における上記メルカプト基を含有する水溶性化合物は下記一般式(1)で示される化合物

Figure 0005799340
[式中Rは炭素数1〜10の直鎖又は分岐のアルキレン基又はCHCHCOMであり、Yは酸素原子又は2個の水素原子であり、Mは水素原子、アルカリ金属またはアンモニウム基の中から選ばれた少なくとも1種を示す。]の少なくとも1種であることを特徴とする。The water-soluble compound containing a mercapto group in the method for recovering a noble metal of the present invention is a compound represented by the following general formula (1):
Figure 0005799340
[Wherein R is a linear or branched alkylene group having 1 to 10 carbon atoms or CHCH 2 CO 2 M, Y is an oxygen atom or two hydrogen atoms, and M is a hydrogen atom, an alkali metal or an ammonium group. At least one selected from the above. ] At least one kind.

本発明の貴金属含有液中からの貴金属の回収方法は、貴金属の凝集沈殿・卑金属との分別・回収が、簡便、低コスト且つ効率的に実施できる。  The method for recovering a noble metal from the noble metal-containing liquid according to the present invention allows simple, low-cost and efficient implementation of the noble metal coagulation precipitation and separation from the base metal.

以下、本発明を詳細に説明する。本発明の方法において処理の対象とする貴金属と卑金属とを含む液(以下、貴金属含有液ということがある)とは、各種工業の過程において得られる貴金属ないしその化合物を含んでなる強酸性の液をいう。これは、水性の液が通常であるが、有機性のものを排除しない。このような貴金属含有液の例としては、各種の触媒反応で使用された貴金属を含有する触媒液が例示される。本発明においてはこのような触媒液が好ましい。なお、本発明において触媒液というときは、前記のように、触媒反応において使用済みの触媒液(すなわち触媒廃液)の他に、使用前の触媒液や触媒洗浄液等も含まれる。  Hereinafter, the present invention will be described in detail. The liquid containing a noble metal and a base metal to be treated in the method of the present invention (hereinafter sometimes referred to as a noble metal-containing liquid) is a strongly acidic liquid containing a noble metal or a compound thereof obtained in various industrial processes. Say. This is usually an aqueous liquid but does not exclude organic ones. Examples of such noble metal-containing liquids include catalyst liquids containing noble metals used in various catalytic reactions. In the present invention, such a catalyst solution is preferable. In the present invention, the catalyst solution includes, in addition to the catalyst solution used in the catalytic reaction (that is, the catalyst waste solution), the catalyst solution before use, the catalyst washing solution, and the like as described above.

本発明において好ましい貴金属含有液は、無電解メッキ処理を行う際の所謂触媒化工程、すなわちメッキ対象物に白金族系の金属のような触媒の活性核を種付けする工程において使用された(もしくは使用される)触媒液である。  The noble metal-containing liquid preferred in the present invention has been used (or used) in a so-called catalyzing step when performing an electroless plating process, that is, a step of seeding a plating object with an active nucleus of a catalyst such as a platinum group metal. The catalyst solution.

また、本発明でいう貴金属としては、白金族金属(パラジウム、ルテニウム、ロジウム、オスミウム、イリジウム、白金)及び金、銀が例示される。工業的観点から特にパラジウム、金の回収に本発明は有用である。  Examples of the noble metal in the present invention include platinum group metals (palladium, ruthenium, rhodium, osmium, iridium, platinum), gold, and silver. The present invention is particularly useful for recovering palladium and gold from an industrial viewpoint.

工業的観点から有用な態様においては、貴金属含有液は、パラジウムを含む強酸性液、特にパラジウムとスズを含む強酸性液又は金を含む強酸性液、特に金と銅及び鉄を含む強酸性液であり、より詳しくは、塩化パラジウムを含む強酸性触媒液、特に塩化パラジウムとスズを含む強酸性触媒液又は塩化金と銅及び鉄を含む強酸性触媒液である。  In an embodiment useful from an industrial point of view, the noble metal-containing liquid is a strong acidic liquid containing palladium, particularly a strong acidic liquid containing palladium and tin, or a strong acidic liquid containing gold, particularly a strong acidic liquid containing gold, copper and iron. More specifically, it is a strongly acidic catalyst solution containing palladium chloride, particularly a strongly acidic catalyst solution containing palladium chloride and tin, or a strongly acidic catalyst solution containing gold chloride, copper and iron.

本発明の処理対象とされる貴金属含有液中の貴金属の濃度は、液中に少なくとも貴金属が含まれているのであれば、いずれの濃度であっても良いが、例えば無電解メッキ処理の触媒化工程における触媒液の場合には、塩化パラジウム量で換算して、0.1〜0.5g/Lの触媒液管理範囲より少ない量であるのが普通である。なお、このような貴金属含有液は、必要に応じて、予め濃縮もしくは希釈させた後、本発明の方法に供してもよい。また、本発明の処理対象とされる貴金属含有液は強酸性溶液であり、具体的には−1〜3の範囲のpHであり、特に−0.5〜2.5の範囲のpHが好ましい。  The concentration of the noble metal in the noble metal-containing liquid to be treated according to the present invention may be any concentration as long as the liquid contains at least noble metal. In the case of the catalyst solution in the process, the amount is usually smaller than the catalyst solution management range of 0.1 to 0.5 g / L in terms of palladium chloride. Such a noble metal-containing liquid may be subjected to the method of the present invention after being concentrated or diluted in advance as necessary. Further, the noble metal-containing liquid to be treated according to the present invention is a strongly acidic solution, specifically a pH in the range of −1 to 3, particularly a pH in the range of −0.5 to 2.5. .

本発明で用いられるメルカプト基を含有する水溶性化合物としては、下記一般式(1)で表される化合物が挙げられる。

Figure 0005799340
[式中Rは炭素数1〜10の直鎖又は分岐のアルキレン基又はCHCHCOMであり、Yは酸素原子又は2個の水素原子であり、Mは水素原子、アルカリ金属またはアンモニウム基の中から選ばれた少なくとも1種を示す。]
一般式(1)で示される化合物としては、例えばメルカプト酢酸、メルカプトプロピオン酸、メルカプト酪酸、メルカプト酢酸ナトリウム、メルカプト酢酸カリウム、メルカプト酢酸リチウム、メルカプト酢酸アンモニウム、メルカプトプロピオン酸ナトリウム、メルカプトプロピオン酸カリウム、メルカプトプロピオン酸リチウム、メルカプトプロピオン酸アンモニウム、メルカプトエタノール、メルカプトプロパノール、メルカプトブタノール、チオリンゴ酸、チオリンゴ酸ナトリウム、チオリンゴ酸カリウム、チオリンゴ酸リチウム、チオリンゴ酸アンモニウム等を挙げることができる。これらのうち、取扱いの容易さを考慮するとメルカプト酢酸が好ましい。Examples of the water-soluble compound containing a mercapto group used in the present invention include compounds represented by the following general formula (1).
Figure 0005799340
[Wherein R is a linear or branched alkylene group having 1 to 10 carbon atoms or CHCH 2 CO 2 M, Y is an oxygen atom or two hydrogen atoms, and M is a hydrogen atom, an alkali metal or an ammonium group. At least one selected from the above. ]
Examples of the compound represented by general formula (1) include mercaptoacetic acid, mercaptopropionic acid, mercaptobutyric acid, sodium mercaptoacetate, potassium mercaptoacetate, lithium mercaptoacetate, ammonium mercaptoacetate, sodium mercaptopropionate, potassium mercaptopropionate, mercapto Examples include lithium propionate, ammonium mercaptopropionate, mercaptoethanol, mercaptopropanol, mercaptobutanol, thiomalic acid, sodium thiomalate, potassium thiomalate, lithium thiomalate, and ammonium thiomalate. Of these, mercaptoacetic acid is preferred in view of ease of handling.

次に、本発明の貴金属含有液中からの貴金属の回収方法について説明する。貴金属含有液中の貴金属とメルカプト基を含有する水溶性化合物との凝集体形成反応は、常温常圧下で迅速に進行するため、特別な反応装置を用意する必要はなく、対象とする貴金属含有液とメルカプト基を含有する水溶性化合物を、十分混合することで凝集体形成反応は進行する。貴金属含有液とメルカプト基を含有する水溶性化合物との接触時間は、通常1分〜30分で十分であり、この時間内に凝集体形成反応は完結する。  Next, a method for recovering noble metal from the noble metal-containing liquid of the present invention will be described. Aggregate formation reaction between a noble metal and a water-soluble compound containing a mercapto group in a noble metal-containing liquid proceeds rapidly under normal temperature and pressure, so there is no need to prepare a special reaction device. Aggregate formation reaction proceeds by sufficiently mixing a water-soluble compound containing a mercapto group. The contact time between the noble metal-containing liquid and the water-soluble compound containing a mercapto group is usually 1 to 30 minutes, and the aggregate formation reaction is completed within this time.

貴金属と卑金属とを含む液とメルカプト基を含有する水溶性化合物を混合し、凝集体を形成後、例えば高分子凝集剤を混合し、凝集体を粗大化させた後、固液分離しても良く、当該メルカプト基含有水溶性化合物を混合して形成された凝集体が液中から取除くことができればいかなる方法でも良く、特に限定されない。  A liquid containing a noble metal and a base metal and a water-soluble compound containing a mercapto group are mixed to form an aggregate, and then, for example, a polymer flocculant is mixed to coarsen the aggregate, followed by solid-liquid separation. Any method may be used as long as the aggregate formed by mixing the mercapto group-containing water-soluble compound can be removed from the liquid, and is not particularly limited.

本発明で用いられる高分子凝集剤としては、例えば、アクリルアミド−アクリル酸塩の共重合物、ポリアクリルアミド部分加水分解物、ポリアクリル酸塩、ポリスチレンスルホン酸塩等が挙げられるが、これらの高分子化合物の1種又は2種以上組み合わせても良く、特に限定されない。  Examples of the polymer flocculant used in the present invention include acrylamide-acrylate copolymer, polyacrylamide partial hydrolyzate, polyacrylate, polystyrene sulfonate, and the like. One type or two or more types of compounds may be combined, and are not particularly limited.

アクリルアミド−アクリル酸塩の共重合物としては、例えばアクリルアミド−アクリル酸ナトリウムの共重合物、アクリルアミド−アクリル酸カリウムの共重合物、アクリルアミド−アクリル酸アンモニウムの共重合物等が挙げられる。ポリアクリル酸塩としては、例えばポリアクリル酸ナトリウム、ポリアクリル酸カリウム、ポリアクリル酸アンモニウム等が挙げられる。ポリスチレンスルホン酸塩としては、例えばポリスチレンスルホン酸ナトリウム、ポリスチレンスルホン酸カリウム、ポリスチレンスルホン酸アンモニウム等が挙げられる。  Examples of the acrylamide-acrylate copolymer include acrylamide-sodium acrylate copolymer, acrylamide-potassium acrylate copolymer, acrylamide-ammonium acrylate copolymer, and the like. Examples of the polyacrylate include sodium polyacrylate, potassium polyacrylate, and ammonium polyacrylate. Examples of the polystyrene sulfonate include sodium polystyrene sulfonate, potassium polystyrene sulfonate, and ammonium polystyrene sulfonate.

高分子凝集剤としては、アクリルアミド−アクリル酸塩の共重合物が好ましく、分子量は100万〜3000万程度であり、好ましくは200万〜2000万程度の分子量のものである。  As the polymer flocculant, a copolymer of acrylamide-acrylate is preferable, and the molecular weight is about 1 million to 30 million, preferably about 2 million to 20 million.

生成した貴金属の沈殿物は、固液分離が容易なため、分離ろ過操作により、効率良く溶液中の固液分離することができ、一般的な脱水機で脱水することができる。脱水機としては、例えば真空脱水機、ベルトプレス機、スクリュープレス機、遠心脱水機等が挙げられるが、特に限定されない。  Since the produced noble metal precipitate is easily separated into solid and liquid, it can be efficiently separated into solid and liquid by a separation and filtration operation and dehydrated with a general dehydrator. Examples of the dehydrator include, but are not particularly limited to, a vacuum dehydrator, a belt press machine, a screw press machine, and a centrifugal dehydrator.

分離した貴金属の沈殿物は焼却処理することにより貴金属を回収することができ、種々の利用分野で再利用することができる。  The separated noble metal precipitate can be recovered by incineration, and can be reused in various fields of use.

作用Action

メルカプト基は重金属と接触すると速やかに反応し、水不溶性のメルカプチドを誘導する。本発明でいう貴金属としては、白金族金属(パラジウム、ルテニウム、ロジウム、オスミウム、イリジウム、白金)及び金、銀が例示される。また、本発明でいう卑金属としては、貴金属を除く重金属であり、マンガン、クロム、亜鉛、鉄、カドミウム、ニッケル、スズ、鉛等が例示される。貴金属と卑金属が混合した酸性溶液中にメルカプト基を含有する水溶性化合物を添加すると、卑金属との反応よりも貴金属との反応が速やかに進行すると考えられる。貴金属から誘導される水不溶性のメルカプチドが優先的に生成し、貴金属と卑金属との分別が可能となると考えられる。  Mercapto groups react rapidly upon contact with heavy metals, leading to water-insoluble mercaptides. Examples of the noble metal in the present invention include platinum group metals (palladium, ruthenium, rhodium, osmium, iridium, platinum), gold, and silver. The base metal in the present invention is a heavy metal excluding noble metals, and examples thereof include manganese, chromium, zinc, iron, cadmium, nickel, tin, lead, and the like. When a water-soluble compound containing a mercapto group is added to an acidic solution in which a noble metal and a base metal are mixed, it is considered that the reaction with the noble metal proceeds more rapidly than the reaction with the base metal. It is considered that water-insoluble mercaptides derived from noble metals are preferentially produced, and it is possible to separate noble metals from base metals.

以下、実施例及び比較例を挙げる事により、本発明の特徴をより一層明確なものとするが、本発明は以下の実施例に限定されるものではない。  Hereinafter, the features of the present invention will be made clearer by giving examples and comparative examples, but the present invention is not limited to the following examples.

本発明の方法に従って使用済みの触媒液から下記の通りにしてパラジウム及び金を回収した。触媒液中に含まれるパラジウム、スズ並びに金、銅、鉄の濃度は原子吸光光度計(島津製作所製:島津原子吸光度計/フレーム分光光度計AA−7000)により求めた。  Palladium and gold were recovered from the spent catalyst solution according to the method of the present invention as follows. The concentrations of palladium, tin, gold, copper, and iron contained in the catalyst solution were determined by an atomic absorption photometer (manufactured by Shimadzu Corporation: Shimadzu atomic absorption meter / flame spectrophotometer AA-7000).

無電解メッキ処理の触媒化工程に使用された、パラジウムとスズを含有する使用済み触媒液を処理対象液(以下、触媒液Aという)として使用した。触媒液Aのパラジウム濃度は103.9mg/L、スズ濃度は1.45%であり、pHは−0.38であった。この触媒液を100ml用意し、ここにメルカプト基を含有する水溶性化合物であるメルカプト酢酸を6000mg/L添加し、攪拌、混合後、処理液をろ紙(ADVANTEC製、No5A)でろ過し、ろ液中のパラジウムとスズの濃度を求めた。  A used catalyst solution containing palladium and tin, which was used in the catalyzing step of the electroless plating treatment, was used as a treatment target solution (hereinafter referred to as catalyst solution A). Catalyst solution A had a palladium concentration of 103.9 mg / L, a tin concentration of 1.45%, and a pH of -0.38. 100 ml of this catalyst solution is prepared, and 6000 mg / L of mercaptoacetic acid, which is a water-soluble compound containing a mercapto group, is added thereto, and after stirring and mixing, the treated solution is filtered through a filter paper (manufactured by ADVANTEC, No5A). The concentration of palladium and tin in it was determined.

メルカプト基を含有する水溶性化合物としてメルカプトプロピオン酸を使用した以外は実施例1と同様の操作を行った。  The same operation as in Example 1 was performed except that mercaptopropionic acid was used as the water-soluble compound containing a mercapto group.

メルカプト基を含有する水溶性化合物としてメルカプト酢酸ナトリウムを使用した以外は実施例1と同様の操作を行った。  The same operation as in Example 1 was performed except that sodium mercaptoacetate was used as the water-soluble compound containing a mercapto group.

メルカプト基を含有する水溶性化合物としてメルカプト酢酸アンモニウムを使用した以外は実施例1と同様の操作を行った。  The same operation as in Example 1 was performed, except that ammonium mercaptoacetate was used as the water-soluble compound containing a mercapto group.

メルカプト基を含有する水溶性化合物としてメルカプトエタノールを使用した以外は実施例1と同様の操作を行った。  The same operation as in Example 1 was performed except that mercaptoethanol was used as the water-soluble compound containing a mercapto group.

メルカプト基を含有する水溶性化合物としてチオリンゴ酸を使用した以外は実施例1と同様の操作を行った。  The same operation as in Example 1 was performed except that thiomalic acid was used as a water-soluble compound containing a mercapto group.

メルカプト基を含有する水溶性化合物としてチオリンゴ酸ナトリウムを使用した以外は実施例1と同様の操作を行った。  The same operation as in Example 1 was performed except that sodium thiomalate was used as a water-soluble compound containing a mercapto group.

実施例1と同じ触媒液を使用して、メルカプト基を含有する水溶性化合物としてメルカプト酢酸を添加し、攪拌、混合後、さらにアクリルアミド/アクリル酸ナトリウム(モル比80/20)共重合物の高分子凝集剤を8mg/L添加、攪拌、混合し、以下実施例1と同様の操作を行った。  Using the same catalyst solution as in Example 1, mercaptoacetic acid was added as a water-soluble compound containing a mercapto group, and after stirring and mixing, a high acrylamide / sodium acrylate (molar ratio 80/20) copolymer was added. A molecular flocculant was added at 8 mg / L, stirred and mixed, and the same operation as in Example 1 was performed.

メルカプト基を含有する水溶性化合物としてメルカプトプロピオン酸を使用した以外は実施例8と同様の操作を行った。  The same operation as in Example 8 was performed except that mercaptopropionic acid was used as the water-soluble compound containing a mercapto group.

メルカプト基を含有する水溶性化合物としてメルカプト酢酸ナトリウムを使用した以外は実施例8と同様の操作を行った。  The same operation as in Example 8 was performed except that sodium mercaptoacetate was used as the water-soluble compound containing a mercapto group.

メルカプト基を含有する水溶性化合物としてメルカプト酢酸アンモニウムを使用した以外は実施例8と同様の操作を行った。  The same operation as in Example 8 was performed, except that ammonium mercaptoacetate was used as the water-soluble compound containing a mercapto group.

メルカプト基を含有する水溶性化合物としてメルカプトエタノールを使用した以外は実施例8と同様の操作を行った。  The same operation as in Example 8 was performed except that mercaptoethanol was used as the water-soluble compound containing a mercapto group.

メルカプト基を含有する水溶性化合物としてチオリンゴ酸を使用した以外は実施例8と同様の操作を行った。  The same operation as in Example 8 was performed except that thiomalic acid was used as a water-soluble compound containing a mercapto group.

メルカプト基を含有する水溶性化合物としてチオリンゴ酸ナトリウムを使用した以外は実施例8と同様の操作を行った。  The same operation as in Example 8 was performed except that sodium thiomalate was used as the water-soluble compound containing a mercapto group.

[比較例1]
メルカプト基を含有する水溶性化合物の替わりに、メルカプト基を含有する水不溶性化合物としてメルカプト酢酸ブチルを使用した以外は実施例1と同様の操作を行った。
[Comparative Example 1]
The same operation as in Example 1 was carried out except that mercaptobutylbutyl was used as a water-insoluble compound containing a mercapto group instead of the water-soluble compound containing a mercapto group.

[比較例2]
メルカプト基を含有する水溶性化合物の替わりに、水溶性の硫黄化合物として亜ジチオン酸ナトリウムを使用した以外は実施例1と同様の操作を行った。
[Comparative Example 2]
The same operation as in Example 1 was performed except that sodium dithionite was used as a water-soluble sulfur compound instead of the water-soluble compound containing a mercapto group.

[比較例3]
メルカプト基を含有する水溶性化合物の替わりに、水溶性の硫黄化合物として亜硫酸水素ナトリウムを使用した以外は実施例1と同様の操作を行った。
[Comparative Example 3]
The same operation as in Example 1 was performed except that sodium hydrogen sulfite was used as the water-soluble sulfur compound instead of the water-soluble compound containing a mercapto group.

[比較例4]
メルカプト基を含有する水溶性化合物の替わりに、メルカプト基を含有する水不溶性化合物としてメルカプト酢酸ブチルを使用した以外は実施例8と同様の操作を行った。
[Comparative Example 4]
The same operation as in Example 8 was performed except that, instead of the water-soluble compound containing a mercapto group, butyl mercaptoacetate was used as the water-insoluble compound containing a mercapto group.

[比較例5]
メルカプト基を含有する水溶性化合物の替わりに、水溶性の硫黄化合物として亜ジチオン酸ナトリウムを使用した以外は実施例8と同様の操作を行った。
[Comparative Example 5]
The same operation as in Example 8 was performed except that sodium dithionite was used as a water-soluble sulfur compound instead of the water-soluble compound containing a mercapto group.

[比較例6]
メルカプト基を含有する水溶性化合物の替わりに、水溶性の硫黄化合物として亜硫酸水素ナトリウムを使用した以外は実施例8と同様の操作を行った。
[Comparative Example 6]
The same operation as in Example 8 was performed except that sodium hydrogen sulfite was used as the water-soluble sulfur compound instead of the water-soluble compound containing a mercapto group.

[比較例7]
触媒液Aに水酸化ナトリウム水溶液を添加してpHを3.5に調整した以外は実施例1と同じ操作を行った。
[Comparative Example 7]
The same operation as in Example 1 was performed except that an aqueous sodium hydroxide solution was added to the catalyst solution A to adjust the pH to 3.5.

[比較例8]
触媒液Aに水酸化ナトリウム水溶液を添加してpHを3.5に調整した以外は実施例8と同じ操作を行った。
[Comparative Example 8]
The same operation as in Example 8 was performed except that an aqueous sodium hydroxide solution was added to catalyst solution A to adjust the pH to 3.5.

無電解メッキ処理の触媒化工程に使用された、金と銅と鉄を含有する使用済み触媒液を処理対象液(以下、触媒液Bという)として使用した。触媒液Bの金濃度は73.7mg/L、銅濃度は1.31%、鉄濃度は0.69%であり、pHは−0.20であった。この触媒液を100ml用意し、ここにメルカプト基を含有する水溶性化合物であるメルカプト酢酸を2000mg/L添加し、攪拌、混合後、処理液をろ紙(ADVANTEC製、No5A)でろ過し、ろ液中の金と銅と鉄の濃度を求めた。  A used catalyst solution containing gold, copper, and iron, which was used in the electroless plating treatment, was used as a treatment target solution (hereinafter referred to as catalyst solution B). Catalyst solution B had a gold concentration of 73.7 mg / L, a copper concentration of 1.31%, an iron concentration of 0.69%, and a pH of -0.20. Prepare 100 ml of this catalyst solution, add 2000 mg / L of mercaptoacetic acid, which is a water-soluble compound containing a mercapto group, and after stirring and mixing, the treated solution is filtered with a filter paper (manufactured by ADVANTEC, No5A). The concentration of gold, copper and iron inside was determined.

メルカプト基を含有する水溶性化合物としてメルカプトプロピオン酸を使用した以外は実施例15と同様の操作を行った。  The same operation as in Example 15 was performed except that mercaptopropionic acid was used as the water-soluble compound containing a mercapto group.

メルカプト基を含有する水溶性化合物としてメルカプト酢酸ナトリウムを使用した以外は実施例15と同様の操作を行った。  The same operation as in Example 15 was performed except that sodium mercaptoacetate was used as the water-soluble compound containing a mercapto group.

メルカプト基を含有する水溶性化合物としてメルカプト酢酸アンモニウムを使用した以外は実施例15と同様の操作を行った。  The same operation as in Example 15 was performed except that mercaptoacetate ammonium was used as the water-soluble compound containing a mercapto group.

メルカプト基を含有する水溶性化合物としてメルカプトエタノールを使用した以外は実施例15と同様の操作を行った。  The same operation as in Example 15 was performed except that mercaptoethanol was used as the water-soluble compound containing a mercapto group.

メルカプト基を含有する水溶性化合物としてチオリンゴ酸を使用した以外は実施例15と同様の操作を行った。  The same operation as in Example 15 was performed except that thiomalic acid was used as a water-soluble compound containing a mercapto group.

メルカプト基を含有する水溶性化合物としてチオリンゴ酸ナトリウムを使用した以外は実施例15と同様の操作を行った。  The same operation as in Example 15 was performed except that sodium thiomalate was used as the water-soluble compound containing a mercapto group.

実施例15と同じ触媒液を使用して、メルカプト基を含有する水溶性化合物としてメルカプト酢酸を添加し、攪拌、混合後、さらにアクリルアミド/アクリル酸ナトリウム(モル比80/20)共重合物の高分子凝集剤を8mg/L添加、攪拌、混合し、以下実施例15と同様の操作を行った。  Using the same catalyst solution as in Example 15, mercaptoacetic acid was added as a water-soluble compound containing a mercapto group, and after stirring and mixing, a high acrylamide / sodium acrylate (molar ratio 80/20) copolymer was added. A molecular flocculant was added at 8 mg / L, stirred and mixed, and the same operation as in Example 15 was performed.

メルカプト基を含有する水溶性化合物としてメルカプトプロピオン酸を使用した以外は実施例22と同様の操作を行った。  The same operation as in Example 22 was performed except that mercaptopropionic acid was used as the water-soluble compound containing a mercapto group.

メルカプト基を含有する水溶性化合物としてメルカプト酢酸ナトリウムを使用した以外は実施例22と同様の操作を行った。  The same operation as in Example 22 was performed except that sodium mercaptoacetate was used as the water-soluble compound containing a mercapto group.

メルカプト基を含有する水溶性化合物としてメルカプト酢酸アンモニウムを使用した以外は実施例22と同様の操作を行った。  The same operation as in Example 22 was performed, except that mercaptoacetate ammonium was used as the water-soluble compound containing a mercapto group.

メルカプト基を含有する水溶性化合物としてメルカプトエタノールを使用した以外は実施例22と同様の操作を行った。  The same operation as in Example 22 was performed except that mercaptoethanol was used as the water-soluble compound containing a mercapto group.

メルカプト基を含有する水溶性化合物としてチオリンゴ酸を使用した以外は実施例22と同様の操作を行った。  The same operation as in Example 22 was performed except that thiomalic acid was used as a water-soluble compound containing a mercapto group.

メルカプト基を含有する水溶性化合物としてチオリンゴ酸ナトリウムを使用した以外は実施例22と同様の操作を行った。  The same operation as in Example 22 was performed except that sodium thiomalate was used as the water-soluble compound containing a mercapto group.

[比較例9]
メルカプト基を含有する水溶性化合物の替わりに、メルカプト基を含有する水不溶性化合物としてメルカプト酢酸ブチルを使用した以外は実施例15と同様の操作を行った。
[Comparative Example 9]
The same procedure as in Example 15 was performed, except that mercaptobutyl acetate was used as a water-insoluble compound containing a mercapto group instead of the water-soluble compound containing a mercapto group.

[比較例10]
メルカプト基を含有する水溶性化合物の替わりに、水溶性の硫黄化合物として亜ジチオン酸ナトリウムを使用した以外は実施例15と同様の操作を行った。
[Comparative Example 10]
The same operation as in Example 15 was performed except that sodium dithionite was used as a water-soluble sulfur compound instead of the water-soluble compound containing a mercapto group.

[比較例11]
メルカプト基を含有する水溶性化合物の替わりに、水溶性の硫黄化合物として亜硫酸水素ナトリウムを使用した以外は実施例15と同様の操作を行った。
[Comparative Example 11]
The same operation as in Example 15 was performed except that sodium hydrogen sulfite was used as the water-soluble sulfur compound instead of the water-soluble compound containing a mercapto group.

[比較例12]
メルカプト基を含有する水溶性化合物の替わりに、メルカプト基を含有する水不溶性化合物としてメルカプト酢酸ブチルを使用した以外は実施例22と同様の操作を行った。
[Comparative Example 12]
The same operation as in Example 22 was performed, except that mercaptobutyl acetate was used as a water-insoluble compound containing a mercapto group instead of the water-soluble compound containing a mercapto group.

[比較例13]
メルカプト基を含有する水溶性化合物の替わりに、水溶性の硫黄化合物として亜ジチオン酸ナトリウムを使用した以外は実施例22と同様の操作を行った。
[Comparative Example 13]
The same operation as in Example 22 was performed except that sodium dithionite was used as a water-soluble sulfur compound instead of the water-soluble compound containing a mercapto group.

[比較例14]
メルカプト基を含有する水溶性化合物の替わりに、水溶性の硫黄化合物として亜硫酸水素ナトリウムを使用した以外は実施例22と同様の操作を行った。
[Comparative Example 14]
The same operation as in Example 22 was performed except that sodium hydrogen sulfite was used as the water-soluble sulfur compound instead of the water-soluble compound containing a mercapto group.

[比較例15]
触媒液Bに水酸化ナトリウム水溶液を添加してpHを3.5に調整した以外は実施例15と同じ操作を行った。
[Comparative Example 15]
The same operation as in Example 15 was performed, except that an aqueous sodium hydroxide solution was added to the catalyst solution B to adjust the pH to 3.5.

[比較例16]
触媒液Bに水酸化ナトリウム水溶液を添加してpHを3.5に調整した以外は実施例22と同じ操作を行った。
[Comparative Example 16]
The same operation as in Example 22 was performed except that a sodium hydroxide aqueous solution was added to the catalyst solution B to adjust the pH to 3.5.

上記の各実施例と比較例について結果を下記表1及び表2に示した。  The results are shown in Table 1 and Table 2 below for each of the above Examples and Comparative Examples.

Figure 0005799340
Figure 0005799340

触媒液Aに対して本発明に従う方法により、触媒液中のパラジウムがほとんど凝集体として沈殿し、触媒液中のパラジウムの濃度が低減された一方、スズの濃度はほとんど低減しなかった。また、高分子凝集剤を添加することにより、凝集体が粗大化された。比較例1〜6ではパラジウムの低減率が低く、比較例7及び8ではパラジウム、スズ共に低減され、選択性に乏しかった。  By the method according to the present invention for the catalyst solution A, the palladium in the catalyst solution was almost precipitated as an aggregate, and the concentration of palladium in the catalyst solution was reduced, while the concentration of tin was hardly reduced. Moreover, the aggregate was coarsened by adding the polymer flocculant. In Comparative Examples 1-6, the reduction rate of palladium was low, and in Comparative Examples 7 and 8, both palladium and tin were reduced, and the selectivity was poor.

Figure 0005799340
Figure 0005799340

触媒液Bに対して本発明に従う方法により、触媒液中の金がほとんど凝集体として沈殿し、触媒液中の金の濃度が低減された一方、銅及び鉄の濃度はほとんど低減しなかった。また、高分子凝集剤を添加することにより、凝集体が粗大化された。比較例9〜14では金の低減率が低く、比較例15及び16では金、銅、鉄共に低減され、選択性に乏しかった。  By the method according to the present invention with respect to the catalyst solution B, the gold in the catalyst solution was almost precipitated as aggregates, and the concentration of gold in the catalyst solution was reduced, while the concentrations of copper and iron were hardly reduced. Moreover, the aggregate was coarsened by adding the polymer flocculant. In Comparative Examples 9 to 14, the reduction rate of gold was low, and in Comparative Examples 15 and 16, all of gold, copper, and iron were reduced, and the selectivity was poor.

本発明の方法により、貴金属と卑金属とを含む液中から貴金属を短時間で容易に凝集、回収することができ、効率的に貴金属を濃縮化することが可能であった。一方、比較例による方法では、貴金属含有液中の貴金属を効率良く凝集、回収することができなかった。  According to the method of the present invention, the noble metal can be easily aggregated and recovered from the liquid containing the noble metal and the base metal in a short time, and the noble metal can be efficiently concentrated. On the other hand, in the method according to the comparative example, the noble metal in the noble metal-containing liquid could not be efficiently aggregated and recovered.

Claims (1)

貴金属と卑金属とを含有する酸性液中に下記一般式(1)で示される化合物
Figure 0005799340
[式中Rは炭素数1〜10の直鎖又は分岐のアルキレン基又はCHCH CO Mであり、Yは酸素原子又は2個の水素原子であり、Mは水素原子、アルカリ金属またはアンモニウム基の中から選ばれた少なくとも1種を示す。]
の少なくとも1種を添加して貴金属を含有する凝集体を形成させ、これを分離回収して貴金属と卑金属を分別することを特徴とする水中からの貴金属回収方法。
A compound represented by the following general formula (1) in an acidic liquid containing a noble metal and a base metal
Figure 0005799340
[Wherein R is a linear or branched alkylene group having 1 to 10 carbon atoms or CHCH 2 CO 2 M, Y is an oxygen atom or two hydrogen atoms, and M is a hydrogen atom, an alkali metal or an ammonium group. At least one selected from the above. ]
A method for recovering a noble metal from water, comprising adding at least one of the above to form an aggregate containing the noble metal, separating and recovering the aggregate to separate the noble metal and the base metal.
JP2011031375A 2011-01-28 2011-01-28 Method for recovering precious metals from liquid containing precious metals Expired - Fee Related JP5799340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011031375A JP5799340B2 (en) 2011-01-28 2011-01-28 Method for recovering precious metals from liquid containing precious metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011031375A JP5799340B2 (en) 2011-01-28 2011-01-28 Method for recovering precious metals from liquid containing precious metals

Publications (2)

Publication Number Publication Date
JP2012158830A JP2012158830A (en) 2012-08-23
JP5799340B2 true JP5799340B2 (en) 2015-10-21

Family

ID=46839596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011031375A Expired - Fee Related JP5799340B2 (en) 2011-01-28 2011-01-28 Method for recovering precious metals from liquid containing precious metals

Country Status (1)

Country Link
JP (1) JP5799340B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114941076B (en) * 2022-06-28 2023-06-02 中国矿业大学 Method for extracting and recovering gold from aqueous solution

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6415133A (en) * 1987-07-09 1989-01-19 Lion Corp Adsorbent for noble metal or the like
US5437792A (en) * 1994-07-27 1995-08-01 Eastman Kodak Company Process of recovering silver from photographic solutions
JP3920462B2 (en) * 1998-07-13 2007-05-30 株式会社大和化成研究所 Aqueous solutions for obtaining noble metals by chemical reduction deposition
JP4366804B2 (en) * 2000-01-13 2009-11-18 住友金属鉱山株式会社 Method for recovering precious metal from precious metal fine particle dispersion
JP2007056308A (en) * 2005-08-24 2007-03-08 Japan Science & Technology Agency Method for recovering noble metal using peptide

Also Published As

Publication number Publication date
JP2012158830A (en) 2012-08-23

Similar Documents

Publication Publication Date Title
Wei et al. Selective recovery of Au (III), Pt (IV), and Pd (II) from aqueous solutions by liquid–liquid extraction using ionic liquid Aliquat-336
Zupanc et al. Sustainable and selective modern methods of noble metal recycling
Paiva et al. Hydrometallurgical recovery of platinum-group metals from spent auto-catalysts–focus on leaching and solvent extraction
CN115052836A (en) Method for producing lithium hydroxide
Parhi et al. Environmental friendly approach for selective extraction and recovery of molybdenum (Mo) from a sulphate mediated spent Ni–Mo/Al2O3 catalyst baked leach liquor
RU2674272C2 (en) Method of extracting gold
JP2011214132A (en) Recovery method for cobalt
Kumbasar et al. Separation and concentration of cobalt from ammoniacal solutions containing cobalt and nickel by emulsion liquid membranes using 5, 7-dibromo-8-hydroxyquinoline (DBHQ)
CN103304052A (en) Treatment method of gold extraction cyaniding wastewater containing copper and iron ions with high concentration
JPWO2012111542A1 (en) Method for recovering ruthenium or ruthenium compounds
WO2012121496A2 (en) Method for recovering platinum group metals from industrial waste containing platinum group metals
WO2013129017A1 (en) Method for recovering gold adsorbed on activated carbon and gold manufacturing process using same
Modi et al. Extraction of silver from photographic waste
Xia et al. Sustainable technologies for the recycling and upcycling of precious metals from e-waste
JP5799340B2 (en) Method for recovering precious metals from liquid containing precious metals
Xanthopoulos et al. Closing the loop in ion flotation: recovery of copper, regeneration and reuse of collector from the foam phase by a solvometallurgical process
JP2015113503A (en) Method of separating and collecting selenium and tellurium in transition metal-containing aqueous solution
AU695956B1 (en) Process for extracting and recovering silver
JP5858223B2 (en) Noble metal recovery agent and method for recovering noble metal from liquid containing noble metal
JPS6219496B2 (en)
CA1070504A (en) Method for removing arsenic from copper electrolytic solutions or the like
JP2013032563A (en) Selective extractant of metal
JP2007224333A (en) Method of selectively collecting metal with the use of cross-linked chitosan
RU2221060C2 (en) Method of extraction of platinum and palladium from materials having porous base
CN116730401B (en) Method for high-selectivity adsorption recovery of cobalt from DMC catalyst sludge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150717

R150 Certificate of patent or registration of utility model

Ref document number: 5799340

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees