JPH1079427A - Manufacture of dielectric layer of semiconductor circuit - Google Patents

Manufacture of dielectric layer of semiconductor circuit

Info

Publication number
JPH1079427A
JPH1079427A JP20496296A JP20496296A JPH1079427A JP H1079427 A JPH1079427 A JP H1079427A JP 20496296 A JP20496296 A JP 20496296A JP 20496296 A JP20496296 A JP 20496296A JP H1079427 A JPH1079427 A JP H1079427A
Authority
JP
Japan
Prior art keywords
dielectric layer
metal
layer
deposited
silicate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20496296A
Other languages
Japanese (ja)
Inventor
Kokin Chin
光▲金▼ 陳
Ikui Chi
育維 池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAIWAN MOSEKI DENSHI KOFUN YUG
TAIWAN MOSEKI DENSHI KOFUN YUGENKOSHI
Original Assignee
TAIWAN MOSEKI DENSHI KOFUN YUG
TAIWAN MOSEKI DENSHI KOFUN YUGENKOSHI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAIWAN MOSEKI DENSHI KOFUN YUG, TAIWAN MOSEKI DENSHI KOFUN YUGENKOSHI filed Critical TAIWAN MOSEKI DENSHI KOFUN YUG
Priority to JP20496296A priority Critical patent/JPH1079427A/en
Publication of JPH1079427A publication Critical patent/JPH1079427A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide the manufacture of dielectric layer of a semiconductor circuit which has the effect of flattening and avoids the formation of a tunnel hole at the edge of the dielectric layer. SOLUTION: This dielectric layer is of such stacking structure that first, a thin CVD is deposited as the first oxide layer 30 on the silicon base 10 where the first metallic sketch 20 is made, and silicate SOG(spin-on-glass) 40, having silicate is deposited, and then a thick CVD is deposited as the second oxide layer 50. By such structure, the gap between the first metallic sketches 20 is completely stopped, and since not only is there no formation on the tunnel hole, by also the surface of the dielectric layer is flat, thus the subsequent process goes ahead smoothly.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体回路の誘電
体層製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a dielectric layer of a semiconductor circuit.

【0002】[0002]

【従来の技術】半導体回路の製造において、従来一般的
にいえば、複数の金属層を形成するプロセスでは、最後
の金属層の表面が高低起状になる。一方、食刻された金
属部分が山の谷状に形成され、つまり、金属図案のギャ
ップである。また、食刻されなかった部分が山頂であ
る。そのように、金属層の間に介入した電気隔離のため
の誘電体層IMD(Inter Metal Dielectric)が階段状
の山頂、山の谷を横向きにまたぐときに、そのステップ
カバレッジ(step-coverage )が不良なので、誘電体層
の中にトンネル孔が生じることがある。その形成要因及
びプロセスに対する影響を説明する前に、まずはステッ
プカバレッジの定義を説明する。
2. Description of the Related Art In the manufacture of semiconductor circuits, generally speaking, in the process of forming a plurality of metal layers, the surface of the last metal layer is raised and lowered. On the other hand, the etched metal part is formed in the shape of a valley of a mountain, that is, a gap of a metal pattern. The part that has not been etched is the summit. As such, when the intervening dielectric layer IMD (Inter Metal Dielectric) intervening between the metal layers straddles the step-shaped peaks and valleys, the step-coverage is increased. Due to the failure, a tunnel hole may be formed in the dielectric layer. Before describing the formation factors and the effects on the process, first, the definition of step coverage will be described.

【0003】図1に示すのは均一性のカバレッジであ
る。ステップカバレッジとは誘電体層2が金属層1にお
ける山の谷の厚さYと山頂の厚さXとの比の百分率であ
る。図1ではX=Yなので、そのステップカバレッジは
100%である。しかし、実際的に見られるものは通
常、非均一性で異なるステップカバレッジを持つ。例え
ば、図2に示すように、その山の谷の厚さが薄くなるの
で、ステップカバレッジは小さくなり、断線の恐れもあ
る。誘電体2の沈積が厚ければ厚い程またはステップカ
バレッジが悪ければ悪い程、図2のAの距離がだんだん
近づいて、ひどいのになると、図3のように密着して、
トンネルBを形成する。
FIG. 1 shows coverage of uniformity. The step coverage is a percentage of the ratio of the thickness Y of the valley to the thickness X of the peak in the metal layer 1 of the dielectric layer 2. In FIG. 1, since X = Y, the step coverage is 100%. However, what is seen in practice typically has non-uniformity and different step coverage. For example, as shown in FIG. 2, since the thickness of the valley of the peak becomes thin, the step coverage becomes small, and there is a possibility of disconnection. The thicker the deposition of the dielectric material 2 or the worse the step coverage, the closer the distance of A in FIG. 2 becomes, and the worse the distance becomes. As shown in FIG.
A tunnel B is formed.

【0004】[0004]

【発明が解決しようとする課題】上記のようなトンネル
が金属ラインのエッジにあれば、誘電体がその部位に山
頂から平面までへ転換しているので、一部分のトンネル
孔が平面に沈積した誘電体で充填されても、他の一部分
は充填されない。結局、後工程で誘電体が現像される場
合に、光の抵抗が閉じなかった孔から入って薄くなり、
誘電体層には凹孔を形成させ、ひどい場合には下の金属
層の信頼度にも影響を及ぼす。また、閉じなかった孔か
ら入った光の抵抗を除くのが難しいので、後工程で、チ
ップ(chip)が汚染され、良品率も大いに低降する。
If the above-mentioned tunnel is located at the edge of the metal line, the dielectric material has been converted from the peak to the plane at that location, so that a part of the tunnel hole is deposited on the plane. When filled with the body, the other part is not filled. Eventually, when the dielectric is developed in a later process, the light resistance will enter through the unclosed holes and become thinner,
Concave holes are formed in the dielectric layer, which in severe cases affects the reliability of the underlying metal layer. In addition, since it is difficult to remove the resistance of the light that has entered through the holes that have not been closed, the chip is contaminated in a later process, and the yield rate is greatly reduced.

【0005】要するに、誘電体層の表面が平坦であるか
どうかは、後続のプロセスにとって重大な影響があっ
て、特に、凹んだ所に露出の不足のせいで光の抵抗の図
案がぼんやりして、良品率の低降をもたらす。前述した
欠陥を改善するために、従来の方法の1つはSOG(Sp
in On Glass)であり、主にSOGの自身が光の抵抗の
流れに似る特性を活用する。もう1つはステップカバレ
ッジがよいO3 /TEOSを利用することである。O3
/TEOSとはO3 ガスとテトラエトキシシラン(Tetr
a ethoxysilane:TEOS: Si(OC2H5)4 )の化学溶液
から蒸発したガスとを混ぜて、分解したり反応したりし
て形成されるシリコンオキサイドフィルムのことであ
る。しかし2つの方法はいずれも食刻(each-back )プ
ロセスを必要とし、そのようなプロセスが複雑なだけで
なく汚染も生じやすくて、コストも高くて、生産数量も
低下するので、企業にとって、極めて困ったことである
といえる。それゆえに、表面を平坦化させ、トンネル孔
を避け、簡単にできるような平坦化プロセスを提出しな
ければならない。
[0005] In sum, the flatness of the surface of the dielectric layer has a significant effect on subsequent processes, especially with the blurring of the light resistance pattern due to lack of exposure in the recesses. , Resulting in a low yield. To remedy the aforementioned deficiencies, one conventional method is SOG (Sp
in On Glass), and SOG itself mainly uses the characteristics similar to the flow of light resistance. The other is to use O 3 / TEOS which has good step coverage. O 3
/ TEOS is O 3 gas and tetraethoxysilane (Tetr
a ethoxysilane: TEOS: a silicon oxide film formed by decomposing or reacting with a gas evaporated from a chemical solution of Si (OC 2 H 5 ) 4 ). However, both methods require an each-back process, which is not only complicated, but also prone to contamination, high cost and low production volume, so that This is extremely troublesome. Therefore, a flattening process must be provided that flattens the surface, avoids tunnel holes, and is easy to do.

【0006】本発明の主な目的は平坦化の効果を持ち、
誘電体層のエッジにトンネル孔の形成を避ける半導体回
路の誘電体層製造方法を提供することにある。
The main object of the present invention is to have a flattening effect,
An object of the present invention is to provide a method for manufacturing a dielectric layer of a semiconductor circuit, which avoids formation of a tunnel hole at an edge of the dielectric layer.

【0007】[0007]

【課題を解決するための手段】本発明の誘電体層は、ま
ず金属図案を形成したシリコンベースの上に薄いCVD
(Chemical Vapor Deposition )を第1酸化層として沈
積し、そして硅酸塩(silicate)を具有するSOG(sp
in on glass )を沈積し、のちに、厚いCVDを第2酸
化層として沈積するという積み重なる構造である。その
ような構造により、金属図案の真ん中のギャップを完全
に充填し、トンネル孔の形成がないばかりでなく、誘電
体層の表面も非常に平坦なので、後の工程が順調に進
む。
SUMMARY OF THE INVENTION A dielectric layer according to the present invention is formed by first depositing a thin CVD film on a silicon base on which a metal pattern is formed.
(Chemical Vapor Deposition) is deposited as a first oxide layer, and SOG (sp
This is a stacked structure in which in-glass is deposited, and then thick CVD is deposited as a second oxide layer. With such a structure, the middle gap of the metal pattern is completely filled, and not only no tunnel hole is formed, but also the surface of the dielectric layer is very flat, so that the subsequent process proceeds smoothly.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施例を図面に基
づいて説明する。始めに、図4に示すようにシリコンベ
ース10(substrate )の上に、CVD方法で、アルミ
ニウムまたはタングステンなどの金属の金属層を沈積し
て、マスクで露出し、現像し、食刻して、第1金属図案
20を形成する。金属の図案と図案との間にギャップW
があって、そのギャップWと金属図案の高さH(つま
り、金属層の厚さ)との間に、階段(ステップ)も形成
される。H/Wが大きければ大きいほど、凹んだ孔が深
くなって、後続の沈積層のステップカバレッジが悪くな
り、ひどい場合にはトンネル孔も生じる。VLSI集積
回路の設計制限のせいで、H/Wは変更できずに後続の
誘電体層の沈積に関する方法を利用しなければならな
い。
Embodiments of the present invention will be described below with reference to the drawings. First, as shown in FIG. 4, a metal layer of a metal such as aluminum or tungsten is deposited on a silicon base 10 (substrate) by a CVD method, exposed with a mask, developed, and etched. A first metal pattern 20 is formed. Gap W between metal patterns
Then, a step is also formed between the gap W and the height H of the metal pattern (that is, the thickness of the metal layer). The larger the H / W, the deeper the recessed hole, the worse the step coverage of the subsequent deposition, and in the worst case, a tunnel hole. Due to the design limitations of VLSI integrated circuits, the H / W cannot be changed and the method for subsequent deposition of dielectric layers must be used.

【0009】平坦化のニーズに応じて、一般に光の抵抗
の流れに似る特性を持つSOGを利用するが、SOGは
品質が悪く、不純物含有量が多いシリコンオキサイドな
ので、金属層と直接に接触できず、CVDなどよい品質
のオキサイドで隔離して、汚染を避けなければならな
い。そして、図5に示すように、第1金属図案20の上
に、およそ数百Aの電流による、PECVD(Plasma E
lectric Chemical VaporDeposit)で形成した、第1酸
化層30を沈積する。
According to the need for planarization, SOG having characteristics similar to the flow of light resistance is generally used. However, since SOG is poor in quality and has a high impurity content, it can be directly contacted with a metal layer. Must be isolated with good quality oxides such as CVD to avoid contamination. Then, as shown in FIG. 5, a PECVD (Plasma E) with a current of about several hundred A is placed on the first metal pattern 20.
The first oxidized layer 30 formed by lectric Chemical Vapor Deposit is deposited.

【0010】それから、図6に示すように、一般のSO
Gと明らかに異なる特性を具有する硅酸塩SOG40を
沈積する。一般のSOGには、有機物、つまりC−H鎖
が存在して、水分(out glssing )を吸着しやすいの
で、後続の金属層が沈積するときに、良い真空の状態
で、水分を釈放し、金属接触窓孔(VIA)に形成した
金属層の付着力が悪くなると共に、金属接触窓孔の抵抗
も高くなって、すなわち業者にいわれるポアソンVIA
(poission VIA)になる。
[0010] Then, as shown in FIG.
Deposit silicate SOG40 with properties distinctly different from G. In general SOG, organic substances, that is, CH chains are present and easily adsorb moisture (out glssing), so that when a subsequent metal layer is deposited, moisture is released under a good vacuum, The adhesion of the metal layer formed in the metal contact window (VIA) is deteriorated, and the resistance of the metal contact window is increased.
(Poission VIA).

【0011】それに対して、本発明における硅酸塩SO
G40には、C−H鎖がなくて、水分を吸着することが
ないので、ポアソンVIA(poission VIA)という
現象が生じない。同時に、珪酸塩SOG40も金属図案
に形成された鋭いスペース状態を緩和することができ、
後続の沈積層のステップカバレッジを改善しながら、前
述したトンネル孔を除く。
On the other hand, the silicate SO in the present invention
G40 does not have a CH chain and does not adsorb moisture, so that a phenomenon called poission VIA does not occur. At the same time, the silicate SOG40 can also alleviate the sharp space state formed in the metal pattern,
The tunnel holes mentioned above are eliminated while improving the step coverage of the subsequent deposition.

【0012】それで、本発明は、後工程で誘電体が現像
される場合に光の抵抗が閉じなかった孔から入って薄く
なり、誘電体層を食刻するとき凹孔を形成させ、ひどい
場合には下の金属層の信頼度にも影響を及ぼすというこ
とを避けるのが可能である。さらに、閉じなかった孔か
ら入った光の抵抗を除きにくいことによって後工程でチ
ップが汚染するという問題も解決した。
Accordingly, the present invention provides a method for forming a dielectric layer in a post-process, in which the resistance of light is reduced through an unclosed hole and becomes thin when a dielectric layer is etched. Can also avoid affecting the reliability of the underlying metal layer. Furthermore, the problem that the chip is contaminated in a later process by solving the difficulty of removing the resistance of the light entering through the unclosed hole has been solved.

【0013】SOGを沈積したあとで、ベイキング(ba
king)工程は必要であり、その作用は高温を経て、SO
G層の組成をCVD酸化層に似させて、SOGとCVD
酸化層との間における吸着力を向上させる。従来のSO
Gは厚すぎると、破裂の問題が発生し、厚さが不足なら
平坦度が悪くなる。しかし、本発明のSOGは目的が前
述したギャップの充填及び平坦化であり、薄くてもよい
ので、破裂の問題がない。
After depositing SOG, baking (ba
king) process is required, and its action is
By making the composition of the G layer similar to that of the CVD oxide layer, SOG and CVD
Improves the adsorbing force between the oxidized layer. Conventional SO
If G is too thick, a rupture problem occurs, and if the thickness is insufficient, the flatness deteriorates. However, since the purpose of the SOG of the present invention is to fill and flatten the above-described gap and may be thin, there is no problem of rupture.

【0014】その次に、PECVD方法で、約数千Åの
第2酸化層50を沈積する。図7に示すように、本発明
によって、金属層の隔離用の誘電体層に関する構造は薄
いPECVDで製作された第1酸化層30、硅酸塩を含
有したSOG40、厚いPECVDで作った第2酸化層
50などの部分からなる。続いて、CMP(ChemicalMe
chanical Polishing )という研磨方式で、食刻(etchi
ng back)したり、マスクで露出したり、顕像、食刻す
ることにより、図8に示すように、金属接触窓孔51が
形成される。前述したとおり、金属接触窓孔51からS
OG40が露出されるが、硅酸塩を含有するおかげで、
ポアソンVIA(poission VIA)という現象が起こ
らない。そのあと、アルミニウムなど第2金属層を沈積
して、マスクで露出、現像、食刻することにより、第2
金属図案60を形成する。そうすると、本発明の複数層
の金属層接合構造が図8のようにできあがる。
Then, a second oxide layer 50 having a thickness of about several thousand degrees is deposited by a PECVD method. As shown in FIG. 7, according to the present invention, a structure related to a dielectric layer for isolating a metal layer includes a first oxide layer 30 made of thin PECVD, a SOG 40 containing silicate, and a second structure made of thick PECVD. It is composed of a portion such as the oxide layer 50. Subsequently, CMP (ChemicalMe
Etching (etchi) by polishing method called “chanical Polishing”
ng back), exposed with a mask, visualized, and etched, a metal contact window 51 is formed as shown in FIG. As described above, the metal contact window 51
OG40 is exposed, but thanks to the inclusion of silicate,
The phenomenon called Poission VIA does not occur. After that, a second metal layer such as aluminum is deposited, exposed with a mask, developed, and etched to form a second metal layer.
A metal pattern 60 is formed. Then, the multiple metal layer bonding structure of the present invention is completed as shown in FIG.

【0015】本発明と従来の技術を比べると次の利点が
明らかなる。 (1)従来の方法ではSOG及びPECVDで形成した
第2酸化層でそれぞれ一回の食刻工程が必要であるが、
本発明はPECVDで形成した第2酸化層を一回しか食
刻しない。そのために本発明は簡易のプロセス、汚染低
降、良品率向上、などの利点を持ち、コストを減らすと
共に、製品の競争力も大いに高まる。 (2)硅酸塩を採用しているので、有機物がなく、水分
を吸収しないので、ポアソンVIA(poission VI
A)が生じない。 (3)本発明には、存在している硅酸塩SOGが後続の
沈積層のステップカバレッジを改善する効果に役立つの
で、金属図案のギャップを有効的に充填し、トンネル孔
の発生を避けるばかりでなく、後続各層の表面も平坦化
し、後工程の展開にとって有利である。
The following advantages become clear when the present invention is compared with the prior art. (1) The conventional method requires one etching step for each of the second oxide layers formed by SOG and PECVD.
The present invention etches the second oxide layer formed by PECVD only once. Therefore, the present invention has advantages such as a simple process, low contamination, high yield rate, etc., and reduces the cost and greatly enhances the competitiveness of the product. (2) Poisson VIA (poission VIA) because it uses no silicates and has no organic matter and does not absorb moisture.
A) does not occur. (3) The present invention only effectively fills gaps in the metal pattern and avoids the formation of tunnel holes, since the existing silicate SOG helps to improve the step coverage of subsequent deposition. In addition, the surface of each subsequent layer is flattened, which is advantageous for the development of the subsequent steps.

【0016】以上の内容をまとめると、本発明が従来は
見られなかった効果を達すると共に、産業領域に利用価
値も十分ある。
Summarizing the above, the present invention achieves an effect which has not been seen in the past, and is sufficiently useful in the industrial field.

【図面の簡単な説明】[Brief description of the drawings]

【図1】均一性を持つカバレッジの断面図である。FIG. 1 is a cross-sectional view of a uniform coverage.

【図2】非均一性のカバレッジの断面図である。FIG. 2 is a cross-sectional view of non-uniform coverage.

【図3】誘電体層で金属層を覆う構造の断面図である。FIG. 3 is a sectional view of a structure in which a metal layer is covered with a dielectric layer.

【図4】本発明による誘電体層製造方法の第1工程を示
す図である。
FIG. 4 is a view showing a first step of a method for manufacturing a dielectric layer according to the present invention.

【図5】本発明による誘電体層製造方法の第2工程を示
す図である。
FIG. 5 is a view showing a second step of the dielectric layer manufacturing method according to the present invention.

【図6】本発明による誘電体層製造方法の第3工程を示
す図である。
FIG. 6 is a view showing a third step of the method for manufacturing a dielectric layer according to the present invention.

【図7】本発明による誘電体層製造方法の第4工程を示
す図である。
FIG. 7 is a view showing a fourth step of the method for manufacturing a dielectric layer according to the present invention.

【図8】本発明による誘電体層製造方法の第5工程を示
す図である。
FIG. 8 is a view showing a fifth step of the method for manufacturing a dielectric layer according to the present invention.

【符号の説明】[Explanation of symbols]

10 シリコンベース 20 第1金属図案 30 第1酸化層 40 珪酸塩SOG 50 第2酸化層 51 金属接触窓孔(VIA) 60 第2金属図案 DESCRIPTION OF SYMBOLS 10 Silicon base 20 1st metal design 30 1st oxide layer 40 Silicate SOG 50 2nd oxide layer 51 Metal contact window (VIA) 60 2nd metal design

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 始めに、シリコンベースに第1金属図案
を形成し、 次に、PECVDで第1酸化層を沈積し、 その次に、硅酸塩を持つ硅酸塩SOGを沈積し、 さらに、PECVDで第1酸化層よりも厚い第2酸化層
を沈積し、 続いて、CMP方式で第2酸化層を食刻し、マスクによ
り、露出、現像、食刻してから金属接触窓孔を形成し、 後に、第2金属層を沈積し、マスクで露出、現像、食刻
することにより、第2金属図案を形成することを特徴と
する半導体回路の誘電体層製造方法。
First, a first metal pattern is formed on a silicon base, a first oxide layer is deposited by PECVD, and then a silicate SOG having a silicate is deposited, Depositing a second oxide layer thicker than the first oxide layer by PECVD, etching the second oxide layer by CMP, exposing, developing and etching with a mask, and then opening the metal contact window. Forming a second metal layer, depositing a second metal layer, exposing, developing, and etching with a mask to form a second metal pattern.
【請求項2】 硅酸塩を持つ硅酸塩SOGを沈積した後
に、ベイキングというプロセスも含まれることを特徴と
する請求項1記載の半導体回路の誘電体層製造方法。
2. The method according to claim 1, further comprising the step of baking after depositing silicate SOG having silicate.
JP20496296A 1996-08-02 1996-08-02 Manufacture of dielectric layer of semiconductor circuit Pending JPH1079427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20496296A JPH1079427A (en) 1996-08-02 1996-08-02 Manufacture of dielectric layer of semiconductor circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20496296A JPH1079427A (en) 1996-08-02 1996-08-02 Manufacture of dielectric layer of semiconductor circuit

Publications (1)

Publication Number Publication Date
JPH1079427A true JPH1079427A (en) 1998-03-24

Family

ID=16499194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20496296A Pending JPH1079427A (en) 1996-08-02 1996-08-02 Manufacture of dielectric layer of semiconductor circuit

Country Status (1)

Country Link
JP (1) JPH1079427A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100607363B1 (en) 2004-12-29 2006-08-01 동부일렉트로닉스 주식회사 Inter-Metal-Dielectric Layer Using Low-k Dielectric Material And Method for Same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100607363B1 (en) 2004-12-29 2006-08-01 동부일렉트로닉스 주식회사 Inter-Metal-Dielectric Layer Using Low-k Dielectric Material And Method for Same

Similar Documents

Publication Publication Date Title
KR100337580B1 (en) Semiconductor device and its manufacturing method
US5691238A (en) Subtractive dual damascene
JPH0210838A (en) Manufacture of electronic device
JPH0360055A (en) Manufacturing method of integrated circuit
US6531755B1 (en) Semiconductor device and manufacturing method thereof for realizing high packaging density
JP2000323479A (en) Semiconductor device and its manufacture
US6952051B1 (en) Interlevel dielectric structure
US5966632A (en) Method of forming borderless metal to contact structure
JP2000223492A (en) Manufacture of semiconductor device having multilayer wiring
JPH1079427A (en) Manufacture of dielectric layer of semiconductor circuit
US6831007B2 (en) Method for forming metal line of Al/Cu structure
TW202213456A (en) Method of fabricating semiconductor structure
US20070102824A1 (en) Tungsten plug structure of semiconductor device and method for forming the same
CN110148624A (en) Semiconductor devices and forming method thereof
KR20060058583A (en) Conductive structure, method of manufacturing the conductive structure, semiconductor device including the conductive structure and method of manufacturing the semiconductor device
JPH10340952A (en) Method for forming multilayer wiring in integrated circuit
JP3315907B2 (en) Method for manufacturing semiconductor device
JPH0653189A (en) Method for flattening of film formation layer
KR100226755B1 (en) Interconnection structure and manufacturing method of the same in semiconductor device
KR100275127B1 (en) Method of planarization multilayer metal line of semiconductor device
CN114023726A (en) Semiconductor structure and method for forming semiconductor structure
KR100268797B1 (en) How to Form Multilayer Metal Wiring
CN112599473A (en) Method for forming interconnection layer and contact hole layer in semiconductor device
KR100235947B1 (en) Method of fabricating semiconductor device
JPH05304219A (en) Deposition of insulation layer in semiconductor device