JPH1075087A - Adhesive film having electromagnetic wave shielding property and infrared ray screen property, and display using the film, and electromagnetic wave screen structure - Google Patents

Adhesive film having electromagnetic wave shielding property and infrared ray screen property, and display using the film, and electromagnetic wave screen structure

Info

Publication number
JPH1075087A
JPH1075087A JP9024574A JP2457497A JPH1075087A JP H1075087 A JPH1075087 A JP H1075087A JP 9024574 A JP9024574 A JP 9024574A JP 2457497 A JP2457497 A JP 2457497A JP H1075087 A JPH1075087 A JP H1075087A
Authority
JP
Japan
Prior art keywords
adhesive
electromagnetic wave
adhesive film
film
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9024574A
Other languages
Japanese (ja)
Other versions
JP3473310B2 (en
Inventor
Toshishige Uehara
寿茂 上原
Akishi Nakaso
昭士 中祖
Kazunori Yamamoto
和徳 山本
Minoru Tosaka
実 登坂
Akihiko Dobashi
明彦 土橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26362119&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH1075087(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP02457497A priority Critical patent/JP3473310B2/en
Publication of JPH1075087A publication Critical patent/JPH1075087A/en
Application granted granted Critical
Publication of JP3473310B2 publication Critical patent/JP3473310B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an adhesive film which is superior in shielding properties of electromagnetic waves, generated from the front of a display and also has infrared ray screen property, transparency, invisibility, and favorable adhesive property, and displays or the like using it. SOLUTION: In the constituent material which is provided with a geometrical figure made of conductive material on the surface of plastic base material, the width of the line constituting the geometrical figure is 40μm or under, and the interval between the lines is 200μm or over, and the thickness of the line is 40μm or under, and a part or the whole of the base material including the geometrical figure is covered with an adhesive, and the difference of refractive indices between the adhesive covering the geometric figure and the plastic base material is made to be 0.14 or smaller. Or in case that the plastic base material is stacked on the conductive material through an adhesive layer, the difference of refractive indices between the adhesive layer and the adhesive layer covering the geometrical figure is made 0.14 or smaller, and material having absorption in the infrared region is applied within the adhesive or on the adhesive face or on the rear of a film, whereby an adhesive film which has electromagnetic shield property and infrared ray screen property is obtained and is used for a display or an electromagnetic wave shielding structure.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はCRT、PDP(プ
ラズマ)、液晶、ELなどのディスプレイ前面から発生
する電磁波のシールド性および赤外線の遮蔽性を有する
接着フィルム及びその接着フィルムを用いたディスプレ
イ、電磁波遮蔽構成体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an adhesive film having a shielding property of an electromagnetic wave generated from the front surface of a display such as a CRT, a PDP (plasma), a liquid crystal and an EL and an infrared shielding property, a display using the adhesive film, and an electromagnetic wave. It relates to a shielding structure.

【0002】[0002]

【従来の技術】近年各種の電気設備や電子応用設備の利
用が増加するのに伴い、電磁気的なノイズ妨害(Electr
o-Magnetic Interference;EMI)も増加の一途をたどっ
ている。ノイズは大きく分けて伝導ノイズと放射ノイズ
に分けられる。伝導ノイズの対策としては、ノイズフィ
ルタなどを用いる方法がある。一方、放射ノイズの対策
としては、電磁気的に空間を絶縁する必要があるため、
筐体を金属体または高導電体にするとか、回路基板と回
路基板の間に金属板を挿入するとか、ケーブルを金属箔
で巻き付けるなどの方法が取られている。これらの方法
では、回路や電源ブロックの電磁波シールド効果を期待
できるが、CRT、PDPなどのディスプレイ前面より
発生する電磁波シールド用途としては、不透明であるた
め適したものではなかった。
2. Description of the Related Art With the recent increase in the use of various types of electrical equipment and electronic equipment, electromagnetic noise interference (Electrically
o-Magnetic Interference (EMI) is also on the rise. Noise can be roughly divided into conducted noise and radiated noise. As a measure against conduction noise, there is a method using a noise filter or the like. On the other hand, as a measure against radiation noise, it is necessary to insulate the space electromagnetically,
Methods such as making the housing a metal body or a high conductor, inserting a metal plate between circuit boards, and winding a cable with metal foil have been adopted. Although these methods can expect an electromagnetic wave shielding effect of a circuit or a power supply block, they are not suitable for shielding electromagnetic waves generated from the front surface of a display such as a CRT and a PDP because they are opaque.

【0003】電磁波シールド性と透明性を両立させる方
法として、透明性基材上に金属または金属酸化物を蒸着
して薄膜導電層を形成する方法(特開平1−27880
0号公報、特開平5−323101号公報参照)が提案
されている。一方、良導電性繊維を透明基材に埋め込ん
だ電磁波シールド材(特開平5−327274号公報、
特開平5−269912号公報参照)や金属粉末等を含
む導電性樹脂を透明基板上に直接印刷した電磁波シール
ド材料(特開昭62−57297号公報、特開平2−5
2499号公報参照)、さらには、厚さが2mm程度の
ポリカーボネート等の透明基板上に透明樹脂層を形成
し、その上に無電解めっき法により銅のメッシュパター
ンを形成した電磁波シールド材料(特開平5−2838
89号公報参照)が提案されている。
As a method for achieving both the electromagnetic wave shielding property and the transparency, a method of forming a thin film conductive layer by depositing a metal or metal oxide on a transparent substrate (Japanese Patent Laid-Open No. 27880/1990).
No. 0, JP-A-5-323101). On the other hand, an electromagnetic wave shielding material in which a good conductive fiber is embedded in a transparent substrate (JP-A-5-327274,
JP-A-5-269912) or an electromagnetic wave shielding material in which a conductive resin containing metal powder or the like is directly printed on a transparent substrate (JP-A-62-57297, JP-A-2-5-5).
Further, an electromagnetic wave shielding material in which a transparent resin layer is formed on a transparent substrate such as polycarbonate having a thickness of about 2 mm and a copper mesh pattern is formed thereon by an electroless plating method (see Japanese Patent Application Laid-Open No. 5-2838
No. 89) has been proposed.

【0004】[0004]

【発明が解決しようとする課題】電磁波シールド性と透
明性を両立させる方法として、特開平1−278800
号公報、特開平5−323101号公報に示されている
透明性基材上に金属または金属酸化物を蒸着して薄膜導
電層を形成する方法は、透明性が達成できる程度の膜厚
(数100Å〜2、000Å)にすると導電層の表面抵
抗が大きくなりすぎるため、1GHzで要求される30
dB以上のシールド効果に対して20dB以下と不十分
であった。良導電性繊維を透明基材に埋め込んだ電磁波
シールド材(特開平5−327274号公報、特開平5
−269912号公報)では、1GHzの電磁波シール
ド効果は40〜50dBと十分大きいが、電磁波漏れの
ないように導電性繊維を規則配置させるために必要な繊
維径が35μmと太すぎるため、繊維が見えてしまい
(以後視認性という)ディスプレイ用途には適したもの
ではなかった。また、特開昭62−57297号公報、
特開平2−52499号公報の金属粉末等を含む導電性
樹脂を透明基板上に直接印刷した電磁波シールド材料の
場合も同様に、印刷精度の限界からライン幅は、100
μm前後となり視認性が発現するため適したものではな
かった。さらに特開平5−283889号公報に記載の
厚さが2mm程度のポリカーボネート等の透明基板上に
透明樹脂層を形成し、その上に無電解めっき法により銅
のメッシュパターンを形成したシールド材料では、無電
解めっきの密着力を確保するために、透明基板の表面を
粗化する必要がある。この粗化手段として、一般にクロ
ム酸や過マンガン酸などの毒性の高い酸化剤を使用しな
ければならず、この方法は、ABS以外の樹脂では、満
足できる粗化を行うことは困難となる。この方法によ
り、電磁波シールド性と透明性は達成できたとしても、
透明基板の厚さを小さくすることは困難で、フィルム化
には適していない。透明基板が厚いと、ディスプレイに
密着させることができないため、そこから電磁波の漏洩
が大きくなる。また製造面においては、シールド材料を
巻物等にすることができないため嵩高くなることや自動
化に適していないために製造コストがかさむという欠点
もある。ディスプレイ全面から発生する電磁波のシール
ド性については、1GHzにおける30dB以上の電磁
波シールド機能の他に、ディスプレイ前面より発生する
900〜1、100nmの赤外線は他のVTR機器等に
悪影響を及ぼすため、これを遮蔽する必要がある。さら
に良好な可視光透過性、さらに可視光透過率が大きいだ
けでなく、電磁波の漏れを防止するためディスプレイ面
に密着して貼付けられる接着性、シールド材の存在を目
視で確認することができない特性である非視認性も必要
とされる。接着性についてはガラスや汎用ポリマー板に
対し比較的低温で容易に貼付き、長期間にわたって良好
な密着性を有することが必要である。しかし、電磁波シ
ールド性、赤外線遮蔽性、透明性・非視認性、接着性等
の特性を同時に十分満たすものは得られていなかった。
本発明はかかる点に鑑み、電磁波シールド性と赤外線遮
蔽性、透明性・非視認性および良好な接着特性を有する
接着フィルム及びそれを用いたディスプレイ、電磁波遮
蔽体を提供することを目的とする。
As a method for achieving both the electromagnetic wave shielding property and the transparency, Japanese Patent Application Laid-Open No. 1-278800 has been disclosed.
In the method of forming a thin film conductive layer by depositing a metal or metal oxide on a transparent substrate disclosed in Japanese Patent Application Laid-Open No. If it is 100 ° to 2,000 °), the surface resistance of the conductive layer becomes too large, so that 30 required at 1 GHz is used.
The shielding effect of not less than 20 dB was insufficient at 20 dB or less. An electromagnetic wave shielding material in which a good conductive fiber is embedded in a transparent substrate (JP-A-5-327274, JP-A-5-327274)
In Japanese Patent Application Laid-Open No. 269912), the electromagnetic wave shielding effect at 1 GHz is sufficiently large at 40 to 50 dB, but the fiber diameter required for regularly arranging the conductive fibers so as to prevent the electromagnetic wave leakage is too large at 35 μm, so that the fibers cannot be seen. It was not suitable for display use (hereinafter referred to as visibility). Also, JP-A-62-57297,
Similarly, in the case of an electromagnetic wave shielding material in which a conductive resin containing a metal powder or the like disclosed in JP-A-2-52499 is directly printed on a transparent substrate, the line width is set to 100 due to the limit of printing accuracy.
It was not suitable because the visibility was around μm. Further, in a shielding material in which a transparent resin layer is formed on a transparent substrate such as polycarbonate having a thickness of about 2 mm described in JP-A-5-283889 and a copper mesh pattern is formed thereon by electroless plating, In order to secure the adhesion of electroless plating, it is necessary to roughen the surface of the transparent substrate. Generally, a highly toxic oxidizing agent such as chromic acid or permanganic acid must be used as the roughening means. With this method, it is difficult to perform satisfactory roughening with a resin other than ABS. Even if electromagnetic shielding and transparency can be achieved by this method,
It is difficult to reduce the thickness of the transparent substrate, and it is not suitable for forming a film. If the transparent substrate is thick, it cannot be brought into close contact with the display, so that leakage of electromagnetic waves from the transparent substrate increases. Further, in terms of manufacturing, there is also a drawback that the shield material cannot be made into a scroll or the like, so that it becomes bulky, and is not suitable for automation, so that the manufacturing cost increases. Regarding the shielding property of electromagnetic waves generated from the entire display, in addition to the electromagnetic wave shielding function of 30 dB or more at 1 GHz, infrared rays of 900 to 1,100 nm generated from the front of the display adversely affect other VTR devices and the like. Need to be shielded. Not only good visible light transmittance and high visible light transmittance, but also adhesiveness that can be adhered closely to the display surface to prevent leakage of electromagnetic waves, and the property of not being able to visually confirm the presence of shielding material Is also required. As for the adhesiveness, it is necessary to easily adhere to glass or a general-purpose polymer plate at a relatively low temperature and have good adhesiveness over a long period of time. However, there has not been obtained any material which simultaneously sufficiently satisfies such characteristics as electromagnetic wave shielding, infrared shielding, transparency / invisibility, and adhesiveness.
In view of the above, an object of the present invention is to provide an adhesive film having electromagnetic wave shielding properties and infrared ray shielding properties, transparency and invisibility, and good adhesive properties, a display using the same, and an electromagnetic wave shield.

【0005】[0005]

【課題を解決するための手段】本発明の請求項1に記載
の発明は、電磁波シールド性と赤外線遮蔽性、透明性・
非視認性および良好な接着特性を有する接着フィルムを
提供するため、(1)プラスチック基材の表面に導電性
材料で形成された幾何学図形を設けた構成材料におい
て、幾何学図形を構成するライン幅が40μm以下、ラ
イン間隔が200μm以上、ライン厚みが40μm以下
であり、その幾何学図形を含む基材の一部または全面を
接着剤で被覆し、(2)幾何学図形を被覆する接着剤と
プラスチック基材、またはプラスチック基材が接着層を
介して導電性材料と積層されている場合においては接着
層と幾何学図形を被覆する接着剤との屈折率の差を0.
14以下とし、(3)900〜1、100nmの領域に
おける赤外線吸収率が平均で50%以上とするものであ
る。請求項2に記載の発明は、透明性、安価、耐熱性良
好で取り扱い性に優れた電磁波シールド性と赤外線遮蔽
性を有する接着フィルムを提供するため、プラスチック
基材をポリエチレンテレフタレートフィルムとするもの
である。請求項3に記載の発明は、加工性や密着性に優
れ、安価で電磁波シールド性と赤外線遮蔽性を有する接
着フィルムを提供するため、導電性材料の厚みが3〜4
0μmの銅、アルミニウムまたはニッケルの金属箔を使
用し、プラスチック基材あるいは接着層との接着面を粗
面とするものである。請求項4に記載の発明は、退色性
が小さく、コントラストの大きい電磁波シールド性と赤
外線遮蔽性を有する接着フィルムを提供するため、導電
性材料を銅として、少なくともその表面が黒化処理され
ていることを特徴とするものである。請求項5に記載の
発明は、加工性に優れた電磁波シールド性と赤外線遮蔽
性を有する接着フィルムを提供するため、プラスチック
基材の表面に導電性材料で形成された幾何学図形がケミ
カルエッチングプロセスにより形成されたものであるこ
とを特徴とするものである。請求項6に記載の発明は、
磁場シールド性に優れた電磁波シールド性と赤外線遮蔽
性を有する接着フィルムを提供するため、導電性材料を
常磁性金属とするものである。請求項7に記載の発明
は、上記の電磁波シ−ルド性と赤外線遮蔽性を有する接
着フィルムをディスプレイに用いたものである。請求項
8に記載の発明は、上記の電磁波シ−ルド性と赤外線遮
蔽性を有する接着フィルムを電磁波を発生する測定装
置、測定機器や製造装置の内部をのぞく窓や筐体に設け
て電磁波をシ−ルドすることや電磁波から装置、機器を
守るため筐体特に透明性を要求される窓のような部位に
設けた電磁波遮蔽構成体である。
According to the first aspect of the present invention, an electromagnetic wave shielding property, an infrared ray shielding property, a transparency,
In order to provide an adhesive film having invisibility and good adhesive properties, (1) a line forming a geometric figure in a constituent material in which a geometric figure formed of a conductive material is provided on the surface of a plastic base material A width of 40 μm or less, a line interval of 200 μm or more, and a line thickness of 40 μm or less, a part or the whole of the base material including the geometrical figure is coated with an adhesive, and (2) an adhesive for covering the geometrical figure When the plastic substrate or the plastic substrate is laminated with the conductive material via the adhesive layer, the difference in refractive index between the adhesive layer and the adhesive covering the geometrical figure is set to 0.
(3) Infrared absorptance in the range of 900 to 1 and 100 nm is 50% or more on average. The invention according to claim 2 is to make the plastic substrate a polyethylene terephthalate film in order to provide an adhesive film having transparency, inexpensiveness, good heat resistance, and excellent electromagnetic wave shielding properties and infrared shielding properties with excellent handleability. is there. The third aspect of the present invention provides an adhesive film that is excellent in processability and adhesion, is inexpensive, and has electromagnetic wave shielding properties and infrared ray shielding properties.
A metal foil of copper, aluminum, or nickel having a thickness of 0 μm is used, and a bonding surface with a plastic substrate or an adhesive layer is roughened. According to the fourth aspect of the present invention, in order to provide an adhesive film having a small fading property and a high electromagnetic wave shielding property and an infrared shielding property with high contrast, at least the surface thereof is subjected to blackening treatment using copper as a conductive material. It is characterized by the following. In order to provide an adhesive film having excellent electromagnetic wave shielding properties and infrared shielding properties excellent in processability, a geometric pattern formed of a conductive material on a surface of a plastic substrate is subjected to a chemical etching process. Characterized by the following. The invention according to claim 6 is
In order to provide an adhesive film having an electromagnetic wave shielding property and an infrared ray shielding property excellent in a magnetic field shielding property, a conductive material is a paramagnetic metal. According to a seventh aspect of the present invention, the adhesive film having the electromagnetic wave shielding property and the infrared shielding property is used for a display. The invention according to claim 8 is to provide the adhesive film having the electromagnetic wave shielding property and the infrared shielding property in a window or a housing except for the inside of a measuring device, a measuring device or a manufacturing device for generating an electromagnetic wave, and the electromagnetic wave is provided. This is an electromagnetic wave shielding structure provided in a housing, particularly a portion such as a window where transparency is required, in order to shield the device and equipment from electromagnetic waves.

【0006】[0006]

【発明の実施の形態】以下本発明を詳細に説明する。本
発明でいうプラスチック基材とはポリエチレンテレフタ
レート(PET)、ポリエチレンナフタレートなどのポ
リエステル類、ポリエチレン、ポリプロピレン、ポリス
チレン、EVAなどのポリオレフィン類、ポリ塩化ビニ
ル、ポリ塩化ビニリデンなどのビニル系樹脂、ポリサル
ホン、ポリエーテルサルホン、ポリカーボネート、ポリ
アミド、ポリイミド、アクリル樹脂などのプラスチック
からなるフィルムで全可視光透過率が70%以上のもの
をいう。これらは単層で使うこともできるが、2層以上
を組み合わせた多層フィルムとして使ってもよい。この
うち透明性、耐熱性、取り扱いやすさ、価格の点からポ
リエチレンテレフタレートが最も適している。この基材
厚みは5〜200μmが好ましい。5μm未満だと取り
扱い性が悪くなり、200μmを越えると可視光の透過
率が低下する。10〜100μmがより好ましく、25
〜50μmが最も好ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail. The plastic substrate referred to in the present invention includes polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate, polyolefins such as polyethylene, polypropylene, polystyrene and EVA, vinyl resins such as polyvinyl chloride and polyvinylidene chloride, polysulfone, A film made of a plastic such as polyethersulfone, polycarbonate, polyamide, polyimide, or acrylic resin and having a total visible light transmittance of 70% or more. These can be used as a single layer, or may be used as a multilayer film combining two or more layers. Of these, polyethylene terephthalate is most suitable in terms of transparency, heat resistance, ease of handling, and price. The thickness of the substrate is preferably from 5 to 200 μm. If it is less than 5 μm, the handleability becomes poor, and if it exceeds 200 μm, the transmittance of visible light decreases. 10-100 μm is more preferable, and 25
~ 50 µm is most preferred.

【0007】本発明の導電性材料としては銅、アルミニ
ウム、ニッケル、鉄、金、銀、ステンレス、タングステ
ン、クロム、チタンなどの金属の内の1種または2種以
上を組み合わせた合金を使うことができる。導電性、回
路加工の容易さ、価格の点から銅、アルミニウムまたは
ニッケルが適しており、厚みが3〜40μmの金属箔で
あることが好ましい。厚みが40μmを越えると、ライ
ン幅の形成が困難であったり、視野角が狭くなり、厚み
が3μm未満では、表面抵抗が大きくなり、電磁波シー
ルド効果に劣るためである。導電性材料が銅であり、少
なくともその表面が黒化処理されたものであると、コン
トラストが高くなり好ましい。また導電性材料が経時的
に酸化され退色されることが防止できる。黒化処理は、
幾何学図形の形成前後で行えばよいが、通常形成後にお
いて、プリント配線板分野で行われている方法を用いて
行うことができる。例えば、亜塩素酸ナトリウム(31
g/l)、水酸化ナトリウム(15g/l)、燐酸三ナ
トリウム(12g/l)の水溶液中、95℃で2分間処
理することにより行うことができる。また導電性材料
が、常磁性金属であると、磁場シールド性に優れるため
に好ましい。かかる導電性材料を上記プラスチック基材
に密着させる方法としては、アクリルやエポキシ系樹脂
を主成分とした接着剤を介して貼り合わせるのが最も簡
便である。導電性材料の導電層の膜厚を小さくする必要
がある場合は真空蒸着法、スパッタリング法、イオンプ
レート法、化学蒸着法、無電解・電気めっき法などの薄
膜形成技術のうちの1または2以上の方法を組み合わせ
ることにより達成できる。 導電性材料の膜厚は40μ
m以下のものが適用できるが、膜厚が小さいほどディス
プレイの視野角が広がり電磁波シールド材料として好ま
しく、18μm以下とすることがさらに好ましい。
As the conductive material of the present invention, it is possible to use an alloy of one or more of metals such as copper, aluminum, nickel, iron, gold, silver, stainless steel, tungsten, chromium and titanium. it can. Copper, aluminum or nickel is suitable from the viewpoints of conductivity, ease of circuit processing, and price, and a metal foil having a thickness of 3 to 40 μm is preferable. If the thickness exceeds 40 μm, it is difficult to form a line width or the viewing angle becomes narrow. If the thickness is less than 3 μm, the surface resistance increases and the electromagnetic wave shielding effect is poor. It is preferable that the conductive material be copper and at least the surface thereof has been subjected to blackening treatment because the contrast is high. Further, it is possible to prevent the conductive material from being oxidized with time and discolored. The blackening process is
It may be performed before and after the formation of the geometrical figure, but after the formation, it can be performed by using a method used in the field of printed wiring boards. For example, sodium chlorite (31
g / l), sodium hydroxide (15 g / l), and trisodium phosphate (12 g / l) in an aqueous solution at 95 ° C for 2 minutes. In addition, it is preferable that the conductive material is a paramagnetic metal because of excellent magnetic field shielding properties. The simplest method for bringing the conductive material into close contact with the plastic substrate is to attach the conductive material through an adhesive mainly composed of acrylic or epoxy resin. When it is necessary to reduce the thickness of the conductive layer of the conductive material, one or more of thin film forming techniques such as a vacuum deposition method, a sputtering method, an ion plate method, a chemical vapor deposition method, and an electroless / electroplating method are used. Can be achieved by combining the above methods. Conductive material thickness is 40μ
m or less can be applied, but the smaller the film thickness, the wider the viewing angle of the display, which is preferable as an electromagnetic wave shielding material, and more preferably 18 μm or less.

【0008】本発明中の幾何学図形とは正三角形、二等
辺三角形、直角三角形などの三角形、正方形、長方形、
ひし形、平行四辺形、台形などの四角形、(正)六角
形、(正)八角形、(正)十二角形、(正)二十角形な
どの(正)n角形、円、だ円、星型などを組み合わせた
模様であり、これらの単位の単独の繰り返し、あるいは
2種類以上組み合わせで使うことも可能である。電磁波
シールド性の観点からは三角形が最も有効であるが、可
視光透過性の点からは同一のライン幅なら(正)n角形
のn数が大きいほど開口率が上がり、可視光透過性が大
きくなるので有利である。このような幾何学図形を形成
させる方法としては、上記導電性材料付きのプラスチッ
ク基材をケミカルエッチングプロセスによって作製する
のが加工性の点から効果的である。その他に幾何学図形
を形成したマスクを用いてプラスチック基材上に配した
感光性樹脂層を露光、現像し、無電解めっきや電気めっ
きと組合せて幾何学図形を形成する方法などがある。
The geometric figures in the present invention include triangles such as equilateral triangles, isosceles triangles and right triangles, squares, rectangles, and the like.
Rectangles such as rhombus, parallelogram, trapezoid, etc., (positive) hexagons, (positive) octagons, (positive) dodecagons, (positive) n-gons such as (positive) octagons, circles, ellipses, stars The pattern is a combination of molds and the like, and these units can be used alone or in combination of two or more. From the viewpoint of electromagnetic wave shielding, a triangle is most effective. However, from the viewpoint of visible light transmission, if the number of (positive) n-gons is larger, the numerical aperture increases and the visible light transmission increases as the number of (positive) n-gons increases. This is advantageous. As a method of forming such a geometric figure, it is effective from the viewpoint of workability to produce the plastic substrate with the conductive material by a chemical etching process. In addition, there is a method of exposing and developing a photosensitive resin layer disposed on a plastic base material using a mask on which a geometric figure is formed, and forming a geometric figure in combination with electroless plating or electroplating.

【0009】このような幾何学図形のライン幅は40μ
m以下、ライン間隔は200μm以上、ライン厚みは4
0μm以下の範囲とされる。また幾何学図形の非視認性
の観点からライン幅は25μm以下、可視光透過率の点
からライン間隔は500μm以上、ライン厚み18μm
以下がさらに好ましい。ライン間隔は、大きいほど可視
光透過率は向上するが、この値が大きくなり過ぎると、
電磁波シールド性が低下するため、1mm以下とするの
が好ましい。なお、ライン間隔は、幾何学図形等の組合
わせ等で複雑となる場合、繰り返し単位を基準としてそ
の面積を正方形の面積に換算し、その一辺の長さをライ
ン間隔とする。
The line width of such a geometric figure is 40 μm.
m or less, line spacing is 200 μm or more, line thickness is 4
The range is 0 μm or less. In addition, the line width is 25 μm or less from the viewpoint of invisibility of the geometrical figure, the line interval is 500 μm or more, and the line thickness is 18 μm in terms of visible light transmittance.
The following are more preferred. As the line spacing increases, the visible light transmittance increases, but if this value is too large,
It is preferable that the thickness be 1 mm or less because the electromagnetic wave shielding property is reduced. When the line interval becomes complicated due to a combination of geometric figures and the like, the area is converted into the area of a square based on the repeating unit, and the length of one side is set as the line interval.

【0010】次にこの幾何学図形を被覆する接着剤は前
述したプラスチック基材との屈折率の差が0.14以下
とされる。またプラスチック基材が接着層を介して導電
性材料と積層されている場合においては、接着層と幾何
学図形を被覆する接着剤との屈折率の差が0.14以下
とされる。これはプラスチック基材と接着剤の屈折率、
または接着剤と接着層の屈折率が異なると可視光透過率
が低下するためであり、屈折率の差が0.14以下であ
ると可視光透過率の低下が少なく良好となる。そのよう
な要件を満たす接着剤の材料としては、プラスチック基
材がポリエチレンテレフタレート(n=1.575;屈折率)
の場合、ビスフェノールA型エポキシ樹脂やビスフェノ
ールF型エポキシ樹脂、テトラヒドロキシフェニルメタ
ン型エポキシ樹脂、ノボラック型エポキシ樹脂、レゾル
シン型エポキシ樹脂、ポリアルコール・ポリグリコール
型エポキシ樹脂、ポリオレフィン型エポキシ樹脂、脂環
式やハロゲン化ビスフェノールなどのエポキシ樹脂(い
ずれも屈折率が1.55〜1.60)を使うことができる。エポ
キシ樹脂以外では天然ゴム(n=1.52)、ポリイソプレ
ン(n=1.521)、ポリ−1、2−ブタジエン(n=1.5
0)、ポリイソブテン(n=1.505〜1.51)、ポリブテン
(n=1.5125)、ポリ−2−ヘプチル−1、3−ブタジ
エン(n=1.50)、ポリ−2−t−ブチル−1、3−ブ
タジエン(n=1.506)、ポリ−1、3−ブタジエン(n
=1.515)などの(ジ)エン類、ポリオキシエチレン(n
=1.4563)、ポリオキシプロピレン(n=1.4495)、ポリ
ビニルエチルエーテル(n=1.454)、ポリビニルヘキシ
ルエーテル(n=1.4591)、ポリビニルブチルエーテル
(n=1.4563)などのポリエーテル類、ポリビニルアセ
テート(n=1.4665)、ポリビニルプロピオネート(n=
1.4665)などのポリエステル類、ポリウレタン(n=1.5
〜1.6)、エチルセルロース(n=1.479)、ポリ塩化ビ
ニル(n=1.54〜1.55)、ポリアクリロニトリル(n=1.
52)、ポリメタクリロニトリル(n=1.52)、ポリスル
ホン(n=1.633)、ポリスルフィド(n=1.6)、フェノ
キシ樹脂(n=1.5〜1.6)などを挙げることができる。
これらは好適な可視光透過率を発現する。
Next, the adhesive for covering the geometric figure has a difference in refractive index from the above-mentioned plastic base material of 0.14 or less. In the case where the plastic base material is laminated with the conductive material via the adhesive layer, the difference in the refractive index between the adhesive layer and the adhesive covering the geometric figure is 0.14 or less. This is the refractive index of the plastic substrate and adhesive,
Alternatively, if the refractive index of the adhesive is different from that of the adhesive layer, the visible light transmittance is reduced. If the difference in the refractive index is 0.14 or less, the decrease in the visible light transmittance is small and good. As an adhesive material satisfying such requirements, a plastic base material is polyethylene terephthalate (n = 1.575; refractive index).
In the case of bisphenol A type epoxy resin, bisphenol F type epoxy resin, tetrahydroxyphenylmethane type epoxy resin, novolak type epoxy resin, resorcinol type epoxy resin, polyalcohol / polyglycol type epoxy resin, polyolefin type epoxy resin, alicyclic type And epoxy resins such as halogenated bisphenol (both have a refractive index of 1.55-1.60). Other than the epoxy resin, natural rubber (n = 1.52), polyisoprene (n = 1.521), poly-1,2-butadiene (n = 1.5
0), polyisobutene (n = 1.505 to 1.51), polybutene (n = 1.5125), poly-2-heptyl-1,3-butadiene (n = 1.50), poly-2-t-butyl-1,3-butadiene ( n = 1.506), poly-1,3-butadiene (n
= 1.515), polyoxyethylene (n
= 1.4563), polyoxypropylene (n = 1.4495), polyethers such as polyvinyl ethyl ether (n = 1.454), polyvinyl hexyl ether (n = 1.4591), polyvinyl butyl ether (n = 1.4563), and polyvinyl acetate (n = 1.4665). ), Polyvinyl propionate (n =
Polyesters such as 1.4665) and polyurethane (n = 1.5
1.6), ethyl cellulose (n = 1.479), polyvinyl chloride (n = 1.54 to 1.55), polyacrylonitrile (n = 1.
52), polymethacrylonitrile (n = 1.52), polysulfone (n = 1.633), polysulfide (n = 1.6), phenoxy resin (n = 1.5-1.6) and the like.
These exhibit a suitable visible light transmittance.

【0011】一方、プラスチック基材がアクリル樹脂の
場合、上記の樹脂以外に、ポリエチルアクリレート(n
=1.4685)、ポリブチルアクリレート(n=1.466)、ポ
リ−2−エチルヘキシルアクリレート(n=1.463)、ポ
リ−t−ブチルアクリレート(n=1.4638)、ポリ−3
−エトキシプロピルアクリレート(n=1.465)、ポリオ
キシカルボニルテトラメタクリレート(n=1.465)、ポ
リメチルアクリレート(n=1.472〜1.480)、ポリイソ
プロピルメタクリレート(n=1.4728)、ポリドデシル
メタクリレート(n=1.474)、ポリテトラデシルメタク
リレート(n=1.4746)、ポリ−n−プロピルメタクリ
レート(n=1.484)、ポリ−3、3、5−トリメチルシ
クロヘキシルメタクリレート(n=1.484)、ポリエチル
メタクリレート(n=1.485)、ポリ−2−ニトロ−2−
メチルプロピルメタクリレート(n=1.4868)、ポリ−
1、1−ジエチルプロピルメタクリレート(n=1.488
9)、ポリメチルメタクリレート(n=1.4893)などのポ
リ(メタ)アクリル酸エステルが使用可能である。これ
らのアクリルポリマーは必要に応じて、2種以上共重合
してもよいし、2種類以上をブレンドして使うことも可
能である。
On the other hand, when the plastic substrate is an acrylic resin, polyethyl acrylate (n
= 1.4685), polybutyl acrylate (n = 1.466), poly-2-ethylhexyl acrylate (n = 1.463), poly-t-butyl acrylate (n = 1.4638), poly-3
-Ethoxypropyl acrylate (n = 1.465), polyoxycarbonyltetramethacrylate (n = 1.465), polymethyl acrylate (n = 1.472 to 1.480), polyisopropyl methacrylate (n = 1.4728), polydodecyl methacrylate (n = 1.474), Polytetradecyl methacrylate (n = 1.4746), poly-n-propyl methacrylate (n = 1.484), poly-3,3,5-trimethylcyclohexyl methacrylate (n = 1.484), polyethyl methacrylate (n = 1.485), poly- 2-nitro-2-
Methylpropyl methacrylate (n = 1.4868), poly-
1,1-diethylpropyl methacrylate (n = 1.488
9), poly (meth) acrylates such as polymethyl methacrylate (n = 1.4893) can be used. If necessary, two or more of these acrylic polymers may be copolymerized, or two or more of them may be used as a blend.

【0012】さらにアクリル樹脂とアクリル以外との共
重合樹脂としてはエポキシアクリレート、ウレタンアク
リレート、ポリエーテルアクリレート、ポリエステルア
クリレートなども使うこともできる。特に接着性の点か
ら、エポキシアクリレート、ポリエーテルアクリレート
が優れており、エポキシアクリレートとしては、1、6
−ヘキサンジオールジグリシジルエーテル、ネオペンチ
ルグリコールジグリシジルエーテル、アリルアルコール
ジグリシジルエーテル、レゾルシノールジグリシジルエ
ーテル、アジピン酸ジグリシジルエステル、フタル酸ジ
グリシジルエステル、ポリエチレングリコールジグリシ
ジルエーテル、トリメチロールプロパントリグリシジル
エーテル、グリセリントリグリシジルエーテル、ペンタ
エリスリトールテトラグリシジルエーテル、ソルビトー
ルテトラグリシジルエーテル等の(メタ)アクリル酸付
加物が挙げられる。エポキシアクリレートは分子内に水
酸基を有するため接着性向上に有効であり、これらの共
重合樹脂は必要に応じて、2種以上併用することができ
る。接着剤の主成分となるポリマーの重量平均分子量
は、1、000以上のものが使われる。分子量が1、0
00以下だと組成物の凝集力が低すぎるために被着体へ
の密着性が低下する。
Furthermore, epoxy acrylate, urethane acrylate, polyether acrylate, polyester acrylate and the like can also be used as the copolymer resin of acrylic resin and other than acrylic resin. In particular, epoxy acrylate and polyether acrylate are excellent from the viewpoint of adhesiveness.
-Hexanediol diglycidyl ether, neopentyl glycol diglycidyl ether, allyl alcohol diglycidyl ether, resorcinol diglycidyl ether, diglycidyl adipate, diglycidyl phthalate, polyethylene glycol diglycidyl ether, trimethylolpropane triglycidyl ether, (Meth) acrylic acid adducts such as glycerin triglycidyl ether, pentaerythritol tetraglycidyl ether and sorbitol tetraglycidyl ether. Epoxy acrylate has a hydroxyl group in the molecule and is therefore effective in improving the adhesiveness. These copolymer resins can be used in combination of two or more as necessary. The polymer used as the main component of the adhesive has a weight average molecular weight of 1,000 or more. Molecular weight 1,0
If it is less than 00, the cohesive strength of the composition is too low, and the adhesion to the adherend is reduced.

【0013】接着剤の硬化剤としてはトリエチレンテト
ラミン、キシレンジアミン、N−アミノテトラミン、ジ
アミノジフェニルメタンなどのアミン類、無水フタル
酸、無水マレイン酸、無水ドデシルコハク酸、無水ピロ
メリット酸、無水ベンゾフェノンテトラカルボン酸など
の酸無水物、ジアミノジフェニルスルホン、トリス(ジ
メチルアミノメチル)フェノール、ポリアミド樹脂、ジ
シアンジアミド、エチルメチルイミダゾールなどを使う
ことができる。これらは単独で用いてもよいし、2種以
上混合して用いてもよい。これらの架橋剤の添加量は上
記ポリマー100重量部に対して0.1〜50重量部、
好ましくは1〜30重量部の範囲で選択するのがよい。
この量が0.1重量部未満であると硬化が不十分とな
り、50重量部を越えると過剰架橋となり、接着性に悪
影響を与える場合がある。本発明で使用する樹脂組成物
には必要に応じて、希釈剤、可塑剤、酸化防止剤、充填
剤や粘着付与剤などの添加剤を配合してもよい。そして
この接着剤の樹脂組成物は、プラスチック基材の表面に
導電性材料で形成された幾何学図形を含む基材の一部ま
たは全面を被覆するために、塗布され、溶媒乾燥、加熱
硬化工程を経たのち、本発明に係わる接着フィルムにす
る。上記で得られた電磁波シ−ルド性と赤外線遮蔽性を
有する接着フィルムは、該接着フィルムの接着剤により
CRT、PDP、液晶、ELなどのディスプレイに直接
貼り付け使用したり、アクリル板、ガラス板等の板やシ
ートに貼り付けてディスプレイに使用する。また、この
接着フィルムは、電磁波を発生する測定装置、測定機器
や製造装置の内部をのぞくための窓や筐体に上記と同様
にして使用する。さらに、電波や高圧線等により電磁波
障害を受ける恐れのある建造物の窓や自動車の窓等に設
ける。そして、導電性材料で描かれた幾何学図形にはア
ース線を設けることが好ましい。
Examples of the curing agent for the adhesive include amines such as triethylenetetramine, xylenediamine, N-aminotetramine, diaminodiphenylmethane, phthalic anhydride, maleic anhydride, dodecylsuccinic anhydride, pyromellitic anhydride, and benzophenonetetrahydrate. Acid anhydrides such as carboxylic acids, diaminodiphenylsulfone, tris (dimethylaminomethyl) phenol, polyamide resins, dicyandiamide, and ethylmethylimidazole can be used. These may be used alone or as a mixture of two or more. The addition amount of these crosslinking agents is 0.1 to 50 parts by weight based on 100 parts by weight of the polymer,
Preferably, the amount is selected in the range of 1 to 30 parts by weight.
If this amount is less than 0.1 part by weight, curing will be insufficient, and if it exceeds 50 parts by weight, excessive crosslinking will occur, which may adversely affect the adhesiveness. The resin composition used in the present invention may optionally contain additives such as a diluent, a plasticizer, an antioxidant, a filler and a tackifier. Then, the resin composition of the adhesive is applied to cover a part or the whole of the base material including the geometric figure formed of the conductive material on the surface of the plastic base material, and is subjected to a solvent drying and heat curing step. After that, the adhesive film according to the present invention is obtained. The adhesive film having electromagnetic shielding and infrared shielding properties obtained above can be directly adhered to a display such as a CRT, PDP, liquid crystal, EL, or the like using the adhesive of the adhesive film, or can be used as an acrylic plate or a glass plate. Attached to a board or sheet such as for use in displays. Further, this adhesive film is used in the same manner as described above for a measuring device that generates electromagnetic waves, a window or a casing for looking inside a measuring device or a manufacturing device. Further, it is provided in a window of a building, a window of a car, or the like, which is susceptible to electromagnetic interference due to radio waves or high-voltage lines. In addition, it is preferable to provide an earth line in the geometrical figure drawn with the conductive material.

【0014】次に接着フィルムの900〜1、100n
mの領域における赤外線吸収率が平均で50%以上にす
る方法としては、酸化鉄、酸化セリウム、酸化スズや酸
化アンチモンなどの金属酸化物、またはインジウム−ス
ズ酸化物(以下ITO)、六塩化タングステン、塩化ス
ズ、硫化第二銅、クロム−コバルト錯塩、チオール−ニ
ッケル錯体またはアミニウム化合物、ジイモニウム化合
物(日本化薬(株)製)などの有機系赤外線吸収剤など
を上記接着剤に含有させたり、バインダー樹脂中に分散
させた組成物を接着フィルムの接着剤面または接着フィ
ルム背面に塗布して使うことができる。これらの赤外線
吸収性化合物のうち、最も効果的に赤外線を吸収する効
果があるのは、硫化第二銅、ITO、アミニウム化合
物、ジイモニウム化合物などの有機系赤外線吸収剤であ
る。ここで注意すべきことはこれらの化合物の一次粒子
の粒径である。粒径が赤外線の波長より大きすぎると遮
蔽効率は向上するが、粒子表面で乱反射が起き、ヘイズ
が増大するため透明性が低下する。一方、粒径が赤外線
の波長に比べて短かすぎると遮蔽効果が低下する。好ま
しい粒径は0.01〜5μmで0.1〜3μmがさらに
好ましい。これらの赤外線吸収性の材料はビスフェノー
ルA型エポキシ樹脂やビスフェノールF型エポキシ樹
脂、ノボラック型エポキシ樹脂などのエポキシ系樹脂、
ポリイソプレン、ポリ−1、2−ブタジエン、ポリイソ
ブテン、ポリブテンなどのジエン系樹脂、エチルアクリ
レート、ブチルアクリレート、2−エチルヘキシルアク
リレート、t−ブチルアクリレートなどからなるポリア
クリル酸エステル共重合体、ポリビニルアセテート、ポ
リビニルプロピオネートなどのポリエステル系樹脂、ポ
リエチレン、ポリプロピレン、ポリスチレン、EVAな
どのポリオレフィン系樹脂などのバインダー樹脂中に均
一に分散される。その配合の最適量は、バインダー樹脂
100重量部に対して赤外線吸収性の材料が0.01〜
10重量部であるが、0.1〜5重量部がさらに好まし
い。0.01重量部未満では赤外線遮蔽効果が少なく、
10重量部を越えると透明性が損なわれる。これらの組
成物は接着フィルムの接着剤面またはフィルム背面に
0.1〜10μmの厚さで塗布される。塗布された、赤
外線吸収性の化合物を含む組成物は熱やUVを使って硬
化させてもよい。 一方、赤外線吸収性の化合物は上述
した接着剤組成物に直接混合して使うことも可能であ
る。その際の添加量は接着剤の主成分となるポリマー1
00重量部に対して効果と透明性から、0.1〜5重量
部が最適である。
Next, 900 to 1,100 n of the adhesive film
As a method for making the infrared absorption rate in the region of m equal to or more than 50% on average, metal oxides such as iron oxide, cerium oxide, tin oxide and antimony oxide, indium-tin oxide (ITO), tungsten hexachloride An organic infrared absorbing agent such as tin chloride, cupric sulfide, chromium-cobalt complex salt, thiol-nickel complex or aminium compound, diimonium compound (manufactured by Nippon Kayaku Co., Ltd.), or the like; The composition dispersed in the binder resin can be used by applying it to the adhesive surface of the adhesive film or the back surface of the adhesive film. Among these infrared absorbing compounds, those having the effect of absorbing infrared rays most effectively are organic infrared absorbing agents such as cupric sulfide, ITO, aminium compounds and diimonium compounds. What should be noted here is the particle size of the primary particles of these compounds. If the particle size is too large than the wavelength of infrared rays, the shielding efficiency is improved, but irregular reflection occurs on the particle surface and haze is increased, so that transparency is reduced. On the other hand, if the particle size is too short compared to the wavelength of infrared rays, the shielding effect will be reduced. The preferred particle size is 0.01 to 5 μm, more preferably 0.1 to 3 μm. These infrared absorbing materials are epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, novolak type epoxy resin,
Polyene prepolymers such as polyisoprene, poly-1,2-butadiene, polyisobutene, diene resins such as polybutene, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, t-butyl acrylate, etc., polyvinyl acetate, polyvinyl It is uniformly dispersed in a binder resin such as a polyester resin such as propionate and a polyolefin resin such as polyethylene, polypropylene, polystyrene and EVA. The optimal amount of the compound is 0.01 to 100 parts by weight of the binder resin in the infrared absorbing material.
The amount is 10 parts by weight, but 0.1 to 5 parts by weight is more preferable. Less than 0.01 parts by weight has little infrared shielding effect,
If it exceeds 10 parts by weight, transparency is impaired. These compositions are applied in a thickness of 0.1 to 10 μm on the adhesive surface or the back surface of the adhesive film. The applied composition containing the infrared absorbing compound may be cured using heat or UV. On the other hand, an infrared absorbing compound can be used by directly mixing it with the above-mentioned adhesive composition. In this case, the amount of the polymer 1 as the main component of the adhesive was
0.1 to 5 parts by weight is optimal from the viewpoint of the effect and the transparency with respect to 00 parts by weight.

【0015】本発明は、プラスチック基材上の導電性材
料が除去された部分は密着性向上のために意図的に凹凸
を有していたり、導電性材料の背面形状を転写したりす
るためにその表面で光が散乱され、透明性が損なわれる
が、その凹凸面にプラスチック基材と屈折率が近い樹脂
が平滑に塗布されると乱反射が最小限に押さえられ、透
明性が発現するようになると考えられる。さらにプラス
チック基材上の導電性材料で形成された幾何学図形は、
ライン幅が非常に小さいため肉眼で視認されない。また
ピッチも十分に大きいため見掛け上透明性を発現すると
考えられる。一方、遮蔽すべき電磁波の波長に比べて、
幾何学図形のピッチは十分に小さく、優れたシールド性
を発現すると考えられる。
According to the present invention, the portion of the plastic substrate from which the conductive material has been removed is intended to have irregularities intentionally to improve the adhesion or to transfer the back shape of the conductive material. Light is scattered on the surface and transparency is impaired, but if a resin with a refractive index close to that of the plastic substrate is smoothly applied to the uneven surface, irregular reflection is suppressed to a minimum and transparency is exhibited. It is considered to be. Furthermore, geometric figures formed of conductive materials on plastic substrates,
The line width is so small that it cannot be seen with the naked eye. In addition, the pitch is sufficiently large, and it is considered that apparent transparency is exhibited. On the other hand, compared to the wavelength of the electromagnetic wave to be shielded,
It is considered that the pitch of the geometrical figure is sufficiently small to exhibit excellent shielding properties.

【0016】[0016]

【実施例】次に実施例に於いて本発明を具体的に述べる
が、本発明はこれに限定されるものではない。 <接着フィルム作製例1>プラスチック基材として厚さ
50μmの透明PETフィルム(屈折率n=1.57
5)を用い、その上に接着層となるエポキシ系接着シー
ト(ニカフレックスSAF;ニッカン工業(株)製、n
=1.58、厚み20μm)を介して導電性材料である
厚さ18μmの電解銅箔を、その粗化面がエポキシ系接
着シート側になるようにして、180℃、30kgf/
cm2の条件で加熱ラミネートして接着させた。得られ
た銅箔付きPETフィルムにフォトリソ工程(レジスト
フィルム貼付け−露光−現像−ケミカルエッチング−レ
ジストフィルム剥離)を経て、ライン幅25μm、ライ
ン間隔500μmの銅格子パターンをPETフィルム上
に形成し、構成材料1を得た。この構成材料1の可視光
透過率は20%以下であった。この構成材料1の幾何学
図形を設けた面に後述の接着剤を乾燥塗布厚が約40μ
mになるように塗布、乾燥して電磁波シールド性と透明
性を有する接着フィルム1を得た。この接着フィルム1
の接着剤が塗布されている面とは反対側の面に、乾燥塗
布厚が5μmになるように後述の赤外線遮蔽層を形成し
た。その後接着フィルムをロールラミネータを使って市
販のアクリル板(コモグラス;(株)クラレ製、厚み3
mm)に接着剤が塗布されている面が接するようにして
110℃、20Kg/cm2の条件で加熱圧着した。
EXAMPLES Next, the present invention will be described specifically with reference to Examples, but the present invention is not limited thereto. <Adhesive Film Production Example 1> A transparent PET film (refractive index n = 1.57) having a thickness of 50 μm as a plastic substrate
5), and an epoxy-based adhesive sheet (Nikaflex SAF, manufactured by Nickan Industry Co., Ltd., n
(1.58, thickness 20 μm), an electroconductive copper foil having a thickness of 18 μm as a conductive material was placed at 180 ° C., 30 kgf /
Heat lamination was performed under the condition of cm 2 to adhere. Through a photolithography process (resist film pasting-exposure-development-chemical etching-resist film peeling) on the obtained PET film with copper foil, a copper grid pattern having a line width of 25 μm and a line interval of 500 μm was formed on the PET film, Material 1 was obtained. The visible light transmittance of this constituent material 1 was 20% or less. An adhesive to be described later is applied to the surface on which the geometrical figure of the constituent material 1 is provided with a dry coating thickness of about 40 μm.
m and dried to obtain an adhesive film 1 having electromagnetic wave shielding properties and transparency. This adhesive film 1
An infrared shielding layer described later was formed on the surface opposite to the surface on which the adhesive was applied so that the dry coating thickness was 5 μm. Then, the adhesive film was commercialized using a roll laminator using a commercially available acrylic plate (Como Glass; Kuraray Co., Ltd., thickness 3).
mm) under a condition of 110 ° C. and 20 kg / cm 2 so that the surface on which the adhesive is applied is in contact with the surface.

【0017】<接着フィルム作製例2>厚さ25μmの
透明PETフィルム上にアクリル系接着シート(パイラ
ラックスLF−0200;デュポン製、n=1.47、
厚み20μm)を介して厚さ25μmのアルミ箔を接着
させた。このアルミ箔付きPETフィルムに作製例1と
同様のフォトリソ工程を経て、ライン幅25μm、ライ
ン間隔250μmのアルミ格子パターンをPETフィル
ム上に形成した。このものの可視光透過率は20%以下
であった。この構成材料2の幾何学図形が形成された面
に後述の接着剤を乾燥塗布厚が約30μmになるように
塗布、乾燥して電磁波シールド性と透明性を有する接着
フィルム2を得た。この接着フィルム2の接着剤が塗布
されている面とは反対側の面に、乾燥塗布厚が1μmに
なるように後述の赤外線遮蔽層を形成した。その後接着
フィルムを市販のアクリル板に接着剤が塗布されている
面が接するようにして110℃、30kgf/cm2
30分の条件で熱プレス機を使って加熱圧着した。
<Adhesive Film Production Example 2> An acrylic adhesive sheet (Pilalux LF-0200; manufactured by DuPont, n = 1.47) was formed on a transparent PET film having a thickness of 25 μm.
An aluminum foil having a thickness of 25 μm was adhered to the aluminum foil through a thickness of 20 μm. An aluminum lattice pattern having a line width of 25 μm and a line interval of 250 μm was formed on the PET film with the aluminum foil through the same photolithography process as in Production Example 1 on the PET film. Its visible light transmittance was 20% or less. An adhesive described later was applied to the surface of the constituent material 2 on which the geometrical figure was formed so that a dry coating thickness was about 30 μm, and dried to obtain an adhesive film 2 having electromagnetic wave shielding properties and transparency. An infrared shielding layer described later was formed on the surface of the adhesive film 2 opposite to the surface on which the adhesive was applied, so that the dry coating thickness was 1 μm. Then, the adhesive film was placed on a commercially available acrylic plate such that the surface on which the adhesive was applied was in contact with 110 ° C., 30 kgf / cm 2 ,
It was thermocompression bonded using a hot press under a condition of 30 minutes.

【0018】<接着フィルム作製例3>厚さ50μmの
PETフィルム上に、マスク層を用いて無電解ニッケル
めっきを格子状に形成することによりライン幅12μ
m、ライン間隔500μm、厚み2μmのニッケル格子
パターンをPETフィルム上に作製した。このものの可
視光透過率は20%以下であった。本フィルムの幾何学
図形が形成されている面上に接着剤を乾燥塗布厚が約7
0μmになるように塗布した。この接着フィルム3の接
着剤が塗布されている面とは反対側の面に、乾燥塗布厚
が3μmになるように後述の赤外線遮蔽層を形成した。
その後接着フィルムをロールラミネータを使って市販の
アクリル板に接着剤が塗布されている面が接するように
して110℃、20kgf/cm2の条件で加熱圧着し
た。
<Adhesive Film Production Example 3> A line width of 12 μm was formed on a 50 μm-thick PET film by forming electroless nickel plating in a lattice pattern using a mask layer.
A nickel lattice pattern having a thickness of 2 μm and a line spacing of 500 μm was prepared on a PET film. Its visible light transmittance was 20% or less. Dry the adhesive on the surface of the film where the geometrical figures are formed.
It was applied so as to have a thickness of 0 μm. An infrared shielding layer described below was formed on the surface of the adhesive film 3 opposite to the surface on which the adhesive was applied, so that the dry coating thickness was 3 μm.
Thereafter, the adhesive film was heat-pressed at 110 ° C. and 20 kgf / cm 2 by using a roll laminator such that the surface of the commercially available acrylic plate to which the adhesive was applied was in contact.

【0019】 <接着剤組成物1> TBA−HME(日立化成工業(株)製;高分子量エポキシ樹脂、Mw=30万 ) 100重量部 YD−8125(東都化成(株)製;ビスフェノールA型エポキシ樹脂) 25重量部 IPDI(日立化成工業(株)製;マスクイソシアネート) 12.5重量部 2−エチル−4−メチルイミダゾール 0.3重量部 MEK 330重量部 シクロヘキサノン 15重量部 本組成物の溶媒乾燥後の屈折率は1.57であった。<Adhesive Composition 1> 100 parts by weight of TBA-HME (manufactured by Hitachi Chemical Co., Ltd .; high molecular weight epoxy resin, Mw = 300,000) YD-8125 (manufactured by Toto Kasei Co., Ltd .; bisphenol A type epoxy) Resin) 25 parts by weight IPDI (manufactured by Hitachi Chemical Co., Ltd .; mask isocyanate) 12.5 parts by weight 2-ethyl-4-methylimidazole 0.3 part by weight MEK 330 parts by weight Cyclohexanone 15 parts by weight Solvent drying of this composition The later refractive index was 1.57.

【0020】 <接着剤組成物2> YP−30(東都化成(株)製;フェノキシ樹脂、Mw=6万) 100重量部 YD−8125(東都化成(株)製;ビスフェノールA型エポキシ樹脂) 10重量部 IPDI(日立化成工業(株)製;マスクイソシアネート) 5重量部 2−エチル−4−メチルイミダゾール 0.3重量部 MEK 285重量部 シクロヘキサノン 5重量部 本組成物の溶媒乾燥後の屈折率は1.55であった。<Adhesive Composition 2> 100 parts by weight of YP-30 (manufactured by Toto Kasei Co., Ltd .; phenoxy resin, Mw = 60,000) YD-8125 (manufactured by Toto Kasei Co., Ltd .; bisphenol A type epoxy resin) 10 Parts by weight IPDI (manufactured by Hitachi Chemical Co., Ltd .; mask isocyanate) 5 parts by weight 2-ethyl-4-methylimidazole 0.3 parts by weight MEK 285 parts by weight cyclohexanone 5 parts by weight The refractive index of the composition after drying with a solvent is as follows. 1.55.

【0021】 <接着剤組成物3> HTR−600LB(帝国化学産業(株)製;ポリアクリル酸エステル、Mw= 70万) 100重量部 コロネートL(日本ポリウレタン(株)製;3官能イソシアネート) 4.5重量部 ジブチル錫ジラウレート 0.4重量部 トルエン 450重量部 酢酸エチル 10重量部 本組成物の溶媒乾燥後の屈折率は1.47であった。<Adhesive Composition 3> HTR-600LB (manufactured by Teikoku Chemical Industry Co., Ltd .; polyacrylate, Mw = 700,000) 100 parts by weight Coronate L (manufactured by Nippon Polyurethane Co., Ltd .; trifunctional isocyanate) 4 0.5 parts by weight Dibutyltin dilaurate 0.4 parts by weight Toluene 450 parts by weight Ethyl acetate 10 parts by weight The refractive index of the composition after drying with a solvent was 1.47.

【0022】 <赤外線遮蔽層をなす組成物1> YD−8125(東都化成(株)製;ビスフェノールA型エポキシ樹脂) 100重量部 硫化第二銅(和光純薬(株)製;ヘンシェルミキサーにより0.5μmの平均粒 径に粉砕) 4重量部 2−エチル−4−メチルイミダゾール 0.5重量部 ジシアンジアミド 5重量部 MEK 200重量部 エチレングリコールモノメチルエーテル 20重量部 室温でアプリケータを用いて塗布し、90℃、30分間
加熱硬化させた。
<Composition 1 for Infrared Shielding Layer> YD-8125 (manufactured by Toto Kasei Co., Ltd .; bisphenol A epoxy resin) 100 parts by weight Copper sulfide (manufactured by Wako Pure Chemical Industries, Ltd.) 4 parts by weight 2-ethyl-4-methylimidazole 0.5 parts by weight Dicyandiamide 5 parts by weight MEK 200 parts by weight Ethylene glycol monomethyl ether 20 parts by weight Application using an applicator at room temperature, It was cured by heating at 90 ° C. for 30 minutes.

【0023】 <赤外線遮蔽層をなす組成物2> HTR−280(帝国化学産業(株)製;ポリアクリル酸エステル共重合体、 Mw=約70万) 100重量部 UFP−HX(住友金属鉱山(株)製;ITO、平均粒径0.1μm) 0.5重量部 コロネートL 5重量部 ジブチル錫ジラウレート 0.4重量部 トルエン 450重量部 酢酸エチル 10重量部 室温でアプリケータを用いて塗布し、90℃、20分間
加熱硬化させた。
<Composition 2 for Infrared Shielding Layer> HTR-280 (manufactured by Teikoku Chemical Industry Co., Ltd .; polyacrylate copolymer, Mw = about 700,000) 100 parts by weight UFP-HX (Sumitomo Metal Mining Co., Ltd.) Co., Ltd .; ITO, average particle size 0.1 μm) 0.5 parts by weight Coronate L 5 parts by weight Dibutyltin dilaurate 0.4 parts by weight Toluene 450 parts by weight Ethyl acetate 10 parts by weight Using an applicator at room temperature, It was cured by heating at 90 ° C. for 20 minutes.

【0024】<赤外線遮蔽層をなす組成物3> 硫化第二銅(和光純薬(株)製;ヘンシェルミキサーに
より0.5μmの平均粒径に粉砕) 1部
<Composition 3 for Infrared Shielding Layer> 1 part of cupric sulfide (manufactured by Wako Pure Chemical Industries, Ltd .; pulverized to an average particle size of 0.5 μm with a Henschel mixer)

【0025】(実施例1)接着剤組成物1、赤外線遮蔽
層をなす組成物1を使って接着フィルム作製例1の手順
で得た遮蔽板を実施例1とした。 (実施例2)接着剤組成物2、赤外線遮蔽層をなす組成
物1を使って接着フィルム作製例2の手順で得た遮蔽板
を実施例2とした。 (実施例3)接着剤組成物3、赤外線遮蔽層をなす組成
物1を使って接着フィルム作製例3の手順で得た遮蔽板
を実施例3とした。 (実施例4)ライン幅を25μmから35μmにし、赤
外線遮蔽層をなす組成物を2とした以外は全て実施例1
と同様にして得た遮蔽板を実施例4とした。 (実施例5)ライン幅を25μmから12μmにし、赤
外線遮蔽層をなす組成物を2とした以外は全て実施例2
と同様にして得た遮蔽板を実施例5とした。 (実施例6)ライン間隔を500μmから800μmに
し、赤外線遮蔽層をなす組成物を2とした以外は全て実
施例3と同様にして得た遮蔽板を実施例6とした。 (実施例7)ライン間隔を500μmから250μmに
し、それ以外の条件は全て実施例1と同様にして得た遮
蔽板を実施例7とした。 (実施例8)ライン厚を25μmから35μmにした以
外は全て実施例2と同様にして得た遮蔽板を実施例8と
した。 (実施例9)導電性材料として黒化処理された銅を使
い、赤外線遮蔽層をなす組成物を2とした以外は全て実
施例1と同様にして得た遮蔽板を実施例9とした。 (実施例10)実施例1で形成した格子パターンの代わ
りに正三角形の繰り返しパターンを作製し、赤外線遮蔽
層をなす組成物を2とした以外の条件は全て実施例1と
同様にした。 (実施例11)実施例1で形成した格子パターンの代わ
りに正六角形の繰り返しパターンを作製し、赤外線遮蔽
層をなす組成物3を接着剤100重量部に対して、1重
量部直接接着剤中に分散させた。 (実施例12)実施例1で形成した格子パターンの代わ
りに正八角形と正方形よりなるの繰り返しパターンを作
製し、赤外線遮蔽層をなす組成物3を接着剤100重量
部に対して、1重量部直接接着剤中に分散させた。
Example 1 A shielding plate obtained by the procedure of Adhesive Film Production Example 1 using the adhesive composition 1 and the composition 1 forming an infrared shielding layer was used as Example 1. (Example 2) A shielding plate obtained by the procedure of Adhesive Film Production Example 2 using Adhesive Composition 2 and Composition 1 forming an infrared shielding layer was used as Example 2. (Example 3) A shielding plate obtained by the procedure of Adhesive Film Production Example 3 using Adhesive Composition 3 and Composition 1 forming an infrared shielding layer was used as Example 3. Example 4 Example 1 except that the line width was changed from 25 μm to 35 μm, and the composition for the infrared shielding layer was changed to 2.
The shielding plate obtained in the same manner as in Example 4 was used as Example 4. (Example 5) Example 2 was repeated except that the line width was changed from 25 µm to 12 µm, and the composition constituting the infrared shielding layer was changed to 2.
The shielding plate obtained in the same manner as in Example 5 was used as Example 5. Example 6 A shielding plate obtained in the same manner as in Example 3 except that the line interval was changed from 500 μm to 800 μm and the composition constituting the infrared shielding layer was changed to Example 6 was used as Example 6. (Example 7) A shielding plate obtained in the same manner as in Example 1 except that the line interval was changed from 500 µm to 250 µm was used as Example 7. Example 8 A shielding plate obtained in the same manner as in Example 2 except that the line thickness was changed from 25 μm to 35 μm was used as Example 8. (Example 9) A shielding plate obtained in the same manner as in Example 1 except that the blackened copper was used as the conductive material and the composition for the infrared shielding layer was changed to Example 2 was used as Example 9. (Example 10) The same conditions as in Example 1 were used except that a regular triangular repetitive pattern was formed instead of the lattice pattern formed in Example 1, and the composition constituting the infrared shielding layer was changed to 2. (Example 11) A regular hexagonal repeating pattern was prepared in place of the lattice pattern formed in Example 1, and 1 part by weight of the composition 3 constituting the infrared shielding layer was directly added to 100 parts by weight of the adhesive. Was dispersed. (Example 12) Instead of the lattice pattern formed in Example 1, a regular pattern composed of regular octagons and squares was prepared, and 1 part by weight of the composition 3 constituting the infrared shielding layer was added to 100 parts by weight of the adhesive. Dispersed directly in the adhesive.

【0026】(比較例1)銅箔の代わりにITO膜を
2、000Å全面蒸着させたITO蒸着PETを使い、
パターンを形成しないで、直接接着剤組成物1を塗布し
た。その後赤外線遮蔽層を形成することなく実施例1と
同様にして得た遮蔽板を比較例1とした。 (比較例2)比較例1と同様にITOに代えて全面アル
ミ蒸着したままパターンを形成しないで、直接接着剤組
成物2を塗布した。その後比較例1と同様にして得た遮
蔽板を比較例2とした。 (比較例3)ライン幅を25μmから50μmにし、赤
外線遮蔽層を形成することがない以外の条件は全て実施
例1と同様にして得た遮蔽板を比較例3とした。 (比較例4)ライン間隔を250μmから150μmに
し、赤外線遮蔽層を形成することがない以外の条件は全
て実施例2と同様にして得た遮蔽板を比較例4とした。 (比較例5)ライン厚を25μmから70μmにし、赤
外線遮蔽層を形成することがない以外の条件は全て実施
例2と同様にして得た遮蔽板を比較例5とした。 (比較例6)接着剤としてフェノール−ホルムアルデヒ
ド樹脂(Mw=5万、n=1.73)を使い、赤外線遮蔽
層を形成することがない以外の条件は全て実施例1と同
様にして得た遮蔽板を比較例6とした。 (比較例7)接着剤としてポリジメチルシロキサン(M
w=4.5万、n=1.43)を使い、赤外線遮蔽層を形
成することがない以外の条件は全て実施例3と同様にし
て得た遮蔽板を比較例7とした。 (比較例8)接着剤としてポリビニリデンフルオライド
(Mw=12万、n=1.42)を使い、赤外線遮蔽層を
形成することがない以外の条件は全て実施例3と同様に
して得た遮蔽板を比較例8とした。 (比較例9)プラスチック基材として充填剤入りポリエ
チレンフィルム(可視光透過率20%以下)を使い、赤
外線遮蔽層を形成することがない以外の条件は全て実施
例1と同様にして得た遮蔽板を比較例9とした。 (比較例10)接着剤組成物2を使い、赤外線遮蔽層を
なす組成物2の塗布厚を5μmから0.05μmにした
以外は実施例1と同様にして得た遮蔽板を比較例11と
した。
(Comparative Example 1) In place of copper foil, ITO deposited PET in which an ITO film was entirely deposited at 2,000Å was used.
The adhesive composition 1 was directly applied without forming a pattern. Thereafter, a shielding plate obtained in the same manner as in Example 1 without forming an infrared shielding layer was used as Comparative Example 1. (Comparative Example 2) As in Comparative Example 1, instead of ITO, the adhesive composition 2 was directly applied without forming a pattern while aluminum deposition was performed on the entire surface. Thereafter, a shielding plate obtained in the same manner as in Comparative Example 1 was used as Comparative Example 2. (Comparative Example 3) A shielding plate obtained in the same manner as in Example 1 except that the line width was changed from 25 µm to 50 µm and an infrared shielding layer was not formed was used as Comparative Example 3. (Comparative Example 4) A shielding plate obtained in the same manner as in Example 2 except that the line interval was changed from 250 µm to 150 µm and the infrared shielding layer was not formed was used as Comparative Example 4. (Comparative Example 5) A shielding plate obtained in the same manner as in Example 2 except that the line thickness was changed from 25 µm to 70 µm and an infrared shielding layer was not formed was used as Comparative Example 5. Comparative Example 6 A phenol-formaldehyde resin (Mw = 50,000, n = 1.73) was used as an adhesive, and all conditions were the same as in Example 1 except that no infrared shielding layer was formed. The shielding plate was Comparative Example 6. (Comparative Example 7) Polydimethylsiloxane (M
(w = 45,000, n = 1.43), and a shielding plate obtained in the same manner as in Example 3 except that no infrared shielding layer was formed was used as Comparative Example 7. Comparative Example 8 Polyvinylidene fluoride (Mw = 120,000, n = 1.42) was used as an adhesive, and all conditions were the same as in Example 3 except that no infrared shielding layer was formed. The shielding plate was Comparative Example 8. (Comparative Example 9) Shielding obtained in the same manner as in Example 1 except that a filled polyethylene film (visible light transmittance: 20% or less) was used as a plastic substrate, and no infrared shielding layer was formed. The plate was Comparative Example 9. (Comparative Example 10) A shielding plate obtained in the same manner as in Example 1 except that the coating thickness of the composition 2 forming the infrared shielding layer was changed from 5 µm to 0.05 µm using the adhesive composition 2 and Comparative Example 11 did.

【0027】以上のようにして得られた遮蔽板の赤外線
遮蔽率、電磁波シールド性、可視光透過率、非視認性、
加熱処理前後の接着特性、退色特性を測定した。結果を
表1、2に示す。
The shielding plate obtained as described above has an infrared shielding factor, an electromagnetic wave shielding property, a visible light transmittance, a non-visibility,
The adhesive property and the fading property before and after the heat treatment were measured. The results are shown in Tables 1 and 2.

【0028】なお赤外線遮蔽率は、分光光度計((株)
日立製作所製、U−3410)を用いて、900〜1、
100nmの領域の赤外線吸収率の平均値を用いた。電
磁波シールド性は、同軸導波管変換器(日本高周波
(株)製、TWC−S−024)のフランジ間に試料を
挿入し、スペクトロアナライザー(YHP製、8510
Bベクトルネットワークアナライザー)を用い、周波数
1GHzで測定した。可視光透過率の測定は、ダブルビ
ーム分光光度計((株)日立製作所製、200−10
型)を用いて、400〜800nmの透過率の平均値を
用いた。非視認性は、アクリル板に貼り付けた接着フィ
ルムを0.5m離れた場所から目視して導電性材料で形
成された幾何学図形を認識できるかどうかで評価し、認
識できないものを非常に良、良好とし、認識できるもの
をNGとした。接着力は、引張り試験機(東洋ボールド
ウィン(株)製、テンシロンUTM−4−100)を使
用し、幅10mm、90°方向、剥離速度50mm/分
で測定した。屈折率は、屈折計((株)アタゴ光学機械
製作所製、アッベ屈折計)を使用し、25℃で測定し
た。
The infrared shielding factor was measured by a spectrophotometer (manufactured by
900-1 by using U-3410 manufactured by Hitachi, Ltd.
The average value of the infrared absorptivity in the region of 100 nm was used. The electromagnetic wave shielding property was measured by inserting a sample between flanges of a coaxial waveguide converter (manufactured by Japan High Frequency Co., Ltd., TWC-S-024) and using a spectroanalyzer (YHP, 8510).
(B vector network analyzer) at a frequency of 1 GHz. The measurement of the visible light transmittance was performed using a double beam spectrophotometer (manufactured by Hitachi, Ltd., 200-10).
The average value of the transmittance at 400 to 800 nm was used. The non-visibility is evaluated by visually observing the adhesive film stuck on the acrylic plate from a place 0.5 m away, and evaluating whether or not the geometrical figure formed of the conductive material can be recognized. NG, and those that can be recognized. The adhesive force was measured using a tensile tester (manufactured by Toyo Baldwin Co., Ltd., Tensilon UTM-4-100) at a width of 10 mm, a direction of 90 °, and a peeling speed of 50 mm / min. The refractive index was measured at 25 ° C. using a refractometer (Abago Refractometer, manufactured by Atago Optical Machine Works).

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】[0031]

【発明の効果】本発明で得られる電磁波シールド性と赤
外線遮蔽性を有する接着フィルムは実施例からも明らか
なように、赤外線遮蔽性が優れており、被着体に密着し
て使用できるので電磁波漏れがなくシールド機能が特に
良好である。また可視光透過率、非視認性などの光学的
特性が良好で、しかも長時間にわたって高温での接着特
性に変化が少なく良好であり、それらに優れた接着フィ
ルムを提供することができる。また請求項2に記載の透
明プラスチックフィルム基材をポリエチレンテレフタレ
ートフィルムとすることにより、透明性、耐熱性が良好
な上、安価で取り扱い性に優れた電磁波シールド性と赤
外線遮蔽性を有する接着フィルムを提供することができ
る。請求項3に記載の導電性材料の厚みが、3〜40μ
mの銅、アルミニウムまたはニッケルの金属箔を使用
し、透明プラスチック基材への接着面を粗面とすること
により、加工性に優れ、安価な電磁波シールド性と赤外
線遮蔽性を有する接着フィルムを提供することができ
る。請求項4に記載の導電性材料を銅として、少なくと
もその表面を黒化処理されたものとすることにより、退
色性が小さく、コントラストの大きい電磁波シールド性
と赤外線遮蔽性を有する接着フィルムを提供することが
できる。請求項5に記載の透明プラスチック基材上の幾
何学図形をケミカルエッチングプロセスにより形成させ
ることにより、加工性に優れた電磁波シールド性と赤外
線遮蔽性を有する接着フィルムを提供することができ
る。請求項6に記載の導電性材料を常磁性金属とするこ
とにより、磁場シールド性に優れた電磁波シールド性と
赤外線遮蔽性を有する接着フィルムを提供することがで
きる。請求項7、8に記載の電磁波シ−ルド性と赤外線
遮蔽性を有する接着フィルムをディスプレイや電磁波遮
蔽構成体に用いることによりEMIシ−ルド性に優れ、
可視光透過率が大きいのでディスプレイの輝度を高める
ことなく通常の状態とほぼ同様の条件下でディスプレイ
を見ることができ、赤外線によるビデオ(VTR)、C
D、ラジオ等のリモートコントロール機能を有する電子
機器の誤動作を防止でき、しかも導電性材料で描かれた
幾何学図形が視認できないので違和感なく見ることがで
きる。
As is clear from the examples, the adhesive film having an electromagnetic wave shielding property and an infrared ray shielding property obtained by the present invention has an excellent infrared ray shielding property and can be used in close contact with an adherend. There is no leakage and the shielding function is particularly good. In addition, optical properties such as visible light transmittance and invisibility are good, and there is little change in adhesive properties at high temperature over a long period of time, and good adhesive films can be provided. Further, by making the transparent plastic film substrate according to claim 2 a polyethylene terephthalate film, an adhesive film having excellent electromagnetic shielding properties and infrared shielding properties that is excellent in transparency, heat resistance, inexpensive and easy to handle. Can be provided. The thickness of the conductive material according to claim 3 is 3 to 40 μm.
By using a copper, aluminum or nickel metal foil with a rough surface for bonding to a transparent plastic substrate, it provides an inexpensive adhesive film with excellent workability and low cost of electromagnetic wave shielding and infrared shielding. can do. By providing the conductive material according to claim 4 as copper and at least the surface thereof being subjected to blackening treatment, an adhesive film having a small fading property, a high contrast, an electromagnetic wave shielding property and an infrared shielding property is provided. be able to. By forming the geometric pattern on the transparent plastic substrate according to claim 5 by a chemical etching process, it is possible to provide an adhesive film having excellent electromagnetic wave shielding properties and infrared shielding properties with excellent workability. By making the conductive material according to claim 6 a paramagnetic metal, it is possible to provide an adhesive film having an excellent electromagnetic field shielding property and an excellent infrared shielding property. The EMI shielding property is excellent by using the adhesive film having the electromagnetic wave shielding property and the infrared ray shielding property according to claim 7 for a display or an electromagnetic wave shielding structure.
Since the visible light transmittance is large, the display can be viewed under almost the same conditions as in a normal state without increasing the brightness of the display, and video (VTR) by infrared rays, C
Malfunction of an electronic device having a remote control function such as D or radio can be prevented, and a geometric figure drawn with a conductive material cannot be visually recognized, so that it can be viewed without a sense of incongruity.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 登坂 実 茨城県下館市大字小川1500番地 日立化成 工業株式会社下館研究所内 (72)発明者 土橋 明彦 茨城県下館市大字五所宮1150番地 日立化 成工業株式会社五所宮工場内 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Minoru Tosaka 1500 Ogawa, Oji, Shimodate-shi, Ibaraki Pref.Hitachi Kasei Kogyo Co., Ltd. Goshonomiya Factory Co., Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】(1)プラスチック基材の表面に導電性材
料で形成された幾何学図形を設けた構成材料において、
幾何学図形を構成するライン幅が40μm以下、ライン
間隔が200μm以上、ライン厚みが40μm以下であ
り、その幾何学図形を含む基材の一部または全面を接着
剤で被覆し、(2)幾何学図形を被覆する接着剤とプラ
スチック基材、またはプラスチック基材が接着層を介し
て導電性材料と積層されている場合においては接着層と
幾何学図形を被覆する接着剤との屈折率の差を0.14
以下とし、(3)900〜1、100nmの領域におけ
る赤外線吸収率が平均で50%以上であることを特徴と
する電磁波シールド性と赤外線遮蔽性を有する接着フィ
ルム。
(1) In a constituent material in which a geometric figure formed of a conductive material is provided on a surface of a plastic substrate,
The line width of the geometric figure is 40 μm or less, the line interval is 200 μm or more, and the line thickness is 40 μm or less. A part or the whole of the base material including the geometric figure is coated with an adhesive, and The difference in refractive index between the adhesive covering the geometrical figure and the plastic substrate, or between the adhesive layer and the adhesive covering the geometrical figure when the plastic substrate is laminated with a conductive material via the adhesive layer 0.14
(3) An adhesive film having electromagnetic wave shielding properties and infrared ray shielding properties, characterized in that the infrared absorption in the region of 900 to 1,100 nm is 50% or more on average.
【請求項2】プラスチック基材がポリエチレンテレフタ
レートフィルムである請求項1に記載の電磁波シールド
性と赤外線遮蔽性を有する接着フィルム。
2. The adhesive film according to claim 1, wherein the plastic substrate is a polyethylene terephthalate film.
【請求項3】導電性材料が、厚み3〜40μmの銅、ア
ルミニウムまたはニッケルの金属箔で、プラスチック基
材への接着面が粗面である請求項1または請求項2に記
載の電磁波シールド性と赤外線遮蔽性を有する接着フィ
ルム。
3. The electromagnetic wave shielding property according to claim 1, wherein the conductive material is a metal foil of copper, aluminum or nickel having a thickness of 3 to 40 μm, and a bonding surface to the plastic substrate is rough. And an adhesive film having infrared shielding properties.
【請求項4】導電性材料が銅であり、少なくともその表
面が黒化処理されていることを特徴とする請求項3に記
載の電磁波シールド性と赤外線遮蔽性を有する接着フィ
ルム。
4. The adhesive film having electromagnetic shielding properties and infrared shielding properties according to claim 3, wherein the conductive material is copper, and at least the surface thereof is blackened.
【請求項5】プラスチック基材の表面に導電性材料で形
成された幾何学図形がケミカルエッチングプロセスによ
り形成されたものであることを特徴とする請求項1ない
し請求項4のいずれかに記載の電磁波シールド性と赤外
線遮蔽性を有する接着フィルム。
5. The method according to claim 1, wherein the geometrical figure formed of the conductive material on the surface of the plastic substrate is formed by a chemical etching process. Adhesive film with electromagnetic shielding and infrared shielding properties.
【請求項6】導電性材料が常磁性金属である請求項1、
請求項2又は請求項5に記載の電磁波シールド性と赤外
線遮蔽性を有する接着フィルム。
6. The method according to claim 1, wherein the conductive material is a paramagnetic metal.
The adhesive film according to claim 2, wherein the adhesive film has an electromagnetic wave shielding property and an infrared ray shielding property.
【請求項7】請求項1ないし請求項6に記載の電磁波シ
−ルド性と赤外線遮蔽性を有する接着フィルムを用いた
ディスプレイ。
7. A display using the adhesive film having an electromagnetic shielding property and an infrared shielding property according to claim 1.
【請求項8】請求項1ないし請求項6に記載の電磁波シ
−ルド性と赤外線遮蔽性を有する接着フィルムを設けた
電磁波遮蔽構成体。
8. An electromagnetic wave shielding structure provided with the adhesive film having an electromagnetic wave shielding property and an infrared ray shielding property according to claim 1.
JP02457497A 1996-07-01 1997-02-07 Display film having electromagnetic wave shielding property and infrared ray shielding property, electromagnetic wave shielding body, and method of manufacturing plasma display Expired - Lifetime JP3473310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02457497A JP3473310B2 (en) 1996-07-01 1997-02-07 Display film having electromagnetic wave shielding property and infrared ray shielding property, electromagnetic wave shielding body, and method of manufacturing plasma display

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-170800 1996-07-01
JP17080096 1996-07-01
JP02457497A JP3473310B2 (en) 1996-07-01 1997-02-07 Display film having electromagnetic wave shielding property and infrared ray shielding property, electromagnetic wave shielding body, and method of manufacturing plasma display

Publications (2)

Publication Number Publication Date
JPH1075087A true JPH1075087A (en) 1998-03-17
JP3473310B2 JP3473310B2 (en) 2003-12-02

Family

ID=26362119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02457497A Expired - Lifetime JP3473310B2 (en) 1996-07-01 1997-02-07 Display film having electromagnetic wave shielding property and infrared ray shielding property, electromagnetic wave shielding body, and method of manufacturing plasma display

Country Status (1)

Country Link
JP (1) JP3473310B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11337702A (en) * 1998-05-21 1999-12-10 Kyodo Printing Co Ltd Optical filter with electromagnetic wave shield
FR2782232A1 (en) * 1998-08-10 2000-02-11 Sumitomo Bakelite Company Lmit TRANSPARENT PROTECTION SCREEN FOR ELECTROMAGNETIC WAVES
WO2001057833A1 (en) * 2000-02-01 2001-08-09 Mitsui Chemicals Inc. Filter for displaying, display unit and production method therefor
WO2004016061A1 (en) * 2002-08-08 2004-02-19 Dai Nippon Printing Co., Ltd. Electromagnetic wave shielding sheet
WO2004016059A1 (en) * 2002-08-08 2004-02-19 Dai Nippon Printing Co., Ltd. Electromagnetic shielding sheet and method for manufacturing same
WO2004016060A1 (en) * 2002-08-08 2004-02-19 Dai Nippon Printing Co., Ltd. Electromagnetic wave shielding sheet
US7796327B2 (en) 2005-03-15 2010-09-14 Fujifilm Corporation Light transmitting electromagnetic wave shielding film, optical filter and plasma display panel
US7986389B2 (en) 2006-06-29 2011-07-26 Dai Nippon Printing Co., Ltd. Adhesive composition for optical filter, adhesive layer having optical filter functions and composite filter

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11337702A (en) * 1998-05-21 1999-12-10 Kyodo Printing Co Ltd Optical filter with electromagnetic wave shield
FR2782232A1 (en) * 1998-08-10 2000-02-11 Sumitomo Bakelite Company Lmit TRANSPARENT PROTECTION SCREEN FOR ELECTROMAGNETIC WAVES
SG81995A1 (en) * 1998-08-10 2001-07-24 Sumitomo Bakelite Co Transparent electromagnetic wave shield
US6965191B2 (en) 2000-02-01 2005-11-15 Mitsui Chemicals, Inc. Display filter, display apparatus, and method for production of the same
WO2001057833A1 (en) * 2000-02-01 2001-08-09 Mitsui Chemicals Inc. Filter for displaying, display unit and production method therefor
US7304250B2 (en) 2002-08-08 2007-12-04 Dai Nippon Printing Co., Ltd. Electromagnetic shielding sheet
WO2004016060A1 (en) * 2002-08-08 2004-02-19 Dai Nippon Printing Co., Ltd. Electromagnetic wave shielding sheet
WO2004016059A1 (en) * 2002-08-08 2004-02-19 Dai Nippon Printing Co., Ltd. Electromagnetic shielding sheet and method for manufacturing same
WO2004016061A1 (en) * 2002-08-08 2004-02-19 Dai Nippon Printing Co., Ltd. Electromagnetic wave shielding sheet
CN100360002C (en) * 2002-08-08 2008-01-02 大日本印刷株式会社 Electromagnetic shielding sheet and method for manufacturing same
CN100438738C (en) * 2002-08-08 2008-11-26 大日本印刷株式会社 Electromagnetic wave shielding sheet
KR100934292B1 (en) 2002-08-08 2009-12-29 다이니폰 인사츠 가부시키가이샤 Electromagnetic shielding sheet
US7642469B2 (en) 2002-08-08 2010-01-05 Dai Nippon Printing Co., Ltd. Electromagnetic shielding sheet
US8114512B2 (en) 2002-08-08 2012-02-14 Dai Nippon Printing Co., Ltd. Electromagnetic shielding sheet and method of fabricating the same
US7796327B2 (en) 2005-03-15 2010-09-14 Fujifilm Corporation Light transmitting electromagnetic wave shielding film, optical filter and plasma display panel
US7986389B2 (en) 2006-06-29 2011-07-26 Dai Nippon Printing Co., Ltd. Adhesive composition for optical filter, adhesive layer having optical filter functions and composite filter

Also Published As

Publication number Publication date
JP3473310B2 (en) 2003-12-02

Similar Documents

Publication Publication Date Title
JP3388682B2 (en) Method for producing display film having electromagnetic wave shielding and transparency
EP0883156B1 (en) Electromagnetically shielding bonding film
JP3870485B2 (en) Method for producing electromagnetic shielding film having transparency and invisibility
JP3480898B2 (en) Electromagnetic wave shielding film for display, electromagnetic wave shielding structure for display and display
JP3473310B2 (en) Display film having electromagnetic wave shielding property and infrared ray shielding property, electromagnetic wave shielding body, and method of manufacturing plasma display
JP2001053488A (en) Electromagnetic wave shielding material and electromagnetic wave shielding structure and display using it
JP3386743B2 (en) Method of manufacturing electromagnetic wave shielding adhesive film for PDP and method of manufacturing electromagnetic wave shielding structure and plasma display for PDP
JPH10335885A (en) Transparent electromagnetic wave shielding material and display using this electromagnetic wave shielding material
JP4053310B2 (en) Manufacturing method of electromagnetic wave shielding adhesive film
JPH11340682A (en) Electromagnetic shielding adhesive film, electromagnetic shielding object using the same, and display formed of both materials
JP4175424B2 (en) Electromagnetic shielding material having good electromagnetic shielding properties and transparency, invisibility and warping characteristics, and display using the electromagnetic shielding material
JP3716859B2 (en) Transparent electromagnetic wave shielding adhesive film for display, method for producing electromagnetic wave shielding body for display, and display
JP2002335095A (en) Electromagnetic wave shielding adhesive film, electromagnetic wave shield component, and manufacturing method for display
JP3570420B2 (en) Display film having electromagnetic wave shielding property and transparency, display using the film, and electromagnetic wave shielding structure
JPH11145676A (en) Electromagnetic wave shielding adhesive tape electromagnetic wave shielding structure and display employing it
JP2000323890A (en) Manufacture of electromagnetic wave shielding adhesive film, electromagnetic wave shielding component, and electromagnetic wave shielded display
JP2000315890A (en) Manufacture of electromagnetic wave shielding film, the electromagnetic wave shielding film, and electromagnetic wave shield and display using the film
JPH11145678A (en) Electromagnetic wave shielding adhesive tape, electromagnetic wave shielding structure and display employing it
JP3716800B2 (en) Transparent electromagnetic wave shielding adhesive film for display, method for producing electromagnetic wave shielding body for display, and display
JPH10335884A (en) Electromagnetic wave shielding material and display using this electromagnetic wave shielding material
JP4288690B2 (en) Method for producing electromagnetic wave shielding adhesive film
JP2003015533A (en) Electromagnetic wave shieldable adhesive film, electromagnetic wave shielding constitution using the film and display
JP3716860B2 (en) Transparent electromagnetic wave shielding adhesive film for display, method for producing electromagnetic wave shielding body for display, and display
JPH11191692A (en) Weather-resistant electromagnetic shielding adhesive film, electromagnetic shielding structure and display provided therewith
JP4175423B2 (en) Electromagnetic shielding material and display using the electromagnetic shielding material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 9