JPH1075019A - Manufacture of gan compound semiconductor device - Google Patents
Manufacture of gan compound semiconductor deviceInfo
- Publication number
- JPH1075019A JPH1075019A JP18586497A JP18586497A JPH1075019A JP H1075019 A JPH1075019 A JP H1075019A JP 18586497 A JP18586497 A JP 18586497A JP 18586497 A JP18586497 A JP 18586497A JP H1075019 A JPH1075019 A JP H1075019A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- group
- gas
- temperature
- growth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Semiconductor Lasers (AREA)
- Led Devices (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、半導体発光素子の
製造方法に関し、特に紫外から緑色までの発光素子に用
いられるInGaAlN系ヘテロ構造LED、LD等の
製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor light emitting device, and more particularly to a method for manufacturing an InGaAlN-based heterostructure LED, LD, etc. used for light emitting devices ranging from ultraviolet to green.
【0002】[0002]
【従来の技術および発明が解決しようとする課題】表示
等やフルカラー式ディスプレイ等に使用されるGaN系
発光素子を例にとって、従来提案されている製造例に基
づいて、GaN系半導体素子の製造方法について説明す
る。2. Description of the Related Art Taking a GaN-based light-emitting device used for a display or a full-color display as an example, a method of manufacturing a GaN-based semiconductor device based on a conventionally proposed manufacturing example. Will be described.
【0003】図1は、GaN系発光素子一構造例を概略
的に示す断面図である。図9は、処理温度と時間経過を
示すタイムチャートである。各層の成長方法としては、
有機金属気相成長法(以下、MOCVD法という)が用
いられる。FIG. 1 is a sectional view schematically showing a structural example of a GaN-based light emitting device. FIG. 9 is a time chart showing the processing temperature and the passage of time. As a growth method of each layer,
Metal organic chemical vapor deposition (hereinafter referred to as MOCVD) is used.
【0004】まず、バッファ層の成長の前にサファイア
基板1に対して、水素キャリアガスだけでサーマルクリ
ーニングを行う。その後、キャリアガスはそのままで5
20℃まで降温し、次いで、キャリアガスを次のように
切り替える。即ち、窒素と水素の割合が、1:3になる
ようにキャリアガスを切り替え、V族原料であるNH3
とIII 族原料であるTMGとを一定量供給し、厚さ50
nmのGaNバッファ層2を成長させる。V族原料であ
るNH3 は、これ以降のプロセスにおいては成長中はも
ちろんのこと、成長中断中においても常に供給されるよ
うに設定されている。First, before growing the buffer layer, the sapphire substrate 1 is subjected to thermal cleaning using only a hydrogen carrier gas. Then, 5
The temperature is lowered to 20 ° C., and then the carrier gas is switched as follows. That is, the carrier gas is switched so that the ratio of nitrogen and hydrogen becomes 1: 3, and NH 3 which is a group V material is
And a fixed amount of Group III raw material TMG
A GaN buffer layer 2 of nm is grown. NH 3 , which is a group V raw material, is set so as to be always supplied during the subsequent process, not only during growth but also during suspension of growth.
【0005】その後、キャリアガスは切り替えずに11
00℃まで昇温し、TMGおよびSiH4 を供給し、厚
さ4μmのSiドープn型GaNクラッド層3を成長さ
せる。このSiドープn型GaNクラッド層3の成長
後、キャリアガスはそのままとして800℃まで降温す
る。温度が800℃で一定になった状態で、キャリアガ
スである窒素と水素の割合を1:1に切り替え、成長層
原料であるTMIとTMGと発光中心原料であるSiH
4 とDMZnとを供給し、厚さ0.2μmのZn、Si
ドープInGaN発光層4を成長させる。ここで、本明
細書においては、窒素:水素の割合が1:1の場合も窒
素リッチ状態と定義するものとする。[0005] Thereafter, the carrier gas is changed to 11 without switching.
The temperature is raised to 00 ° C., TMG and SiH 4 are supplied, and a Si-doped n-type GaN clad layer 3 having a thickness of 4 μm is grown. After the growth of the Si-doped n-type GaN clad layer 3, the temperature is lowered to 800 ° C. while keeping the carrier gas as it is. With the temperature kept constant at 800 ° C., the ratio of nitrogen and hydrogen as carrier gases was switched to 1: 1 and TMI and TMG as growth layer materials and SiH as emission center material were changed.
4 and DMZn, and Zn, Si having a thickness of 0.2 μm.
A doped InGaN light emitting layer 4 is grown. Here, in the present specification, a case where the ratio of nitrogen: hydrogen is 1: 1 is also defined as a nitrogen-rich state.
【0006】このSiドープInGaN発光層4の成長
後、キャリアガスである窒素と水素の比を1:3に戻し
(すなわち水素リッチの状態にし)、1100℃まで昇
温する。1100℃に昇温後においては、キャリアガス
はそのままとし、TMAとTMGおよびドーパントであ
るCp2 Mgを供給し、厚さ0.2μmのMgドープp
型AlGaN層5を成長させる。最後に、TMGとCp
2 Mgを供給して、厚さ0.3μmのp型GaN層6を
成長させる。さらに、キャリアガスはそのままで、成長
を中断させたままの状態で室温まで降温することによっ
て、図1に示すようなGaN系発光素子が得られる。After the growth of the Si-doped InGaN light-emitting layer 4, the ratio of nitrogen to hydrogen as a carrier gas is returned to 1: 3 (that is, in a hydrogen-rich state), and the temperature is raised to 1100 ° C. After the temperature was raised to 1100 ° C., the carrier gas was left as it was, TMA and TMG and Cp 2 Mg as a dopant were supplied, and a 0.2 μm-thick Mg-doped p was added.
A type AlGaN layer 5 is grown. Finally, TMG and Cp
2 Mg is supplied to grow a p-type GaN layer 6 having a thickness of 0.3 μm. Further, by lowering the temperature to room temperature while the growth is interrupted while the carrier gas is kept, a GaN-based light emitting device as shown in FIG. 1 is obtained.
【0007】このようにして得られるInGaN発光層
は、InNの窒素の平衡圧がGaNに比べて2桁ほど高
く、また、GaNより200℃ほど低温度で成長するた
め、従来の方法でInGaN発光層の上層にAlGaN
層を成長させる場合には、一旦成長を中断し、さらに昇
温してInGaN層上にAlGaN層を成長させなけれ
ばならなかった。The InGaN light emitting layer thus obtained has an equilibrium pressure of nitrogen of InN which is about two orders of magnitude higher than that of GaN, and is grown at a temperature lower than that of GaN by about 200 ° C. AlGaN on top of the layer
When growing the layer, the growth had to be interrupted once, and the temperature had to be further raised to grow the AlGaN layer on the InGaN layer.
【0008】そのため、InGaN発光層は高温状態
(すなわち、800℃から1100℃への昇温時)にお
いて安定に保持する必要があった。しかしながら、本発
明者の知見によれば、上述した従来の方法においては、
昇温過程におけるキャリアガスとして、窒素と水素の割
合が1:3の水素リッチなガスを使用していたため、I
nGaN発光層を安定に保持することができないことが
判明している。すなわち、NH3 は、水素雰囲気中にお
いては窒素の2倍以上の大きな拡散係数を有しているた
め、水素リッチである前記の条件下においては、基板近
傍のNH3 濃度が低くなってしまうという現象が生じ、
このため、InGaN発光層のNが解離しやすくなり、
InGaN発光層の分解による結晶の劣化あるいは厚さ
の減少・消失を招くという問題があった。したがって、
上述した方法で得られる発光素子は、極端な場合にはI
nGaN発光層のない、あるいはこの層が残っていたと
しても結晶性の著しく低下した層として残存しているた
め、発光効率および信頼性の低下したものであった。Therefore, it is necessary to stably maintain the InGaN light emitting layer in a high temperature state (ie, when the temperature is raised from 800 ° C. to 1100 ° C.). However, according to the findings of the present inventors, in the above-described conventional method,
Since a hydrogen-rich gas having a ratio of nitrogen to hydrogen of 1: 3 was used as a carrier gas in the temperature increasing process, I
It has been found that the nGaN light emitting layer cannot be stably held. That is, since NH 3 has a large diffusion coefficient of twice or more that of nitrogen in a hydrogen atmosphere, the NH 3 concentration in the vicinity of the substrate is reduced under the hydrogen-rich condition. Phenomenon occurs,
Therefore, N of the InGaN light emitting layer is easily dissociated,
There has been a problem that the decomposition of the InGaN light-emitting layer causes the deterioration of the crystal or the reduction or disappearance of the thickness. Therefore,
The light-emitting element obtained by the above-described method has an extreme
Since there was no nGaN light-emitting layer, or even if this layer remained, it remained as a layer with significantly reduced crystallinity, resulting in reduced luminous efficiency and reliability.
【0009】したがって、本発明は、上述した従来提案
されている方法に伴う問題点を解消することに向けられ
たものであって、高品質で結晶性にすぐれたInGaA
lN発光層を形成し得る、高品質GaN系化合物半導体
素子の製造方法を提供することを目的とするものであ
る。Accordingly, the present invention is directed to overcoming the problems associated with the above-described conventionally proposed methods, and is directed to a high-quality, highly crystalline InGaAs.
It is an object of the present invention to provide a method for manufacturing a high-quality GaN-based compound semiconductor device capable of forming an 1N light emitting layer.
【0010】[0010]
【課題を解決するための手段】上述したように、GaN
系化合物半導体を1000℃程度の高い温度で気相成長
する場合、もしくはInGaAlN層のように熱的に不
安定なInを含む混晶を800℃前後の温度で成長させ
る場合、成長中断プロセスにおいてはInGaAlN層
からのNの解離やH2キャリアガスによる還元作用によ
り、一旦形成された成長層が、成長中断工程での著しい
昇華作用により結晶の劣化や膜厚の変動にさらされ、こ
のため素子特性(発光効率や光出力)を低下させるとい
う問題があった。As described above, as described above, GaN
In the case of growing a compound semiconductor in a vapor phase at a high temperature of about 1000 ° C., or growing a mixed crystal containing In which is thermally unstable such as an InGaAlN layer at a temperature of about 800 ° C. Due to the dissociation of N from the InGaAlN layer and the reduction action by the H 2 carrier gas, the growth layer once formed is exposed to crystal deterioration and film thickness fluctuation due to a remarkable sublimation action in the growth interruption step. (Emission efficiency and light output).
【0011】本発明においては、積極的にこの成長中断
工程に着目し、特に昇温、降温および流量変更に伴うす
べての成長中断工程における工程条件を最適状態に制御
することによって上記問題を解決しようとするものであ
る。In the present invention, the above problem is solved by actively focusing on this growth interruption step, and in particular, controlling the process conditions in all the growth interruption steps accompanying the temperature increase, temperature decrease, and flow rate change to an optimum state. It is assumed that.
【0012】すなわち、本発明によるGaN系化合物半
導体素子の製造方法は、(Ga1-xAlx )1-y Iny
N(0≦x≦1,0≦y≦1)系結晶構造を気相成長さ
せるに際し,同一層およびヘテロ層のいずれにおいて
も、形成する層の成長を中断する成長中断工程の少なく
とも一つの成長中断工程における雰囲気として、V族ガ
スを含む雰囲気であり、かつ、V族以外のキャリアガス
として不活性ガスを用いることによって、前記成長中断
工程において露出している層の分解を防止するようにし
たことを特徴とするものである。That is, the method of manufacturing a GaN-based compound semiconductor device according to the present invention comprises the steps of (Ga 1-x Al x ) 1-y In y
In vapor phase growth of an N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1) crystal structure, at least one growth interruption step of interrupting the growth of a layer to be formed in either the same layer or the hetero layer. By using an atmosphere containing a group V gas as the atmosphere in the interruption step and using an inert gas as a carrier gas other than the group V gas, the decomposition of the layer exposed in the growth interruption step is prevented. It is characterized by the following.
【0013】[0013]
【発明の実施の形態】本発明によるGaN系半導体素子
の製造方法の具体的態様について、表示等やフルカラー
式ディスプレイ等に使用されるGaN系発光素子を例に
とって説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Specific embodiments of the method of manufacturing a GaN-based semiconductor device according to the present invention will be described with reference to a GaN-based light-emitting device used for a display or a full-color display as an example.
【0014】図1は、GaN系発光素子の一構造例を概
略的に示す断面図である。図3は、処理温度と時間経過
を示すタイムチャートである。この例においては、各層
の成長方法として、有機金属気相成長法(MOCVD法
という)が用いられる。FIG. 1 is a sectional view schematically showing a structural example of a GaN-based light emitting device. FIG. 3 is a time chart showing the processing temperature and the passage of time. In this example, a metal organic chemical vapor deposition (MOCVD) method is used as a method for growing each layer.
【0015】まず、バッファ層の成長の前にサファイア
基板1に対して、水素キャリアガスだけでサーマルクリ
ーニングを行う。その後、キャリアガスはそのままで5
20℃まで降温し、次いで、キャリアガスを次のように
切り替える。即ち、窒素と水素の割合が、1:3になる
ようにキャリアガスを切り替え、V族原料であるNH3
とIII 族原料であるTMGとを一定量供給し、厚さ50
nmのGaNバッファ層2を成長させる。V族原料であ
るNH3 は、これ以降のプロセスにおいては成長中はも
ちろんのこと、成長中断中においても常に供給されるよ
うに設定されている。First, before the growth of the buffer layer, the sapphire substrate 1 is subjected to thermal cleaning using only a hydrogen carrier gas. Then, 5
The temperature is lowered to 20 ° C., and then the carrier gas is switched as follows. That is, the carrier gas is switched so that the ratio of nitrogen and hydrogen becomes 1: 3, and NH 3 which is a group V material is
And a fixed amount of Group III raw material TMG
A GaN buffer layer 2 of nm is grown. NH 3 , which is a group V raw material, is set so as to be always supplied during the subsequent process, not only during growth but also during suspension of growth.
【0016】その後、キャリアガスは切り替えずに11
00℃まで昇温し、TMGおよびSiH4 を供給し、厚
さ4μmのSiドープn型GaNクラッド層3を成長さ
せる。このSi−GaN層の成長後、キャリアガスはそ
のままとして800℃まで降温する。温度が800℃で
一定になった状態で、キャリアガスである窒素と水素の
割合を1:1に切り替え、成長層原料であるTMIとT
MGと発光中心原料であるSiH4 とDMZnとを供給
し、厚さ0.2μmのZn、SiドープInGaN発光
層4を成長させる。Thereafter, the carrier gas is switched without switching.
The temperature is raised to 00 ° C., TMG and SiH 4 are supplied, and a Si-doped n-type GaN clad layer 3 having a thickness of 4 μm is grown. After the growth of the Si-GaN layer, the temperature is lowered to 800 ° C. while keeping the carrier gas. With the temperature kept constant at 800 ° C., the ratio of nitrogen and hydrogen as carrier gases was changed to 1: 1 and TMI and T
MG, SiH 4 and DMZn, which are emission center materials, are supplied, and a Zn and Si-doped InGaN emission layer 4 having a thickness of 0.2 μm is grown.
【0017】このInGaN層の成長後、キャリアガス
である窒素と水素の比を3:1にし、1100℃まで昇
温する。1100℃に昇温した後においては、キャリア
ガスである窒素と水素の比を1:3に戻し、TMAとT
MGおよびドーパントであるCp2 Mgを供給し、厚さ
0.2μmのMgドープp型AlGaN層5を成長させ
る。最後に、TMGとCp2 Mgを供給して、厚さ0.
3μmのp型GaN層6を成長させる。さらに、キャリ
アガスはそのままで、成長を中断させたままの状態で室
温まで降温することによって、図1に示すようなGaN
系発光素子が得られる。After the growth of the InGaN layer, the ratio of nitrogen to hydrogen as a carrier gas is set to 3: 1 and the temperature is raised to 1100 ° C. After the temperature was raised to 1100 ° C., the ratio of the carrier gas nitrogen and hydrogen was returned to 1: 3, and TMA and T
MG and a dopant Cp 2 Mg are supplied to grow a Mg-doped p-type AlGaN layer 5 having a thickness of 0.2 μm. Finally, TMG and Cp 2 Mg are supplied to achieve a thickness of 0.
A 3 μm p-type GaN layer 6 is grown. Further, by lowering the temperature to room temperature while the growth is interrupted while the carrier gas is kept as it is, the GaN as shown in FIG.
A system light emitting device is obtained.
【0018】また、付加的効果として、降温中に不活性
ガス雰囲気を用いることで、MgドーブGaN層がas
−grownでP型化することもできる。As an additional effect, the use of an inert gas atmosphere during temperature lowering allows the Mg-doped GaN layer to be formed as
It can also be made into a P-type by -grown.
【0019】上記の実施例においては、V族原料ガスと
してNH3 をキャリアガスとして窒素リッチの窒素と水
素の混合ガスを用いたが、前述したように、窒素以外の
Ne、Ar、Kr、XeおよびSF6 などの不活性ガス
も同様に用いることができる。In the above embodiment, a mixed gas of nitrogen-rich nitrogen and hydrogen was used as the group V source gas using NH 3 as the carrier gas. However, as described above, Ne, Ar, Kr, and Xe other than nitrogen were used. And an inert gas such as SF 6 can be used similarly.
【0020】前述したように、InGaN層を発光層、
AlGaN層をクラッド層とするダブルヘテロ構造デバ
イスの製作においては、InGaN層成長後の昇温過程
で用いるキャリアガスとしては、窒素と水素の割合が
1:3であるような水素リッチのガスが使用されてい
た。このように水素リッチのガスを使用する理由は、水
素の方が窒素よりも高純度のキャリアガスが精製できる
ためである。As described above, the InGaN layer is a light emitting layer,
In the manufacture of a double heterostructure device having an AlGaN layer as a cladding layer, a hydrogen-rich gas having a ratio of nitrogen and hydrogen of 1: 3 is used as a carrier gas used in a temperature increasing process after growth of an InGaN layer. It had been. The reason why the hydrogen-rich gas is used is that hydrogen can purify a carrier gas with higher purity than nitrogen.
【0021】しかしながら、上述したように、このよう
な条件では、InGaN層が分解して膜の消失や減少あ
るいは結晶性低下が発生するという問題があった。これ
は、NH3 の拡散係数は、窒素ガス中より水素ガス中の
ほうがはるかに大きく、従来技術のようにキャリアガス
が水素リッチでは、NH3 が拡散してNH3 濃度が低く
なるため、InGaN層の“N”の分解を抑制する効果
低下するためであると考えられる。However, as described above, under such conditions, there is a problem that the InGaN layer is decomposed and the film disappears or decreases, or the crystallinity decreases. This is because the diffusion coefficient of NH 3 is much larger in the hydrogen gas than in the nitrogen gas, and when the carrier gas is rich in hydrogen as in the prior art, the NH 3 diffuses and the NH 3 concentration becomes lower. This is considered to be because the effect of suppressing the decomposition of “N” in the layer is reduced.
【0022】本発明にように、キャリアガスとして上記
のような不活性ガスを用いることによって、NH3 濃度
を高く維持することができ、InGaN発光層の昇温過
程での分解を有意に抑制することができる。By using the above-mentioned inert gas as the carrier gas as in the present invention, the NH 3 concentration can be kept high, and the decomposition of the InGaN light emitting layer during the temperature rise can be significantly suppressed. be able to.
【0023】次に、本発明の上述した実施例および冒頭
で述べた比較例で得られた素子について、アニールによ
るInGaN層表面が受ける変化について説明する。Next, changes in the surface of the InGaN layer caused by annealing will be described for the devices obtained in the above-described embodiment of the present invention and the comparative example described at the beginning.
【0024】まず、各々、InGaN層成長後の同一の
ウェーハについて、図3に示す温度プロファイルに従っ
て、窒素リッチ条件(実施例)と水素リッチ条件(比較
例)で、室温から1100℃まで昇温し、アニールを実
施し、InGaN層の表面のSEM写真を撮影した。図
4は、アニール前のInGaN層の表面のSEM写真で
ある。図5(比較例)は、水素リッチ雰囲気でのアニー
ル処理後の表面状態を示し、図6(実施例)は、窒素リ
ッチ雰囲気でのアニール処理後の表面状態を示す。これ
らから、InGaN層の表面は、水素リッチの場合は著
しい劣化があるのに対し、窒素リッチの場合はほとんど
変化はみられないことが分かる。First, each of the same wafers after the growth of the InGaN layer was heated from room temperature to 1100 ° C. under nitrogen-rich conditions (Examples) and hydrogen-rich conditions (Comparative Examples) in accordance with the temperature profile shown in FIG. Annealing was performed, and an SEM photograph of the surface of the InGaN layer was taken. FIG. 4 is a SEM photograph of the surface of the InGaN layer before annealing. FIG. 5 (Comparative Example) shows the surface state after annealing in a hydrogen-rich atmosphere, and FIG. 6 (Example) shows the surface state after annealing in a nitrogen-rich atmosphere. From these results, it can be seen that the surface of the InGaN layer is significantly deteriorated in the case of hydrogen-rich, but hardly changes in the case of nitrogen-rich.
【0025】図7は、InGaN層のアニールの時間に
よるX線強度の変化を示すグラフである。X線強度にお
いても、比較例のように水素リッチガスを使用した場合
は、70%程度強度低下するのに対して、窒素リッチガ
スを使用した実施例の場合においては、X線強度は実質
的に低下しないことが確認された。FIG. 7 is a graph showing a change in X-ray intensity depending on the annealing time of the InGaN layer. In the X-ray intensity, when the hydrogen-rich gas is used as in the comparative example, the intensity is reduced by about 70%, whereas in the example using the nitrogen-rich gas, the X-ray intensity is substantially reduced. Not confirmed.
【0026】さらに、図8にLED相対輝度の測定値を
示す。このグラフから、本発明の実施例に係る発光素子
の輝度は、比較例のものに比べて10倍以上に及ぶ輝度
の向上が認められる。FIG. 8 shows measured values of LED relative luminance. From this graph, it can be seen that the luminance of the light emitting element according to the example of the present invention is 10 times or more higher than that of the comparative example.
【0027】図10は、GaN系MQW構造青色レーザ
素子の一構造例を概略的に示す断面図である。FIG. 10 is a sectional view schematically showing a structural example of a GaN-based MQW blue laser device.
【0028】図11は、処理温度と時間経過を示すタイ
ムチャートである。この例においても、各層の成長方法
としては、有機金属気相成長法が用いられる。FIG. 11 is a time chart showing the processing temperature and the passage of time. Also in this example, a metal organic chemical vapor deposition method is used as a method for growing each layer.
【0029】まず、バッファ層の成長の前にサファイア
基板に対し、水素キャリアガスだけでサーマルクリーニ
ングを行う。その後、キャリアガスはそのままで、52
0℃まで降温し、次いでキャリアガスを次の様に切り替
える。即ち、窒素と水素の割合が、例えば1:3になる
ようにキャリアガスを切り替え、V族原料であるNH3
とIII 族原料であるTMGとを一定量供給し、厚さ50
mmのGaNバファ層を成長させる。ここで、V族原料
であるNH3は、これ以降のプロセスにおいては成長中
はもちろんのこと、成長中断中においても常に供給され
るように設定されている。First, before growing the buffer layer, the sapphire substrate is subjected to thermal cleaning using only a hydrogen carrier gas. Thereafter, the carrier gas is left as it is, and 52
The temperature is lowered to 0 ° C., and then the carrier gas is switched as follows. That is, the carrier gas is switched so that the ratio of nitrogen to hydrogen becomes, for example, 1: 3, and NH 3 which is a group V material is
And a fixed amount of Group III raw material TMG
A GaN buffer layer of mm is grown. Here, NH 3 which is a group V material is set so as to be always supplied during the subsequent process, not only during the growth but also during the suspension of the growth.
【0030】その後、1050℃まで昇温するが、昇温
前にキャリアガスを窒素と水素の比率を例えば3:1に
切り替える。昇温後、TMG及びSiH4を供給し、厚
さ4μmのSiドープのn型GaN層を成長させる。こ
の後、AlGaNクラッド層を成長するが、NH3とT
MAとの中間反応がおきやすいため、総流量を変える必
要がある。そこで、成長を中断してキャリアガスの組成
比を窒素と水素の比率を3:1にしたまま、総流量を例
えば1.5倍にする。After that, the temperature is raised to 1050 ° C., and before the temperature is raised, the carrier gas is switched at a ratio of nitrogen to hydrogen of, for example, 3: 1. After the temperature rise, TMG and SiH 4 are supplied to grow a Si-doped n-type GaN layer having a thickness of 4 μm. Thereafter, an AlGaN cladding layer is grown, and NH 3 and T
Since the intermediate reaction with MA is likely to occur, it is necessary to change the total flow rate. Therefore, the growth is interrupted, and the total flow rate is increased, for example, by 1.5 times while keeping the composition ratio of the carrier gas to the ratio of nitrogen to hydrogen at 3: 1.
【0031】その後、TMG、TMA及びSiH4を供
給し、0.25μmのSiドープのn型Al0.15Ga
0.85Nクラッド層を成長させる。Thereafter, TMG, TMA, and SiH 4 are supplied, and 0.25 μm Si-doped n-type Al 0.15 Ga
A 0.85 N cladding layer is grown.
【0032】次いで、窒素と水素の比率は3:1のまま
キャリアガス総流量を元に戻し、温度を700℃まで降
温する。その後、0.1μmのアンドープGaN層を成
長させる。Then, the total flow rate of the carrier gas is returned to its original value while the ratio of nitrogen to hydrogen is kept at 3: 1, and the temperature is lowered to 700 ° C. Thereafter, an undoped GaN layer of 0.1 μm is grown.
【0033】その後、一定時間のインタバルを入れてT
MG、TMIをウエル層とバリア層それぞれのIn組成
に応じて供給し、20AのアンドープIn0.20Ga0.80
Nウエル層と40AのアンドープIn0.05Ga0.95Nバ
リア層の交互に10ペア成長させる。Thereafter, an interval for a predetermined time is inserted, and T
MG and TMI are supplied according to the In composition of each of the well layer and the barrier layer, and undoped In 0.20 Ga 0.80 of 20 A is supplied.
10 pairs of N well layers and 40A undoped In 0.05 Ga 0.95 N barrier layers are alternately grown.
【0034】次いで、窒素と水素の比率を3:1にして
1050℃まで昇温する。その後、窒素と水素の比率は
そのままにして総流量を1.5倍にする。さらに、TM
G、TMA及びCp2Mgを供給しMgドープp型Al
0.15Ga0.85N層クラッド層を成長させる。Next, the temperature is raised to 1050 ° C. with the ratio of nitrogen to hydrogen being 3: 1. Thereafter, the total flow rate is increased by a factor of 1.5 while maintaining the ratio of nitrogen to hydrogen. Furthermore, TM
G, TMA and Cp2Mg are supplied and Mg-doped p-type Al
A 0.15 Ga 0.85 N layer cladding layer is grown.
【0035】さらにその後、成長中断して、総流量を元
に戻しかつキャリアガスである窒素と水素の比率を3:
1として、厚さ0.1μmのMgドープGaN層を成長
させる。成長層終了後、窒素と水素キャリアガス割合を
3:1にしたまま室温まで降温する。このようにして、
GaN系MQW構造青色レーザダイオードが形成され
る。After that, the growth is interrupted, the total flow rate is returned to the original value, and the ratio of the carrier gas nitrogen and hydrogen is adjusted to 3:
As 1, a Mg-doped GaN layer having a thickness of 0.1 μm is grown. After the growth layer is completed, the temperature is lowered to room temperature while keeping the ratio of nitrogen to hydrogen carrier gas at 3: 1. In this way,
A GaN-based MQW blue laser diode is formed.
【0036】また、付加的効果として、降温中に不活性
ガス雰囲気を用いることで、MgドーブGaN層がas
−grownでP型化することもできる。As an additional effect, the use of an inert gas atmosphere during temperature lowering allows the Mg-doped GaN layer to be formed as
It can also be made into a P-type by -grown.
【0037】上記の実施例においては、V族原料ガスと
してNH3をキャリアガスとして窒素リッチと水素リッ
チの混合ガスを用いたが、前述したように、窒素以外の
Ne、Ar、Kr、XeおよびSF3などの不活性ガス
も同様に用いることができる。また、V族原料ガスとし
てNH3、N2H4、N2H3CH3およびN2H
2(CH3)2からなる群から選ばれた原料を用いるこ
とができる。In the above embodiment, a mixed gas of nitrogen-rich and hydrogen-rich was used as a group V source gas with NH 3 as a carrier gas. However, as described above, Ne, Ar, Kr, Xe and inert gas, such as SF 3 may be used as well. Further, NH 3 , N 2 H 4 , N 2 H 3 CH 3 and N 2 H are used as group V source gases.
A raw material selected from the group consisting of 2 (CH 3 ) 2 can be used.
【0038】従来の方法においては、同温度であっても
成長を中断してGaN成長からAlGaN層成長への移
行の際にあるいはInGaNMQW層からAlGaN層
成長への移行の際に総流量を増大させるような場合、キ
ャリアガスとしては窒素と水素の割合が1:3であるよ
うな水素リッチのガスが使用されていた。これは、水素
のほうが窒素よりも高純度のキャリアガスが精製できる
ためである。In the conventional method, even at the same temperature, the growth is interrupted and the total flow rate is increased at the time of transition from GaN growth to AlGaN layer growth or at the time of transition from InGaN MQW layer to AlGaN layer growth. In such a case, a hydrogen-rich gas in which the ratio of nitrogen to hydrogen is 1: 3 has been used as the carrier gas. This is because hydrogen can purify a carrier gas with higher purity than nitrogen.
【0039】しかしながら、上述したように、このよう
な条件下では、CaN層が分解して膜の減少や結晶性が
低下するなどの問題があった。これは、NH3の拡散係
数は、窒素ガス中より水素ガス中のほうがはるかに大き
く、従来技術のようにキャリアガスが水素キャリアガス
では、NH3が拡散してNH3濃度が低くなるため、C
aN層やNMQW層やAlGaN層の“N”の分解を抑
制する効果が低下するためであると考えられる。However, as described above, under such conditions, there is a problem that the CaN layer is decomposed and the film is reduced and the crystallinity is reduced. This is because the diffusion coefficient of NH 3 is much higher in hydrogen gas than in nitrogen gas, and when the carrier gas is a hydrogen carrier gas as in the prior art, NH 3 is diffused to lower the NH 3 concentration. C
This is probably because the effect of suppressing the decomposition of “N” in the aN layer, the NMQW layer, and the AlGaN layer is reduced.
【0040】また、水素ガスはGaN層、InGaN
層、AlGaN層を化学的に還元してしまう作用があ
り、この点からも膜の減少や結晶性の低下が発生すると
いう問題があった。The hydrogen gas is a GaN layer, InGaN
This has the effect of chemically reducing the AlGaN layer and the AlGaN layer, and this also causes a problem that the film is reduced and the crystallinity is reduced.
【0041】本発明の方法においては、キャリアガスと
して上記のような不活性ガスを用いることによって、系
内のNH3濃度を高く維持し、“N”の抜けを抑制する
のみならず、キャリアガス水素ガスによる還元作用を抑
制することが可能となる。In the method of the present invention, the use of the above-mentioned inert gas as the carrier gas not only keeps the NH 3 concentration in the system high and suppresses the escape of “N” but also reduces the carrier gas. It is possible to suppress the reduction action by hydrogen gas.
【0042】次に、発光層をGaN層とする紫外光LE
D発光素子を例にとって、本発明の別の好ましい実施例
について説明する。Next, an ultraviolet light LE having a GaN layer as a light emitting layer
Another preferred embodiment of the present invention will be described by taking a D light emitting element as an example.
【0043】図12は、GaN系紫外発光素子の一構造
例を概略的に示す断面図である。また図13は、処理時
間と時間経過を示すタイムチャートである。この例にお
いては、各層の成長方法として、前記と同様の有機金属
気相成長法(MOCVD)が用いられる。FIG. 12 is a sectional view schematically showing a structural example of a GaN-based ultraviolet light emitting device. FIG. 13 is a time chart showing the processing time and elapsed time. In this example, the same metal organic chemical vapor deposition (MOCVD) as described above is used as a method for growing each layer.
【0044】まず、バッファ層成長の前にサファイア基
板に対して、水素キャリアガスだけでサーマルクリーニ
ングを行なう。その後、キャリアガスはそのままで52
0℃まで降温し、次いで、キャリアガスを次のように切
り替える。即ち、窒素と水素の割合が、例えば1:3に
なるようにキャリアガスを切り替え、V族原料ガスであ
るNH3と III族原料であるTMGを一定量供給し、5
0nmのGaNバッファ層を成長させる。ここで、V族原
料ガスであるNH3は、これ以降のプロセスにおいては
成長中は勿論のこと、成長中断においても常に供給され
るようになっている。First, before the growth of the buffer layer, the sapphire substrate is subjected to thermal cleaning using only a hydrogen carrier gas. After that, the carrier gas is left as it is 52
The temperature is lowered to 0 ° C., and then the carrier gas is switched as follows. That is, the carrier gas is switched so that the ratio of nitrogen to hydrogen becomes, for example, 1: 3, and a fixed amount of NH 3 as a group V source gas and TMG as a group III source gas is supplied.
A 0 nm GaN buffer layer is grown. Here, NH 3 , which is a group V source gas, is always supplied not only during growth but also during interruption of growth in the subsequent processes.
【0045】その後、成長を中断してキャリアガス窒素
と水素の割合を、例えば3:1にするようにする。その
後1100℃まで昇温する。Thereafter, the growth is interrupted so that the ratio of carrier gas nitrogen to hydrogen is, for example, 3: 1. Thereafter, the temperature is raised to 1100 ° C.
【0046】その後、TMG及びSiH4を供給し、厚
さ4μmのSiドープn型GaN層を成長させる。この
Si−GaN成長を中断し、キャリアガスの比率はその
ままとして総流量を1.5倍まで増大させる。Thereafter, TMG and SiH 4 are supplied to grow a Si-doped n-type GaN layer having a thickness of 4 μm. This Si-GaN growth is interrupted, and the total flow rate is increased to 1.5 times while maintaining the carrier gas ratio.
【0047】その後、TMG,TMA及びSiH4を供
給し、厚さ0.2μmのSiドープn型Ai3Ga1-z
N層(0<z≦1)を成長させる。このSi−AlzG
a1-z N層(0<z≦1)を成長させた後、成長を中断
しキャリアガス流量の比率はそのままとして総流量をも
との流量にもどす。Thereafter, TMG, TMA and SiH 4 are supplied, and a Si-doped n-type Ai3Ga 1-z having a thickness of 0.2 μm is provided.
A N layer (0 <z ≦ 1) is grown. This Si-AlzG
After growing the a1-zN layer (0 <z≤1), the growth is interrupted and the total flow rate is returned to the original flow rate while maintaining the carrier gas flow rate ratio.
【0048】その後、TMGとSiH4を供給し、厚さ
0.1μmのGaN活性層を成長させ。再び、成長を中
断し、キャリアガスの比率はそのままにして総流量を
1.5倍まで増大する。Thereafter, TMG and SiH 4 are supplied to grow a GaN active layer having a thickness of 0.1 μm. Again, the growth is interrupted and the total flow rate is increased by a factor of 1.5 while keeping the carrier gas ratio.
【0049】その後、TMG,TMA及びCp2Mgを
供給し、厚さ0.2μmのMgドープp型Alz Ga
1-z N層(0<z≦1)を成長させる。再び、成長中断
して、キャリアガス流量の比率はそのままにして総流量
をもとの流量に戻す。Thereafter, TMG, TMA and Cp2Mg are supplied, and a 0.2 μm-thick Mg-doped p-type Al z Ga
A 1-z N layer (0 <z ≦ 1) is grown. The growth is interrupted again, and the total flow rate is returned to the original flow rate while maintaining the carrier gas flow rate ratio.
【0050】その後、TMG及びCp2Mgを所定量供
給し、厚さ0.1μmのNgドープGaN層を成長させ
る。その後、キャリアガスはそのままで、成長中断させ
たまま降温させることによって、図12に示すGaN系
紫外発光素子が得られる。Thereafter, a predetermined amount of TMG and Cp2Mg are supplied, and a 0.1 μm-thick Ng-doped GaN layer is grown. Thereafter, the temperature is lowered while the growth is interrupted while leaving the carrier gas as it is, thereby obtaining the GaN-based ultraviolet light emitting device shown in FIG.
【0051】また、付加的効果として、降温中に不活性
ガス雰囲気を用いることで、MgドーブGaN層がas
−grownでP型化することもできる。As an additional effect, the use of an inert gas atmosphere during temperature lowering allows the Mg-doped GaN layer to be formed as
It can also be made into a P-type by -grown.
【0052】上述した実施例においては、成長中断にお
ける不活性ガスとH2ガスとの比率としたが、その比率
は1:1以上であればよく、特に3:1に限定すること
を意図するものではない。また、上記実施例において成
長中断工程をおきそのキャリアガス雰囲気を規定した
が、成長層の働きによっては、必ずしもすべての中断工
程に本発明を適用する必要はなく、目的に応じて、少な
くとも1以上の成長中断工程に適用することで足りる。In the above-described embodiment, the ratio between the inert gas and the H 2 gas in the interruption of the growth is set, but the ratio may be 1: 1 or more, and it is particularly intended to limit the ratio to 3: 1. Not something. In the above embodiment, the growth interrupting step is performed and the carrier gas atmosphere is defined. However, depending on the function of the growth layer, it is not always necessary to apply the present invention to all the interrupting steps. It suffices to apply to the growth interruption step.
【0053】また、得られる各形成層の結晶状態に着目
すると、本発明による形成層においてはいずれも明瞭な
ピークを有するX線回折パターンがえられ、ピークのな
まりならびに結晶劣化のない良好な高品質結晶層を得る
ことができる。Focusing on the crystal state of each of the obtained forming layers, the forming layers according to the present invention all have an X-ray diffraction pattern having a clear peak, and have a high peak without rounding of the peak and crystal deterioration. A quality crystal layer can be obtained.
【0054】とりわけ、図14に示すように、従来の方
法で得られたInGaN系MQW層の結晶パターンには
なまりが見られるのに対して、上述した本発明の方法で
形成されたInGaN系MQW層は、高品質結晶が形成
されたことを示すサテライトピークを有するX線回折パ
ターンを有している。In particular, as shown in FIG. 14, the crystal pattern of the InGaN-based MQW layer obtained by the conventional method is rounded, whereas the InGaN-based MQW layer formed by the above-described method of the present invention is distorted. The layer has an X-ray diffraction pattern with satellite peaks indicating that high quality crystals have been formed.
【0055】[0055]
【発明の効果】本発明によれば、高品質で結晶性にすぐ
れたInGaN発光層を形成し得る、高品質GaN系化
合物半導体素子の製造方法が提供される。According to the present invention, there is provided a method of manufacturing a high-quality GaN-based compound semiconductor device capable of forming an InGaN light emitting layer having high quality and excellent crystallinity.
【図1】GaN系発光素子一構造例を概略的に示す断面
図。FIG. 1 is a cross-sectional view schematically showing a structural example of a GaN-based light emitting device.
【図2】本発明の実施例における処理温度と時間経過を
示すタイムチャート。FIG. 2 is a time chart showing a processing temperature and a lapse of time in an embodiment of the present invention.
【図3】アニール処理条件を示す温度プロファイル。FIG. 3 is a temperature profile showing annealing conditions.
【図4】アニール前のInGaN層の表面の結晶状態を
示すSEM写真。FIG. 4 is an SEM photograph showing a crystal state of a surface of an InGaN layer before annealing.
【図5】比較例におけるアニール処理後のInGaN層
の表面の結晶状態を示すSEM写真。FIG. 5 is an SEM photograph showing a crystal state of a surface of an InGaN layer after annealing in a comparative example.
【図6】実施例におけるアニール処理後のInGaN層
の表面の結晶状態を示すSEM写真。FIG. 6 is an SEM photograph showing a crystal state of a surface of an InGaN layer after an annealing process in an example.
【図7】InGaN層のアニールの時間によるX線強度
の変化を示すグラフ。FIG. 7 is a graph showing a change in X-ray intensity with time of annealing of an InGaN layer.
【図8】LED相対輝度の測定値を示すグラフ。FIG. 8 is a graph showing measured values of LED relative luminance.
【図9】従来例における処理温度と時間経過を示すタイ
ムチャート。FIG. 9 is a time chart showing the processing temperature and the passage of time in a conventional example.
【図10】GaN系MQW構造青色レーザ素子の一構造
例を概略的に示す断面図。FIG. 10 is a sectional view schematically showing a structural example of a GaN-based MQW blue laser device.
【図11】本発明の実施例における処理温度と時間経過
を示すタイムチャート。FIG. 11 is a time chart showing a processing temperature and a lapse of time in an example of the present invention.
【図12】GaN系紫外発光素子の一構造例を概略的に
示す断面図。FIG. 12 is a cross-sectional view schematically showing a structural example of a GaN-based ultraviolet light emitting device.
【図13】本発明の実施例における処理温度と時間経過
を示すタイムチャート。FIG. 13 is a time chart showing a processing temperature and a lapse of time in the embodiment of the present invention.
【図14】従来の方法ならびに本発明の方法で得られた
GaN系MQW構造のX線回折パターンを示すグラフ。FIG. 14 is a graph showing an X-ray diffraction pattern of a GaN-based MQW structure obtained by a conventional method and the method of the present invention.
1 サファイア基板 2 バッファ層 3 Si−GaN層 4 Zn,Si−InGaN層 5 Mg−AlGaN層 6 Mg−GaN層 Reference Signs List 1 sapphire substrate 2 buffer layer 3 Si-GaN layer 4 Zn, Si-InGaN layer 5 Mg-AlGaN layer 6 Mg-GaN layer
Claims (13)
≦1,0≦y≦1)系結晶材料を気相成長させるに際
し,同一層およびヘテロ層のいずれにおいても、形成す
る層の成長を中断する成長中断工程の少なくとも一つの
成長中断工程における雰囲気として、V族ガスを含む雰
囲気であり、かつ、V族以外のキャリアガスとして不活
性ガスを用いることによって、前記成長中断工程におい
て露出している層の分解を防止するようにしたことを特
徴とする、GaN系化合物半導体素子の製造方法。(1) (Ga 1 -x Al x ) 1 -y In y N (0 ≦ x
≦ 1, 0 ≦ y ≦ 1) In the vapor phase growth of the system crystal material, in any one of the same layer and the hetero layer, the atmosphere in at least one of the growth interruption steps of the growth interruption step of interrupting the growth of the layer to be formed. , An atmosphere containing a group V gas, and the use of an inert gas as a carrier gas other than the group V prevents decomposition of the layer exposed in the growth interruption step. , A method of manufacturing a GaN-based compound semiconductor device.
降温過程に請求項1に記載の方法を適用した、請求項1
に記載の方法。2. The method according to claim 1, wherein, during the growth of the material system, the method according to claim 1 is applied to a temperature lowering process after completion of a final layer.
The method described in.
程のみならず、昇温ないし降温を伴う工程を含む、請求
項1に記載の方法。3. The method according to claim 1, wherein the step of interrupting the growth includes not only a step of keeping the temperature constant, but also a step involving raising or lowering the temperature.
N2H3CH3およびN2H2(CH3)2からなる群
から選ばれた少なくとも1種を含み、前記不活性ガス
が、N2、He、Ne、Ar、Kr、XeおよびSF6
からなる群から選ばれた少なくとも1種を含む、請求項
1または2に記載の方法。4. The method according to claim 1, wherein the group V source gas is NH 3 , N 2 H 4 ,
N 2 include H 3 CH 3 and N 2 H 2 (CH 3) at least one member selected from the group consisting of 2, the inert gas, N 2, He, Ne, Ar, Kr, Xe and SF 6
The method according to claim 1, comprising at least one member selected from the group consisting of:
む、請求項1ないし4のいずれか1項に記載の方法。5. The method according to claim 1, wherein the carrier gas contains a predetermined amount of H 2 .
が、1:1以上である、請求項1ないし5のいずれか1
項に記載の方法。6. The method according to claim 1, wherein the ratio of the inert gas to the H 2 carrier gas is 1: 1 or more.
The method described in the section.
する拡散係数が、H2に対する拡散係数より小さい、請
求項1ないし6のいずれか1項に記載の方法。Diffusion coefficient for said carrier gas wherein said group V material gas is smaller than the diffusion coefficient for H 2, the method according to any one of claims 1 to 6.
MQW層が、サテライトピークを有するX線回折パター
ンを有する、請求項1ないし7のいずれか1項に記載の
方法。8. The method according to claim 1, wherein the InGaN-based MQW layer formed by the method has an X-ray diffraction pattern having a satellite peak.
Ga1-y N(0≦y≦1)系結晶材料を気相成長させる
工程において、Inx Ga1-x N層を温度T0 で成長さ
せた後、V族原料ガスを含む所定雰囲気の下、温度T1
(ただし、T0 ≦T1 )でAly Ga1-y N層を成長さ
せるまでの温度保持過程または昇温過程を含む成長中断
工程の間、前記V族原料ガスのキャリアガスとして不活
性ガスを用いることによって、前記Ix nGa1-x N層
表面近傍から前記雰囲気中へのV族原料ガスの拡散を抑
制し、かつ、Ix nGa1-x N層表面近傍のV族原料の
蒸気圧を実質的に高めてIx nGa1-x N層の昇華を防
止するようにした、請求項1に記載の方法。9. In x Ga 1-x N ( 0 <x ≦ 1) / Al y
In the step of vapor-growing a Ga 1-y N (0 ≦ y ≦ 1) -based crystal material, after growing an In x Ga 1-x N layer at a temperature T 0 , a predetermined atmosphere containing a group V source gas is applied. Lower, temperature T 1
(Where T 0 ≦ T 1 ) During a growth interruption step including a temperature holding step or a temperature raising step until the Al y Ga 1-y N layer is grown at T 0 ≦ T 1 , an inert gas is used as a carrier gas of the group V source gas. To suppress the diffusion of the group V source gas from the vicinity of the surface of the I x nGa 1-x N layer into the atmosphere, and the vapor of the group V material near the surface of the I x nGa 1-x N layer. The method of claim 1, wherein the pressure is substantially increased to prevent sublimation of the I x nGa 1-x N layer.
満足する、請求項9に記載の方法。 400℃≦T0 ≦950℃ 600℃≦T1 ≦1300℃10. The method according to claim 9, wherein the temperature T 0 and the temperature T 1 satisfy the following range conditions. 400 ° C ≦ T 0 ≦ 950 ° C. 600 ° C. ≦ T 1 ≦ 1300 ° C.
2 H4 、N2 H3 CH3 およびN2 H2 (CH3 )2 か
らなる群から選ばれた少なくとも1種を含み、前記不活
性ガスが、N2 、He、Ne、Ar、Kr、Xeおよび
SF6 からなる群から選ばれた少なくとも1種を含む、
請求項9または10に記載の方法。11. The group V source gas is NH 3 , N
At least one selected from the group consisting of 2 H 4 , N 2 H 3 CH 3 and N 2 H 2 (CH 3 ) 2 , wherein the inert gas is N 2 , He, Ne, Ar, Kr, Xe and at least one selected from the group consisting of SF 6 ,
The method according to claim 9.
含む、請求項9ないし11のいずれか1項に記載の方
法。12. The method according to claim 9, wherein the carrier gas contains a predetermined amount of H 2 .
対する拡散係数が、H2 に対する拡散係数より小さい、
請求項9ないし12のいずれか1項に記載の方法。13. A diffusion coefficient of the group V source gas with respect to the carrier gas is smaller than a diffusion coefficient with respect to H 2 .
A method according to any one of claims 9 to 12.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18586497A JP2918517B2 (en) | 1996-06-28 | 1997-06-26 | Method for manufacturing GaN-based compound semiconductor device |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18883596 | 1996-06-28 | ||
JP8-188835 | 1996-06-28 | ||
JP18586497A JP2918517B2 (en) | 1996-06-28 | 1997-06-26 | Method for manufacturing GaN-based compound semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1075019A true JPH1075019A (en) | 1998-03-17 |
JP2918517B2 JP2918517B2 (en) | 1999-07-12 |
Family
ID=26503373
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18586497A Expired - Fee Related JP2918517B2 (en) | 1996-06-28 | 1997-06-26 | Method for manufacturing GaN-based compound semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2918517B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001196632A (en) * | 2000-01-14 | 2001-07-19 | Sharp Corp | Gallium nitride compound semiconductor light emission and its manufacturing method |
JP2006128653A (en) * | 2004-09-28 | 2006-05-18 | Sumitomo Chemical Co Ltd | Group iii-v compound semiconductor, its manufacturing method and its use |
JP2006229253A (en) * | 2006-05-19 | 2006-08-31 | Sharp Corp | Nitride-based compound semiconductor light-emitting device and its manufacturing method |
JP2006237539A (en) * | 2005-02-28 | 2006-09-07 | Toyoda Gosei Co Ltd | Method for manufacturing semiconductor element of group iii nitride compound |
JP2006344930A (en) * | 2005-04-07 | 2006-12-21 | Showa Denko Kk | Manufacturing method of group iii nitride semiconductor device |
JP2007200933A (en) * | 2006-01-23 | 2007-08-09 | Rohm Co Ltd | Method of manufacturing nitride-based semiconductor element |
JP2015154043A (en) * | 2014-02-19 | 2015-08-24 | 豊田合成株式会社 | Group iii nitride semiconductor light emitting element manufacturing method |
CN106848025A (en) * | 2016-12-13 | 2017-06-13 | 华灿光电(浙江)有限公司 | Growth method of light-emitting diode epitaxial wafer |
CN113594021A (en) * | 2021-07-21 | 2021-11-02 | 东莞市中镓半导体科技有限公司 | Manufacturing method of silicon-based GaN-HEMT epitaxial structure |
-
1997
- 1997-06-26 JP JP18586497A patent/JP2918517B2/en not_active Expired - Fee Related
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7663158B2 (en) | 2000-01-14 | 2010-02-16 | Sharp Kabushiki Kaisha | Nitride compound semiconductor light emitting device and method for producing the same |
US7064357B2 (en) | 2000-01-14 | 2006-06-20 | Sharp Kabushiki Kaisha | Nitride compound semiconductor light emitting device and method for producing the same |
JP2001196632A (en) * | 2000-01-14 | 2001-07-19 | Sharp Corp | Gallium nitride compound semiconductor light emission and its manufacturing method |
US7352012B2 (en) | 2000-01-14 | 2008-04-01 | Sharp Kabushiki Kaisha | Nitride compound semiconductor light emitting device and method for producing the same |
JP2006128653A (en) * | 2004-09-28 | 2006-05-18 | Sumitomo Chemical Co Ltd | Group iii-v compound semiconductor, its manufacturing method and its use |
JP2006237539A (en) * | 2005-02-28 | 2006-09-07 | Toyoda Gosei Co Ltd | Method for manufacturing semiconductor element of group iii nitride compound |
JP2006344930A (en) * | 2005-04-07 | 2006-12-21 | Showa Denko Kk | Manufacturing method of group iii nitride semiconductor device |
JP2007200933A (en) * | 2006-01-23 | 2007-08-09 | Rohm Co Ltd | Method of manufacturing nitride-based semiconductor element |
JP2006229253A (en) * | 2006-05-19 | 2006-08-31 | Sharp Corp | Nitride-based compound semiconductor light-emitting device and its manufacturing method |
JP2015154043A (en) * | 2014-02-19 | 2015-08-24 | 豊田合成株式会社 | Group iii nitride semiconductor light emitting element manufacturing method |
US9647170B2 (en) | 2014-02-19 | 2017-05-09 | Toyoda Gosei Co., Ltd. | Method for producing group III nitride semiconductor light-emitting device |
CN106848025A (en) * | 2016-12-13 | 2017-06-13 | 华灿光电(浙江)有限公司 | Growth method of light-emitting diode epitaxial wafer |
CN106848025B (en) * | 2016-12-13 | 2019-04-12 | 华灿光电(浙江)有限公司 | Growth method of light-emitting diode epitaxial wafer |
CN113594021A (en) * | 2021-07-21 | 2021-11-02 | 东莞市中镓半导体科技有限公司 | Manufacturing method of silicon-based GaN-HEMT epitaxial structure |
Also Published As
Publication number | Publication date |
---|---|
JP2918517B2 (en) | 1999-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6667185B2 (en) | Method of fabricating nitride semiconductor device | |
JPH08293643A (en) | Compound semiconductor light-emitting element and manufacture thereof | |
JP5018433B2 (en) | Epitaxial wafer for semiconductor light emitting device and semiconductor light emitting device | |
JP2000357820A (en) | Gallium nitride semiconductor light emitting element and its manufacture | |
JP2003289156A (en) | Method for growing gallium nitride-based compound semiconductor crystal and compound semiconductor light-emitting element | |
US6030848A (en) | Method for manufacturing a GaN-based compound semiconductor light emitting device | |
US20140209013A1 (en) | Crystal growth method for nitride semiconductor having a multiquantum well structure | |
JP2008078186A (en) | Method of growing crystal of nitride compound semiconductor | |
US6191437B1 (en) | Semiconductor light emitting device and method of manufacturing the same | |
JP2918517B2 (en) | Method for manufacturing GaN-based compound semiconductor device | |
JP2001284266A (en) | Method of manufacturing group iii nitride compound semiconductor and group iii nitride compound semiconductor element | |
US20100035410A1 (en) | Method for Manufacturing InGaN | |
JP4940670B2 (en) | Method for fabricating nitride semiconductor light emitting device | |
JPH11112030A (en) | Production of iii-v compound semiconductor | |
JP3322179B2 (en) | Gallium nitride based semiconductor light emitting device | |
JP5234814B2 (en) | Manufacturing method of nitride semiconductor light emitting device | |
JPH11145063A (en) | Semiconductor device having gallium nitride semiconductor layer and its manufacture | |
JP4284944B2 (en) | Method for manufacturing gallium nitride based semiconductor laser device | |
JP3288300B2 (en) | Semiconductor manufacturing method | |
JPH0997921A (en) | Manufacture of iii-v compd. semiconductor | |
JP2001057463A (en) | Film structure and element of nitrogen compound semiconductor element, and manufacture of them | |
JP3785059B2 (en) | Manufacturing method of nitride semiconductor | |
US6258619B1 (en) | Fabrication of semiconductor light emitting device | |
JPH10163523A (en) | Manufacturing iii-v compd. semiconductor and light-emitting element | |
KR100881053B1 (en) | Nitride based light emitting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080423 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090423 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100423 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100423 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110423 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130423 Year of fee payment: 14 |
|
LAPS | Cancellation because of no payment of annual fees |