JP2006237539A - Method for manufacturing semiconductor element of group iii nitride compound - Google Patents

Method for manufacturing semiconductor element of group iii nitride compound Download PDF

Info

Publication number
JP2006237539A
JP2006237539A JP2005054121A JP2005054121A JP2006237539A JP 2006237539 A JP2006237539 A JP 2006237539A JP 2005054121 A JP2005054121 A JP 2005054121A JP 2005054121 A JP2005054121 A JP 2005054121A JP 2006237539 A JP2006237539 A JP 2006237539A
Authority
JP
Japan
Prior art keywords
layer
doped
group iii
iii nitride
nitride compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005054121A
Other languages
Japanese (ja)
Other versions
JP2006237539A5 (en
Inventor
Koji Okuno
浩司 奥野
Tetsuya Taki
瀧  哲也
Yusuke Toyoda
優介 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP2005054121A priority Critical patent/JP2006237539A/en
Publication of JP2006237539A publication Critical patent/JP2006237539A/en
Publication of JP2006237539A5 publication Critical patent/JP2006237539A5/ja
Withdrawn legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the crystallinity of a semiconductor layer of a group III nitride compound which is doped with an acceptor impurity and contains at least aluminum. <P>SOLUTION: On a sapphire substrate 101, a buffer layer 102 made up of AlN, a layer 103 composed of non-doped GaN, an n-type contact layer 104 made up of GaN doped with silicon(Si), a multi-layer 105, a light emitting layer 106 composed of a multi quantum well layer where a barrier layer 1062 made up of non-doped GaN and a well layer 1061 made up of non-doped In<SB>0.2</SB>Ga<SB>0.8</SB>N are repeatedly formed, a p-type layer 107 composed of p-type Al<SB>0.2</SB>Ga<SB>0.8</SB>N doped with Mg, a layer 108 made up of non-doped Al<SB>0.02</SB>Ga<SB>0.98</SB>N, and a p-type contact layer 109 composed of p-type GaN doped with Mg in order. The p-type layer 107 is epitaxially grown under a mixed gas(nitrogen concentration 40-80%) of nitrogen and hydrogen, whereby, its light intensity is improved. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、III族窒化物系化合物半導体素子の製造方法に関する。本発明は、特にアクセプタ不純物の添加された、少なくともアルミニウムを含むIII族窒化物系化合物半導体層を有機金属気相成長法により形成する方法に関する。   The present invention relates to a method for producing a group III nitride compound semiconductor device. The present invention particularly relates to a method for forming a group III nitride compound semiconductor layer containing at least aluminum, to which an acceptor impurity is added, by metal organic vapor phase epitaxy.

一般に、有機金属気相成長法においては、III族金属有機化合物とアンモニアをエピタキシャル成長装置に導入する際、キャリアガスを大量に用いる。通常、キャリアガスとしては窒素若しくは水素が用いられる。アンモニア以外の原料ガス、特に有機金属の導入のため、水素又は窒素により原料容器をバブリングして、有機金属化合物で飽和した水素又は窒素を導入することも一般的である。インジウムを含むIII族窒化物系化合物半導体層を有機金属気相成長法により形成する際は窒素のみをキャリアガスとする場合が多いが、インジウムを含まないIII族窒化物系化合物半導体層を有機金属気相成長法により形成する際は水素のみキャリアガスとして用いる場合もある。以上のことは、水素が安価で高純度品が得やすく、反応系の制御に好適である反面、インジウムを含むIII族窒化物系化合物半導体層のエピタキシャル成長の際にはマイグレーションを促進しないことからInGaN層等の表面にピットが生じてしまうことによる。   In general, in the metal organic chemical vapor deposition method, a large amount of carrier gas is used when introducing a group III metal organic compound and ammonia into an epitaxial growth apparatus. Usually, nitrogen or hydrogen is used as the carrier gas. In order to introduce a raw material gas other than ammonia, particularly an organic metal, it is also common to introduce hydrogen or nitrogen saturated with an organic metal compound by bubbling the raw material container with hydrogen or nitrogen. When forming a group III nitride compound semiconductor layer containing indium by metal organic vapor phase epitaxy, it is often the case that only nitrogen is used as a carrier gas. When forming by a vapor phase growth method, only hydrogen may be used as a carrier gas. The above is cheap because hydrogen is inexpensive and easy to obtain a high-purity product, which is suitable for controlling the reaction system, but does not promote migration during the epitaxial growth of a group III nitride compound semiconductor layer containing indium. This is because pits are generated on the surface of the layer.

一方、水素と窒素の混合キャリアガスを用いてエピタキシャル成長を行う場合については次のような報告がある。これら2件の特許文献は、実施例の記載を見るに、薄膜成長面を下向きに保持したGaN層の製造方法について関するものである。
特許第3376849号公報 特許第3424507号公報
On the other hand, there are the following reports regarding epitaxial growth using a mixed carrier gas of hydrogen and nitrogen. These two patent documents relate to a method of manufacturing a GaN layer with the thin film growth surface held downward, as seen in the description of the examples.
Japanese Patent No. 3376849 Japanese Patent No. 3424507

一方、例えばIII族窒化物系化合物半導体発光素子を形成する場合、発光層の上に形成される、アルミニウムを含む広いバンドギャップを含む層を形成する際に、下層への影響及び含アルミニウム層の結晶性の更なる向上が求められていた。これは、例えばインジウムを含む発光層の上にアルミニウムを含むクラッド層を形成する場合、当該クラッド層の結晶性が低いと、ホールが発光層に良好に注入できず、或いは電子を発光層に十分に閉じ込められないために、発光層での電子とホールの再結合が効率よく行われず、発光効率が低下してしまう。   On the other hand, when forming a group III nitride compound semiconductor light emitting device, for example, when forming a layer including a wide band gap containing aluminum formed on the light emitting layer, the influence on the lower layer and the aluminum containing layer There has been a demand for further improvement in crystallinity. For example, when a clad layer containing aluminum is formed on a light-emitting layer containing indium, if the crystallinity of the clad layer is low, holes cannot be injected well into the light-emitting layer, or electrons are sufficiently injected into the light-emitting layer. Therefore, the recombination of electrons and holes in the light emitting layer is not performed efficiently, and the light emission efficiency is lowered.

本発明は上記課題に鑑み、アクセプタ不純物の添加された、少なくともアルミニウムを含むIII族窒化物系化合物半導体層を気相成長する際の、キャリアガスについて鋭意検討した結果、キャリアガスの混合比の最適範囲を見出すことにより完成されたものである。   In view of the above-mentioned problems, the present invention has been conducted by earnestly examining the carrier gas in the vapor phase growth of a group III nitride compound semiconductor layer containing at least aluminum to which an acceptor impurity is added. It was completed by finding the range.

上記の課題を解決するため、請求項1に記載の手段によれば、アクセプタ不純物の添加された、少なくともアルミニウムを含むIII族窒化物系化合物半導体層を有する半導体発光素子の製造方法において、アクセプタ不純物の添加された、少なくともアルミニウムを含むIII族窒化物系化合物半導体層を、水素と窒素の混合気体であって、当該混合気体中の窒素の割合を40%以上80%以下としたキャリアガス中で有機金属気相成長法により成長させることを特徴とする。   In order to solve the above problems, according to the means of claim 1, in the method of manufacturing a semiconductor light emitting device having a group III nitride compound semiconductor layer containing at least aluminum to which an acceptor impurity is added, an acceptor impurity is provided. In a carrier gas in which a group III nitride compound semiconductor layer containing at least aluminum is added and is a mixed gas of hydrogen and nitrogen, and the ratio of nitrogen in the mixed gas is 40% or more and 80% or less Growing by metal organic vapor phase epitaxy.

また、請求項2に記載の手段によれば、アクセプタ不純物の添加された、少なくともアルミニウムを含むIII族窒化物系化合物半導体層を、発光層の直上に形成することを特徴とする。   According to a second aspect of the present invention, a group III nitride compound semiconductor layer containing at least aluminum to which an acceptor impurity is added is formed immediately above the light emitting layer.

以下に示す通り、アクセプタ不純物の添加された、少なくともアルミニウムを含むIII族窒化物系化合物半導体層を気相成長する際、キャリアガスを水素と窒素の混合気体とし、当該混合気体中の窒素の割合を40%以上80%以下とすることで、キャリアの移動度及びフォトルミネセンス強度を大きく、表面粗さを小さく、アルミニウム組成の分布及び膜厚分布をウエハ内で小さくすることができることがわかった。これは、キャリアガス中の窒素濃度(水素濃度)の範囲を最適化することで、アルミニウムを含むIII族窒化物系化合物半導体層の結晶品質が改善し、表面モフォロジーが良好になるからであると考えられる。更には、このような効果は、エピタキシャル成長中の結晶からの原子の再蒸発による欠陥の生成や表面荒れが抑制されることによるものと考えることができる(請求項1)。   As shown below, when vapor-phase-growing a group III nitride compound semiconductor layer containing at least aluminum to which an acceptor impurity is added, the carrier gas is a mixed gas of hydrogen and nitrogen, and the ratio of nitrogen in the mixed gas It has been found that the carrier mobility and the photoluminescence intensity can be increased, the surface roughness can be decreased, the aluminum composition distribution and the film thickness distribution can be reduced within the wafer by setting the ratio to 40% or more and 80% or less. . This is because by optimizing the range of nitrogen concentration (hydrogen concentration) in the carrier gas, the crystal quality of the group III nitride compound semiconductor layer containing aluminum is improved and the surface morphology is improved. Conceivable. Furthermore, such an effect can be considered to be due to the suppression of the generation of defects and surface roughness due to re-evaporation of atoms from the crystal during epitaxial growth (claim 1).

このようなアクセプタ不純物の添加された、少なくともアルミニウムを含むIII族窒化物系化合物半導体層は、例えば発光素子において、発光層の直上に形成することで、当該発光層等に対し、より広いバンドギャップを有する層として良好に作用することとなる(請求項2)。このことから、特に発光素子に対して有効である。   Such a group III nitride compound semiconductor layer containing at least aluminum to which an acceptor impurity is added, for example, in a light-emitting element, is formed immediately above the light-emitting layer, so that a wider band gap than the light-emitting layer is formed. It will work well as a layer having (Claim 2). This is particularly effective for light emitting elements.

本願において、III族窒化物半導体は、少なくともAlxGayIn1-x-yN(0≦x≦1, 0≦y≦1, 0≦x+y≦1)にて表される2元系、3元系若しくは4元系の半導体から成るIII族窒化物系化合物半導体を含む。本発明の適用される層は、アルミニウム組成xが0でなければ良い。また、これらのIII族元素の一部は、ボロン(B)、タリウム(Tl)で置き換えても良く、また、窒素(N)の一部をリン(P)、砒素(As)、アンチモン(Sb)、ビスマス(Bi)で置き換えても良い。 In the present application, the group III nitride semiconductor is at least a binary system represented by Al x Ga y In 1-xy N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ x + y ≦ 1), A group III nitride compound semiconductor composed of a ternary or quaternary semiconductor is included. The layer to which the present invention is applied may be such that the aluminum composition x is not zero. Some of these group III elements may be replaced by boron (B) and thallium (Tl), and part of nitrogen (N) may be phosphorus (P), arsenic (As), antimony (Sb ) Or bismuth (Bi).

更に、これらの半導体を用いてn型のIII族窒化物系化合物半導体層を形成する場合には、ドナー不純物として、Si、Ge、Se、Te、C等を添加し、アクセプタ不純物としては、Zn、Mg、Be、Ca、Sr、Ba等を添加することができる。本発明の適用される層は、アクセプタ不純物を添加されるものである。   Further, when an n-type group III nitride compound semiconductor layer is formed using these semiconductors, Si, Ge, Se, Te, C, etc. are added as donor impurities, and Zn as acceptor impurities. , Mg, Be, Ca, Sr, Ba and the like can be added. The layer to which the present invention is applied is one to which an acceptor impurity is added.

本発明の適用に際し、キャリアガスは主として水素と窒素から構成されれば良く、他の微量のアルゴン等の不活性ガスが含まれていても良い。また、装置により、いわゆるメモリ効果によって、目的のエピタキシャル成長層の前に成長させた層を形成する際の、キャリアガス、各種原料ガスその他の不純物が混入したとしても、本願発明に包含されることは言うまでもない。望ましい窒素濃度は、40〜80%、より好ましくは40〜75%、更に好ましくは50〜70%、更に好ましくは60〜70%である。   In applying the present invention, the carrier gas only needs to be mainly composed of hydrogen and nitrogen, and may contain other inert gas such as argon. In addition, even if a carrier gas, various source gases, or other impurities are mixed by the apparatus when forming a layer grown before the target epitaxial growth layer by the so-called memory effect, it is included in the present invention. Needless to say. A desirable nitrogen concentration is 40 to 80%, more preferably 40 to 75%, still more preferably 50 to 70%, still more preferably 60 to 70%.

本発明をIII族窒化物系化合物半導体素子に適用する際は、少なくとも1層のアクセプタ不純物の添加された、少なくともアルミニウムを含むIII族窒化物系化合物半導体層の成長時に適用すれば良く、他の層の成長時には、本発明の成長条件には限定されない。発光素子に適用する場合には、発光ダイオード(LED)、レーザダイオード(LD)、フォトカプラその他の任意の発光素子に適用できる。特にIII族窒化物系化合物半導体発光素子の製造方法としては周知の製造方法を用いることができる。   When the present invention is applied to a group III nitride compound semiconductor device, it may be applied during the growth of a group III nitride compound semiconductor layer containing at least aluminum to which at least one acceptor impurity is added. The growth conditions are not limited to the growth conditions of the present invention. When applied to a light emitting element, it can be applied to a light emitting diode (LED), a laser diode (LD), a photocoupler, or any other light emitting element. In particular, a well-known manufacturing method can be used as a manufacturing method of the group III nitride compound semiconductor light emitting device.

結晶成長させる基板としては、サファイヤ、スピネル、Si、SiC、ZnO、MgO或いは、III族窒化物系化合物単結晶等を用いることができる。   As the substrate for crystal growth, sapphire, spinel, Si, SiC, ZnO, MgO, a group III nitride compound single crystal, or the like can be used.

発光層は単層、単一量子井戸構造(SQW)、多重量子井戸構造(MQW)その他任意の構成をとることができる。発光層を多重量子井戸構造とする場合は、少なくともインジウム(In)を含むIII族窒化物系化合物半導体AlyGa1-y-zInzN(0≦y<1, 0<z≦1)から成る井戸層を含むものが良い。発光層の構成は、ノンドープのGa1-zInzN(0<z≦1)から成る井戸層と、当該井戸層よりもバンドギャップの大きい任意の組成のIII族窒化物系化合物半導体AlGaInNから成る障壁層が挙げられる。好ましい例としてはノンドープのGa1-zInzN(0<z≦1)の井戸層とノンドープのGaNから成る障壁層である。 The light emitting layer may have a single layer, a single quantum well structure (SQW), a multiple quantum well structure (MQW), or any other configuration. When the light emitting layer has a multiple quantum well structure, it is composed of a group III nitride compound semiconductor Al y Ga 1-yz In z N (0 ≦ y <1, 0 <z ≦ 1) containing at least indium (In). It is preferable to include a well layer. The structure of the light emitting layer is composed of a well layer made of non-doped Ga 1-z In z N (0 <z ≦ 1) and a group III nitride compound semiconductor AlGaInN having an arbitrary band gap larger than the well layer. And a barrier layer. A preferred example is a non-doped Ga 1-z In z N (0 <z ≦ 1) well layer and a non-doped GaN barrier layer.

以下の実施例では、ウエハにサファイア基板を用い、有機金属気相成長法(以下「M0VPE」と記す)による気相成長を用いた。用いたガスは、NH3、キャリアガスH2及びN2、トリメチルガリウム(Ga(CH3)3)、トリメチルアルミニウム(Al(CH3)3)、トリメチルインジウム(In(CH3)3)、シラン(SiH4)並びにシクロペンタジエニルマグネシウム(Mg(C5H5)2)である。 In the following examples, a sapphire substrate was used as a wafer, and vapor phase growth by metal organic vapor phase epitaxy (hereinafter referred to as “M0VPE”) was used. The gases used were NH 3 , carrier gas H 2 and N 2 , trimethylgallium (Ga (CH 3 ) 3 ), trimethylaluminum (Al (CH 3 ) 3 ), trimethylindium (In (CH 3 ) 3 ), silane (SiH 4 ) and cyclopentadienyl magnesium (Mg (C 5 H 5 ) 2 ).

まず、アクセプタ不純物であるマグネシウムをドープした、Al0.24Ga0.76Nを形成する際のキャリアガスを、窒素と水素の混合比を変化させて以下のデータを得た。以下の各データは、サファイア基板にAlNバッファ層、ノンドープGaN層を設けた上にAl0.24Ga0.76N:Mg層を設けて同一条件で低抵抗化処理したのちに得たものである。尚、薄膜成長面は上向きの反応装置を用いた。 First, the carrier gas for forming Al 0.24 Ga 0.76 N doped with acceptor impurity magnesium was obtained by changing the mixing ratio of nitrogen and hydrogen, and obtaining the following data. The following data are obtained after the AlN buffer layer and the non-doped GaN layer are provided on the sapphire substrate and the Al 0.24 Ga 0.76 N: Mg layer is provided and the resistance is reduced under the same conditions. The thin film growth surface used an upward reaction device.

キャリアガス中の窒素濃度をR=N2/(N2+H2)として示す。Rは0から1までであり、R=1の場合、即ちキャリアガスが窒素のみの場合をグラフ中ではRefと示している。尚、金属原料源のガスを供給するためのバブラには窒素を用いた。以下、データごとに若干のずれがあるものの、概ねR=0, 0.2, 0.4, 0.6, 0.8, 1として各データを得た。 The nitrogen concentration in the carrier gas is shown as R = N 2 / (N 2 + H 2 ). R is 0 to 1, and the case of R = 1, that is, the case where the carrier gas is only nitrogen is shown as Ref in the graph. In addition, nitrogen was used for the bubbler for supplying the gas of a metal raw material source. In the following, each data was obtained with R = 0, 0.2, 0.4, 0.6, 0.8, 1 in general, although there was a slight deviation for each data.

図1は、窒素濃度Rに対し、p-Al0.24Ga0.76N:Mg層の、波長326nmのフォトルミネセンスの強度を比較したグラフである。キャリアガスが窒素のみのR=1(Ref.)及びキャリアガスが水素のみのR=0に対し、水素と窒素の混合ガスをキャリアガスとするR=0.22, 0.44, 0.66, 0.88はいずれもフォトルミネセンスの強度が大きく、特にR=0.22, 0.44の場合に大きかった。 FIG. 1 is a graph comparing the intensity of photoluminescence of a p-Al 0.24 Ga 0.76 N: Mg layer with a wavelength of 326 nm against the nitrogen concentration R. R = 0.22, 0.44, 0.66, 0.88 with a mixed gas of hydrogen and nitrogen as opposed to R = 0 (Ref.) Where the carrier gas is only nitrogen and R = 0 where the carrier gas is only hydrogen. The intensity of luminescence was large, particularly when R = 0.22 and 0.44.

図2は、窒素濃度Rに対し、p-Al0.24Ga0.76N:Mg層の、ホール移動度を比較したグラフである。サセプタの中央(グラフで丸印、inと示したもの)と、外側(グラフで四角印、outと示したもの)と、それらの中間(グラフで三角印、midと示したもの)とでばらつきがあるものの、Rが小さくなるほど、即ち窒素の濃度が低くなるほどホール移動度が大きくなるが、R=0、即ち水素のみをキャリアガスとした場合は測定不能であった。これは水素のみをキャリアガスとした場合にAl0.24Ga0.76N:Mg層に水素が過剰に取り込まれ、低抵抗化が困難であることを示している。 FIG. 2 is a graph comparing the hole mobility of the p-Al 0.24 Ga 0.76 N: Mg layer against the nitrogen concentration R. Variations in the center of the susceptor (shown as circles and in in the graph), outside (shown as squares and out in the graph), and the middle (shown as triangles and mid in the graph) However, the hole mobility increases as R decreases, that is, as the nitrogen concentration decreases, but measurement is impossible when R = 0, that is, only hydrogen is used as the carrier gas. This indicates that when only hydrogen is used as a carrier gas, excessive hydrogen is taken into the Al 0.24 Ga 0.76 N: Mg layer, and it is difficult to reduce the resistance.

図3は、窒素濃度Rに対し、表面粗さを二乗平均(root-mean-square, r.m.s.)で表したものである。R=1、即ち窒素のみをキャリアガスとした場合に比べて、水素を混合した場合は、いずれもr.m.s.が減少し、表面が平坦化された。これは水素をキャリアガス中に混合することにより、エピタキシャル中のAl0.24Ga0.76N:Mg表面の原子のマイグレーションが活発となり、平坦化に寄与するものと考えられる。 FIG. 3 shows the surface roughness in terms of the root-mean-square (rms) with respect to the nitrogen concentration R. Compared with R = 1, that is, when only nitrogen was used as the carrier gas, rms decreased and the surface was flattened when hydrogen was mixed. This is thought to be due to active migration of atoms on the Al 0.24 Ga 0.76 N: Mg surface during epitaxial growth by mixing hydrogen into the carrier gas, contributing to planarization.

図4は、窒素濃度Rに対し、サセプタ中央とサセプタ最外周において、Al組成を算出し、それらの差を%で表示して比較したものである。R=0, 0.22, 0.44においてはAl組成の変動が5%を超えたが、R=0.66, 0.88, 1(Ref)ではAl組成の変動が2%以下となった。この理由は、窒素濃度の低い(水素濃度の高い)キャリアガスは、サセプタの位置による温度差が大きく、窒素濃度の高い(水素の濃度の低い)キャリアガスは、サセプタの位置による温度差が小さいことによる。即ち、窒素濃度の高い(水素の濃度の低い)キャリアガスは、サセプタの位置による温度差が小さいので、サセプタの位置によるAl組成の変動も小さい。   FIG. 4 shows a comparison between the nitrogen concentration R and the Al composition calculated at the center of the susceptor and the outermost periphery of the susceptor. At R = 0, 0.22, 0.44, the Al composition variation exceeded 5%, but at R = 0.66, 0.88, 1 (Ref), the Al composition variation was 2% or less. This is because a carrier gas having a low nitrogen concentration (high hydrogen concentration) has a large temperature difference depending on the position of the susceptor, and a carrier gas having a high nitrogen concentration (low concentration of hydrogen) has a small temperature difference depending on the position of the susceptor. It depends. That is, since the carrier gas having a high nitrogen concentration (low hydrogen concentration) has a small temperature difference depending on the position of the susceptor, the variation of the Al composition depending on the position of the susceptor is also small.

図5は、窒素濃度Rに対し、サセプタ中央とサセプタ最外周において、p-Al0.24Ga0.76N:Mg層の膜厚を測定し、その差を%で表示して比較したものである。R=0, 0.22においては膜厚の変動が10%を超えたが、R=0.44, 0.66, 0.88ではR=1(Ref)の膜厚変動を下回った。この理由は、図4のAl組成の変動と同様、窒素濃度Rがサセプタの位置による温度差に関わるからと考えられる。 FIG. 5 shows a comparison of the thickness of the p-Al 0.24 Ga 0.76 N: Mg layer measured at the center of the susceptor and the outermost periphery of the susceptor and the difference expressed in% with respect to the nitrogen concentration R. At R = 0, 0.22, the film thickness variation exceeded 10%, but at R = 0.44, 0.66, 0.88, the film thickness variation was less than R = 1 (Ref). The reason for this is considered that the nitrogen concentration R is related to the temperature difference depending on the position of the susceptor, similarly to the variation of the Al composition in FIG.

以上をまとめると次の表1のようになる。尚、各特性でRの実験値が揃っていなかったので、グラフからRの値に対応する特性を読み取って判断した。
The above is summarized as shown in Table 1 below. In addition, since the experimental value of R was not uniform in each characteristic, the characteristic corresponding to the value of R was read from the graph and judged.

PL強度とホール移動度の点からは、R=0.2付近に最適値があるようであるが、Al組成分布と膜厚分布の点からはR=0.2付近は使用できない程特性が悪い。PL強度は結晶性自体を示す特性に留まる点を考慮し、ホール移動度もp-AlGaN:Mg層が一定限度の導電性を有していれば素子を形成する1層として、問題とならないことを考えると、気相成長条件の最適化の観点からはそれほど重要視することもないと考えられる。   From the point of PL intensity and hole mobility, there seems to be an optimum value in the vicinity of R = 0.2, but from the point of Al composition distribution and film thickness distribution, the characteristic is so bad that R = 0.2 cannot be used. Considering that the PL strength remains a characteristic that shows the crystallinity itself, the hole mobility should not be a problem as a layer that forms the device if the p-AlGaN: Mg layer has a certain level of conductivity. From the viewpoint of optimization of vapor phase growth conditions, it is thought that it is not so important.

すると、Al組成分布と膜厚分布の点からは、窒素の割合を40%以上80%以下とすることが好ましいと言える。ホール移動度の点で、R=0.22でばらつきが無く好ましい高い移動度が得られ、R=0.88でばらつきが無く極めて低い移動度が得られたことを考えると、上限は80%よりも低い、75%、更には70%が好ましいと考えられる。一方下限は、Al組成分布でR=0.44とR=0.66野間で大きく変動することから、50%がより好ましく、60%以上が更に好ましいと考えられる。以上のことから、キャリアガスを水素と窒素の混合気体とし、当該混合気体中の窒素の割合を40%以上80%以下とすることが好ましく、40%以上75%以下とすることがより好ましく、50%以上70%以下とすることが更に好ましく、60%以上70%以下とすることが更に好ましい。   Then, it can be said that it is preferable to make the ratio of nitrogen into 40% or more and 80% or less from the point of Al composition distribution and film thickness distribution. In view of the hole mobility, the upper limit is lower than 80%, considering that a favorable high mobility with no variation is obtained at R = 0.22 and that a very low mobility without variation is obtained at R = 0.88. 75%, more preferably 70%, is considered preferable. On the other hand, the lower limit varies greatly between R = 0.44 and R = 0.66 in the Al composition distribution, so 50% is more preferable, and 60% or more is considered more preferable. From the above, the carrier gas is a mixed gas of hydrogen and nitrogen, the ratio of nitrogen in the mixed gas is preferably 40% or more and 80% or less, more preferably 40% or more and 75% or less, It is more preferable to set it as 50% or more and 70% or less, and it is still more preferable to set it as 60% or more and 70% or less.

図6に、本発明の実施例に係る半導体発光素子100の模式的な断面図を示す。半導体発光素子100では、図6に示す様に、厚さ約300μmのサファイヤ基板101の上に、窒化アルミニウム(AlN)から成る膜厚約10nmのバッファ層102が成膜され、その上にノンドープのGaNから成る膜厚約2μmの層103が成膜され、その上にシリコン(Si)を5×1018/cm3ドープしたGaNから成る膜厚約3μmのn型コンタクト層104(高キャリヤ濃度n+層)が形成されている。 FIG. 6 is a schematic cross-sectional view of a semiconductor light emitting device 100 according to an example of the present invention. In the semiconductor light emitting device 100, as shown in FIG. 6, a buffer layer 102 made of aluminum nitride (AlN) and having a thickness of about 10 nm is formed on a sapphire substrate 101 having a thickness of about 300 μm. A layer 103 made of GaN having a thickness of about 2 μm is formed, and an n-type contact layer 104 having a thickness of about 3 μm made of GaN doped with silicon (Si) 5 × 10 18 / cm 3 (high carrier concentration n). + Layer) is formed.

また、このn型コンタクト層104の上には、膜厚1.5nm のノンドープIn0.1Ga0.9Nから成る層1051と膜厚3nm のノンドープGaNから成る層1052とを20ペア積層した膜厚90nmの多重層105が形成されている。更にその上には、膜厚17nmのノンドープGaNから成る障壁層1062と膜厚3nmのノンドープIn0.2Ga0.8Nから成る井戸層1061とが順に形成された多重量子井戸層106を形成している。 On the n-type contact layer 104, a multi-layer of 90 nm is formed by stacking 20 pairs of a layer 1051 made of non-doped In 0.1 Ga 0.9 N having a thickness of 1.5 nm and a layer 1052 made of non-doped GaN having a thickness of 3 nm. A multilayer 105 is formed. Further thereon, a multiple quantum well layer 106 is formed in which a barrier layer 1062 made of non-doped GaN having a thickness of 17 nm and a well layer 1061 made of non-doped In 0.2 Ga 0.8 N having a thickness of 3 nm are formed in this order.

更に、この多重量子井戸層106の上には、Mgを2×1019/cm3ドープした膜厚15nmのp型Al0.2Ga0.8Nから成るp型層107が形成されており、また、p型層107の上には、膜厚300nmのノンドープのAl0.02Ga0.98Nから成る層108を形成した。更にその上にはMgを1×1020/cm3ドープした膜厚200nmのp型GaNから成るp型コンタクト層109を形成した。 Further, a p-type layer 107 made of p-type Al 0.2 Ga 0.8 N having a thickness of 15 nm doped with Mg 2 × 10 19 / cm 3 is formed on the multiple quantum well layer 106. A layer 108 made of non-doped Al 0.02 Ga 0.98 N having a thickness of 300 nm was formed on the mold layer 107. Further thereon, a p-type contact layer 109 made of p-type GaN having a thickness of 200 nm doped with 1 × 10 20 / cm 3 of Mg was formed.

又、p型コンタクト層109の上には金属蒸着による透光性薄膜p電極110が、n型コンタクト層104上にはn電極140が形成されている。透光性薄膜p電極110は、p型コンタクト層109に直接接合する膜厚約1.5nmのコバルト(Co)より成る第1層111と、このコバルト膜に接合する膜厚約6nmの金(Au)より成る第2層112とで構成されている。   Further, a translucent thin film p-electrode 110 formed by metal deposition is formed on the p-type contact layer 109, and an n-electrode 140 is formed on the n-type contact layer 104. The translucent thin film p-electrode 110 includes a first layer 111 made of cobalt (Co) having a thickness of about 1.5 nm directly bonded to the p-type contact layer 109 and a gold (Au) having a thickness of about 6 nm bonded to the cobalt film. ) And the second layer 112.

厚膜p電極120は、膜厚約18nmのバナジウム(V)より成る第1層121と、膜厚約1.5μmの金(Au)より成る第2層122と、膜厚約10nmのアルミニウム(Al)より成る第3層123とを透光性薄膜p電極110の上から順次積層させることにより構成されている。 Thick p electrode 120 includes a first layer 121 made of a film thickness of about 18nm of vanadium (V), a film thickness of about 1. A second layer 122 made of 5μm gold (Au), thickness of about 10nm of aluminum ( The third layer 123 made of Al) is sequentially laminated from above the translucent thin film p-electrode 110.

多層構造のn電極140は、n型コンタクト層104の一部露出された部分の上から、膜厚約18nmのバナジウム(V)より成る第1層141と膜厚約100nmのアルミニウム(Al)より成る第2層142とを積層させることにより構成されている。   The n-electrode 140 having a multilayer structure is formed of a first layer 141 made of vanadium (V) having a film thickness of about 18 nm and aluminum (Al) having a film thickness of about 100 nm from above a part of the n-type contact layer 104 that is partially exposed. It is comprised by laminating | stacking the 2nd layer 142 which consists.

また、最上部には、SiO2膜より成る保護膜130が形成されている。
サファイヤ基板101の底面に当たる外側の最下部には、膜厚約500nmのアルミニウム(Al)より成る反射金属層150が、金属蒸着により成膜されている。尚、この反射金属層150は、Rh、Ti、W等の金属の他、TiN、HfN等の窒化物でも良い。
A protective film 130 made of a SiO 2 film is formed on the top.
A reflective metal layer 150 made of aluminum (Al) having a thickness of about 500 nm is formed by metal vapor deposition on the outermost lowermost portion corresponding to the bottom surface of the sapphire substrate 101. The reflective metal layer 150 may be a metal such as Rh, Ti, or W, or a nitride such as TiN or HfN.

上記の半導体発光素子100について、p型Al0.2Ga0.8Nから成るp型層107形成の際のキャリアガスを、窒素濃度R=0.4, 0.8, 1(Ref、比較例)として形成した。尚、他の層の形成においては、窒素のみとした。この半導体発光素子100の光強度は、窒素濃度R=1(Ref)に対して、窒素濃度R=0.4の場合は7%向上し、窒素濃度R=0.8の場合は15%向上した。 With respect to the semiconductor light emitting device 100 described above, the carrier gas for forming the p-type layer 107 made of p-type Al 0.2 Ga 0.8 N was formed with a nitrogen concentration R = 0.4, 0.8, 1 (Ref, comparative example). In forming the other layers, only nitrogen was used. The light intensity of the semiconductor light emitting device 100 was improved by 7% when the nitrogen concentration R = 0.4 and by 15% when the nitrogen concentration R = 0.8 with respect to the nitrogen concentration R = 1 (Ref).

p-Al0.24Ga0.76N:Mg層を形成する際の、キャリアガス中の窒素濃度Rに対するフォトルミネセンス強度を示したグラフ図。p-Al 0.24 Ga 0.76 N: when forming a Mg layer, graph showing a photoluminescence intensity to nitrogen concentration R in the carrier gas. p-Al0.24Ga0.76N:Mg層を形成する際の、キャリアガス中の窒素濃度Rに対するホール移動度を示したグラフ図。p-Al 0.24 Ga 0.76 N: when forming a Mg layer, graph chart showing the hole mobility for nitrogen concentration R in the carrier gas. p-Al0.24Ga0.76N:Mg層を形成する際の、キャリアガス中の窒素濃度Rに対する表面粗さを示したグラフ図。p-Al 0.24 Ga 0.76 N: when forming a Mg layer, graph showing the surface roughness to nitrogen concentration R in the carrier gas. p-Al0.24Ga0.76N:Mg層を形成する際の、キャリアガス中の窒素濃度Rに対するAl組成の変動を示したグラフ図。p-Al 0.24 Ga 0.76 N: when forming a Mg layer, graph showing the variation of Al composition on the nitrogen concentration R in the carrier gas. p-Al0.24Ga0.76N:Mg層を形成する際の、キャリアガス中の窒素濃度Rに対する膜厚変動を示したグラフ図。p-Al 0.24 Ga 0.76 N: when forming a Mg layer, graph showing the film thickness variation for the nitrogen concentration R in the carrier gas. 本発明の実施例に係る半導体発光素子100の構成を示す断面図。Sectional drawing which shows the structure of the semiconductor light-emitting device 100 which concerns on the Example of this invention.

符号の説明Explanation of symbols

100:半導体発光素子
101:サファイヤ基板
102:バッファ層
103:ノンドープGaN層
104:高キャリア濃度n+
105:多重層
1061:InGaN井戸層
1062:GaN障壁層
107:p型AlGaN層
108:ノンドープAlGaN層
109:p型コンタクト層
110:透光性薄膜p電極
120:p電極
130:保護膜
140:n電極
150:反射金属層
DESCRIPTION OF SYMBOLS 100: Semiconductor light emitting element 101: Sapphire substrate 102: Buffer layer 103: Non-doped GaN layer 104: High carrier concentration n + layer 105: Multilayer 1061: InGaN well layer 1062: GaN barrier layer 107: p-type AlGaN layer 108: Non-doped AlGaN Layer 109: p-type contact layer 110: translucent thin film p-electrode 120: p-electrode 130: protective film 140: n-electrode 150: reflective metal layer

Claims (2)

アクセプタ不純物の添加された、少なくともアルミニウムを含むIII族窒化物系化合物半導体層を有する半導体発光素子の製造方法において、
前記アクセプタ不純物の添加された、少なくともアルミニウムを含むIII族窒化物系化合物半導体層を、水素と窒素の混合気体であって、当該混合気体中の窒素の割合を40%以上80%以下としたキャリアガス中で有機金属気相成長法により成長させることを特徴とするIII族窒化物系化合物半導体発光素子の製造方法。
In a method for manufacturing a semiconductor light emitting device having a group III nitride compound semiconductor layer containing at least aluminum to which an acceptor impurity is added,
The group III nitride compound semiconductor layer containing at least aluminum to which the acceptor impurity is added is a mixed gas of hydrogen and nitrogen, and the ratio of nitrogen in the mixed gas is 40% to 80%. A method for producing a Group III nitride compound semiconductor light-emitting device, characterized by growing in a gas by metal organic vapor phase epitaxy.
前記アクセプタ不純物の添加された、少なくともアルミニウムを含むIII族窒化物系化合物半導体層を、発光層の直上に形成することを特徴とする請求項1に記載のIII族窒化物系化合物半導体発光素子の製造方法。 2. The group III nitride compound semiconductor light-emitting element according to claim 1, wherein the group III nitride compound semiconductor layer containing at least aluminum to which the acceptor impurity is added is formed immediately above the light emitting layer. 3. Production method.
JP2005054121A 2005-02-28 2005-02-28 Method for manufacturing semiconductor element of group iii nitride compound Withdrawn JP2006237539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005054121A JP2006237539A (en) 2005-02-28 2005-02-28 Method for manufacturing semiconductor element of group iii nitride compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005054121A JP2006237539A (en) 2005-02-28 2005-02-28 Method for manufacturing semiconductor element of group iii nitride compound

Publications (2)

Publication Number Publication Date
JP2006237539A true JP2006237539A (en) 2006-09-07
JP2006237539A5 JP2006237539A5 (en) 2007-10-25

Family

ID=37044813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005054121A Withdrawn JP2006237539A (en) 2005-02-28 2005-02-28 Method for manufacturing semiconductor element of group iii nitride compound

Country Status (1)

Country Link
JP (1) JP2006237539A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9209361B2 (en) 2013-07-22 2015-12-08 Panasonic Intellectual Property Management Co., Ltd. Nitride semiconductor light-emitting element
CN105304778A (en) * 2015-11-20 2016-02-03 聚灿光电科技股份有限公司 Epitaxial structure capable of raising GaN-based LED antistatic performance and preparation method
JP2016157734A (en) * 2015-02-23 2016-09-01 豊田合成株式会社 Group iii nitride semiconductor light emitting element manufacturing method
JP2019110195A (en) * 2017-12-18 2019-07-04 旭化成株式会社 Nitride semiconductor light-emitting element
US11637221B2 (en) 2017-11-09 2023-04-25 Asahi Kasei Kabushiki Kaisha Nitride semiconductor element, nitride semiconductor light emitting element, ultraviolet light emitting element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1075019A (en) * 1996-06-28 1998-03-17 Toshiba Corp Manufacture of gan compound semiconductor device
JP2001237457A (en) * 1999-12-13 2001-08-31 Nichia Chem Ind Ltd Light-emitting element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1075019A (en) * 1996-06-28 1998-03-17 Toshiba Corp Manufacture of gan compound semiconductor device
JP2001237457A (en) * 1999-12-13 2001-08-31 Nichia Chem Ind Ltd Light-emitting element

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9209361B2 (en) 2013-07-22 2015-12-08 Panasonic Intellectual Property Management Co., Ltd. Nitride semiconductor light-emitting element
JP2016157734A (en) * 2015-02-23 2016-09-01 豊田合成株式会社 Group iii nitride semiconductor light emitting element manufacturing method
CN105304778A (en) * 2015-11-20 2016-02-03 聚灿光电科技股份有限公司 Epitaxial structure capable of raising GaN-based LED antistatic performance and preparation method
CN105304778B (en) * 2015-11-20 2018-03-30 聚灿光电科技股份有限公司 Improve epitaxial structure of GaN base LED antistatic properties and preparation method thereof
US11637221B2 (en) 2017-11-09 2023-04-25 Asahi Kasei Kabushiki Kaisha Nitride semiconductor element, nitride semiconductor light emitting element, ultraviolet light emitting element
JP2019110195A (en) * 2017-12-18 2019-07-04 旭化成株式会社 Nitride semiconductor light-emitting element
JP7049823B2 (en) 2017-12-18 2022-04-07 旭化成株式会社 Nitride semiconductor light emitting device

Similar Documents

Publication Publication Date Title
JP5201563B2 (en) Group III nitride semiconductor light emitting device
JP2006108585A (en) Group iii nitride compound semiconductor light emitting element
JP4882618B2 (en) GaN-based semiconductor light emitting diode manufacturing method
JP2006114886A (en) N-type group iii nitride semiconductor lamination structure
JP2011176240A (en) Semiconductor light emitting device, and method of manufacturing the same
JP4962130B2 (en) GaN-based semiconductor light emitting diode manufacturing method
WO2014061692A1 (en) Nitride semiconductor light emitting element
JP3602856B2 (en) Semiconductor light emitting device and method of manufacturing the same
KR20060115762A (en) Gallium nitride-based compound semiconductor multilayer structure and production method thereof
JP4457609B2 (en) Method for producing gallium nitride (GaN)
JP2006237539A (en) Method for manufacturing semiconductor element of group iii nitride compound
JP2007281057A (en) Laminate structure of group iii nitride semiconductor and its manufacturing method, and semiconductor light-emitting element and its manufacturing method
JP5234814B2 (en) Manufacturing method of nitride semiconductor light emitting device
JP2005340762A (en) Group iii nitride semiconductor light-emitting element
KR101008856B1 (en) Production method of group ? nitride semiconductor element
JP4781028B2 (en) Group III nitride semiconductor laminate and method for manufacturing group III nitride semiconductor light emitting device
JP2005085932A (en) Light-emitting diode and its manufacturing method
JP5105738B2 (en) Method for producing gallium nitride compound semiconductor laminate
JP2008294018A (en) Method of manufacturing group iii nitride-based compound semiconductor light emitting element
JP2007324546A (en) Method of manufacturing gallium nitride compound semiconductor light-emitting element, gallium nitride compound semiconductor light-emitting element, and lamp
JP4591111B2 (en) Group III nitride compound semiconductor device or light emitting device manufacturing method
JP2006186005A (en) Nitride compound semiconductor, its manufacturing method and use
JP3874779B2 (en) Ge-doped n-type group III nitride semiconductor layered product, method for producing the same, and group III nitride semiconductor light-emitting device using the same
JP2006032739A (en) Light emitting element
JP2005340789A (en) Group iii nitride semiconductor light-emitting element

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070910

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100607