JPH1072230A - Production of optical fiber preform - Google Patents

Production of optical fiber preform

Info

Publication number
JPH1072230A
JPH1072230A JP22972096A JP22972096A JPH1072230A JP H1072230 A JPH1072230 A JP H1072230A JP 22972096 A JP22972096 A JP 22972096A JP 22972096 A JP22972096 A JP 22972096A JP H1072230 A JPH1072230 A JP H1072230A
Authority
JP
Japan
Prior art keywords
preform
burners
optical fiber
starting material
fine glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22972096A
Other languages
Japanese (ja)
Inventor
Yuichi Oga
裕一 大賀
Motonori Nakamura
元宣 中村
Takashi Kogo
隆司 向後
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP22972096A priority Critical patent/JPH1072230A/en
Publication of JPH1072230A publication Critical patent/JPH1072230A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/50Multiple burner arrangements
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/60Relationship between burner and deposit, e.g. position
    • C03B2207/64Angle

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a preform at an increased deposition rate and in an in creased shape yield(a ratio (%) of (effective length)/((effective length)+(ineffective length)) of a preform) by arranging burners for forming fine glass particles in a specific direction, in a production that is composed by comprises subjecting a glass raw material to a flame hydrolysis or an oxida tion to form fine glass particles, depositing a resulting fine glass particle on a starting material and growing a deposited fine glass particle to produce an optical fiber preform. SOLUTION: This production is composed by subjecting a glass raw material to the flame hydrolysis or oxidation to form fine glass particles, depositing the resulting fine glass particles on a starting material and growing the deposited fine glass particles to produce an optical fiber preform. In the production, burners for forming fine glass particles are arranged in a circumferential direction of a preform to be produced so that central axes of the burners are directed toward a starting material in at last three direction. At this time, the angle between central axes of every adjacent two of the burners is preferably 45 to 120 deg.C and the angle between the central axis of each of the burners and the axis of the starting material is more desirably 60 to 100 deg..

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガラス微粒子の集
合体を円柱状出発材の外周部に形成する方法に関し、特
に高純度が要求される光ファイバ用母材製造の際の中間
製品として好適に用いられる、出発材外周部に堆積せし
められたガラス微粒子集合体を高堆積率で形成する方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming an aggregate of glass fine particles on an outer peripheral portion of a cylindrical starting material, and is particularly suitable as an intermediate product in manufacturing a preform for an optical fiber requiring high purity. The present invention relates to a method for forming an aggregate of glass fine particles deposited on the outer peripheral portion of a starting material at a high deposition rate.

【0002】[0002]

【従来の技術】円柱状の出発材の外周部上で軸方向にガ
ラス微粒子の堆積体を形成させる方法において、バーナ
の中心軸と出発材の軸のなす角度が20〜70°の範囲
とすることが提案されている(特開昭61−18624
0号公報)。また複数のスート吹き付け機構のバーナを
ターゲット部材に向けて各々異なる角度に取り付けて、
ガラス微粒子を堆積させること(特開平4−16002
8号公報)、隣接するバーナを出発材軸方向と共に周方
向にも位置をずらしてガラス微粒子を堆積させること
(特開平5−58652号公報)も知られている。
2. Description of the Related Art In a method of forming a deposit of glass fine particles in an axial direction on an outer peripheral portion of a cylindrical starting material, an angle between a central axis of a burner and an axis of the starting material is in a range of 20 to 70 °. (Japanese Patent Application Laid-Open No. 61-18624)
No. 0). Also, burners of multiple soot spraying mechanisms are attached at different angles toward the target member,
Depositing glass fine particles (Japanese Patent Laid-Open No. Hei 4-16002)
Japanese Patent Application Laid-Open No. Hei 5-58652 discloses a method in which adjacent burners are shifted in the circumferential direction as well as in the axial direction of the starting material to deposit glass particles (Japanese Patent Laid-Open No. 5-58652).

【0003】しかし、これら公知の方法では、ガラス微
粒子体の堆積体を充分な堆積速度で形成することは難し
かった。多孔質母材を効率よく製造するためには、堆積
効率〔単位時間当たりに合成できるガラス微粒子の重
量、あるいは原料ガス供給量に対してガラス微粒子とし
て付着した割合(堆積収率)〕を上げ、外径均一部をで
きるだけ長くすることが必要である。上記公知技術に
は、堆積効率を上げるために、ガラス原料を複数本のバ
ーナから供給する方法が開示されているが、バーナ間の
火炎による干渉によって、堆積効率が低下する問題があ
った。すなわち、バーナ間隔を短くすると隣り合う火炎
同士が干渉するため、ガラス微粒子流の流れが乱れ、堆
積面での堆積効率が低下する。一方、バーナ間隔を離す
と端部ではバーナ間隔分だけススが均一に堆積しないの
で、端部の非有効部(テーパ部)が長くなり、得られる
良好部が短くなってしまう。
However, it is difficult for these known methods to form a deposit of fine glass particles at a sufficient deposition rate. In order to efficiently produce a porous base material, the deposition efficiency [the weight of the glass fine particles that can be synthesized per unit time, or the ratio of glass fine particles adhered to the raw material gas supply amount (deposition yield)] is increased, It is necessary to make the outer diameter uniform portion as long as possible. The above-mentioned known technique discloses a method of supplying a glass raw material from a plurality of burners in order to increase the deposition efficiency. However, there is a problem that the deposition efficiency is reduced due to interference between the burners due to a flame. That is, when the burner interval is reduced, adjacent flames interfere with each other, so that the flow of the glass fine particle flow is disturbed, and the deposition efficiency on the deposition surface is reduced. On the other hand, if the burner interval is increased, soot is not uniformly deposited at the end portion by the burner interval, so that the ineffective portion (tapered portion) at the end portion becomes longer and the obtained good portion becomes shorter.

【0004】[0004]

【発明が解決しようとする課題】本発明者らは、ガラス
原料を火炎加水分解又は酸化させ、ガラス微粒子を出発
材に堆積、成長させる光ファイバ用母材の製造方法にお
いて、ガラス微粒子の堆積効率を上げるべく鋭意研究を
行った結果、バーナの配置を特定することで優れた効果
の得られることを発見し本発明に到達した。すなわち、
本発明は、光ファイバ用母材の製造方法において、ガラ
ス原料を火炎加水分解又は酸化させてガラス微粒子を出
発材に堆積する際の堆積速度と形状歩留を増加させるこ
とを目的とする。
DISCLOSURE OF THE INVENTION The present inventors have proposed a method for producing a base material for an optical fiber in which a glass raw material is subjected to flame hydrolysis or oxidation to deposit and grow glass fine particles on a starting material. As a result of intensive studies to improve the temperature, it was found that an excellent effect could be obtained by specifying the arrangement of the burners, and the present invention was reached. That is,
An object of the present invention is to increase the deposition rate and shape yield when depositing glass microparticles on a starting material by flame hydrolysis or oxidation of a glass raw material in a method of manufacturing a preform for an optical fiber.

【0005】[0005]

【課題を解決するための手段】上記の目的は、下記の各
製造方法によって達成することができる。 (1)ガラス原料を火炎加水分解又は酸化させ、ガラス
微粒子を出発材に堆積、成長させる光ファイバ用母材の
製造方法において、ガラス微粒子生成用バーナを母材周
方向に配置し、かつ3方向以上から配置することを特徴
とする光ファイバ用母材の製造方法。 (2)周方向に配置される隣接するバーナの角度を45
〜120°とすることを特徴とする上記(1)に記載の
光ファイバ用母材の製造方法。
The above object can be achieved by the following manufacturing methods. (1) In a method for producing a base material for an optical fiber, in which a glass raw material is subjected to flame hydrolysis or oxidation and glass fine particles are deposited and grown on a starting material, burners for generating glass fine particles are arranged in a circumferential direction of the base material, and three directions are provided. A method for producing a preform for an optical fiber, characterized by being arranged as described above. (2) The angle between adjacent burners arranged in the circumferential direction is 45
The method for producing a preform for an optical fiber according to the above (1), wherein the angle is set to 120 °.

【0006】(3)バーナの中心軸と出発材の軸とのな
す角度を60〜100°とすることを特徴とする上記
(1)又は(2)に記載の光ファイバ用母材の製造方
法。 (4)ガラス微粒子の堆積、生成をVAD法で行うこと
を特徴とする上記(1)〜(3)のいずれかに記載の光
ファイバ用母材の製造方法。 (5)ガラス微粒子の堆積、生成をOVD法で行うこと
を特徴とする上記(1)〜(3)のいずれかに記載の光
ファイバ用母材の製造方法。
(3) The method for manufacturing a preform for an optical fiber according to the above (1) or (2), wherein the angle between the central axis of the burner and the axis of the starting material is 60 to 100 °. . (4) The method for producing a preform for an optical fiber according to any one of the above (1) to (3), wherein the deposition and generation of the glass particles are performed by a VAD method. (5) The method for producing a preform for an optical fiber according to any one of the above (1) to (3), wherein the deposition and generation of the glass particles are performed by an OVD method.

【0007】[0007]

【発明の実施の形態】上記の方法(1)では、ガラス微
粒子生成用バーナを母材の周方向に3方向から配置して
ガラス微粒子の堆積を行い、火炎の干渉を防ぎ、堆積速
度を向上させることができる。また、軸方向のバーナ間
隔を低減できるので、図1に示されるような形状歩留を
向上させることができる。本発明は、バーナを周方向に
3方向以上から配置するものであるが、同位置軸方向の
バーナ本数に制限はない。ここで形状歩留は、有効部長
さ/(有効部長さ+非有効部長さ)を%で表したもので
ある。図2及び図3は、本発明の方法を実施する態様を
示すもので、図2はVAD法を本発明の3方向配置によ
り行う概略図を、図3はOVD法を本発明の3方向配置
により行う概略図を示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the above-mentioned method (1), glass particles are deposited by disposing burners for generating glass particles from three directions in the circumferential direction of a base material, thereby preventing interference of a flame and improving a deposition rate. Can be done. Further, since the burner interval in the axial direction can be reduced, the shape yield as shown in FIG. 1 can be improved. In the present invention, the burners are arranged from three or more directions in the circumferential direction. However, the number of burners in the same axial direction is not limited. Here, the shape yield is obtained by expressing the effective portion length / (effective portion length + ineffective portion length) in%. 2 and 3 show an embodiment for carrying out the method of the present invention. FIG. 2 is a schematic diagram showing the three-way arrangement of the VAD method according to the present invention, and FIG. FIG.

【0008】上記の方法(2)では、周方向に配置され
る隣接するバーナの角度(間隔)、例えば図4に示され
る出発の中心軸と周方向に隣接するバーナ中心軸の角度
αを45〜120°、好ましくは60〜120°とし、
隣接する火炎同士が干渉するのを防止し、同時に外径均
一部を適正に保って堆積速度を増加させるようにする。
α<45°では、火炎同士が干渉するため、堆積速度を
増加できない。3本のバーナを配置させる場合、αMAX
=120°となる(4本であればαMAX =90°)。
In the above method (2), the angle (interval) between adjacent burners arranged in the circumferential direction, for example, the angle α between the starting central axis shown in FIG. To 120 °, preferably 60 to 120 °,
Interference between adjacent flames is prevented, and at the same time, a uniform outer diameter portion is appropriately maintained to increase the deposition rate.
When α <45 °, the flames interfere with each other, so that the deposition rate cannot be increased. When three burners are arranged, α MAX
= 120 ° (α MAX = 90 ° for four lines).

【0009】上記の方法(3)では、バーナ中心軸と出
発材の軸とのなす角度、例えば図5に示される角度θを
60〜100°、好ましくは75〜90°とする。60
°未満では、堆積するススのかさ速度に径方向の分布が
生じ、スス割れを生じやすい。また100°を越える
と、堆積効率が低下するという欠点が生じる。
In the above method (3), the angle between the burner center axis and the axis of the starting material, for example, the angle θ shown in FIG. 5 is set to 60 to 100 °, preferably 75 to 90 °. 60
If it is less than °, the bulk velocity of the deposited soot has a radial distribution, and soot cracks are likely to occur. On the other hand, if it exceeds 100 °, there is a disadvantage that the deposition efficiency is reduced.

【0010】本発明は、上記方法(4)又は(5)のよ
うにVAD法又はOVD法に適用することができる。更
に本発明において、少なくとも3つのガラス微粒子生成
用バーナのうち隣接するバーナを軸方向に適当な間隔に
離隔して火炎同士が干渉するのを抑えることができる。
例えば、図6に示されるlを0〜300mm、特に10
0〜200mmとするのが好ましい。周方向にバーナを
移動させれば、バーナ間隔は広がるので直線状に配置さ
せるよりも火炎の干渉は抑制できる。
The present invention can be applied to the VAD method or the OVD method as in the above method (4) or (5). Further, in the present invention, adjacent burners of at least three glass fine particle generation burners can be separated at appropriate intervals in the axial direction to suppress interference between flames.
For example, 1 shown in FIG.
It is preferable to set it to 0 to 200 mm. If the burners are moved in the circumferential direction, the burner interval is increased, so that flame interference can be suppressed as compared with the case where the burners are arranged linearly.

【0011】[0011]

【実施例】以下本発明を実施例により具体的に説明する
がこれに限定されるものではない。 (実施例1)VAD法において、各バーナの中心軸と出
発材の軸とのなす角度は60°として、3本のバーナを
周方向に45°の間隔で配置させた。各バーナは、同心
円状8重管構造のバーナを用い、それぞれ中心ポートか
ら順にSiCl4 6リットル/分、H2 10リットル/
分、Ar3リットル/分、O2 20リットル/分、Ar
5リットル/分、H2 80リットル/分、Ar5リット
ル/分、O2 40リットル/分供給し、90mm/hr
の速度で、出発材を軸方向に引き上げた。出発材は、コ
アがGeO2 −SiO2 からなりクラッドがSiO2
らなる外径30mmφ、長さ700mmのガラスロッド
を用い、該ガラスロッドの両端にダミー棒(外径30m
mφ、長さ400mm)を接続した。得られた多孔質母
材の外径は250mmφで堆積速度は30g/分であ
り、形状歩留〔有効部長さ/(有効部長さ+非有効部長
さ)〕は、80%であった。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the invention is limited thereto. (Example 1) In the VAD method, the angle between the central axis of each burner and the axis of the starting material was 60 °, and three burners were arranged at intervals of 45 ° in the circumferential direction. Each burner uses a concentric octuple-tube burner, and sequentially from the center port, 6 liters / minute of SiCl 4 and 10 liters / minute of H 2.
Min, Ar 3 l / min, O 2 20 l / min, Ar
5 L / min, H 2 80 L / min, Ar 5 L / min, O 2 40 L / min, 90 mm / hr
At the speed described above, the starting material was pulled up in the axial direction. As a starting material, a glass rod having a core of GeO 2 —SiO 2 and a cladding of SiO 2 having an outer diameter of 30 mmφ and a length of 700 mm is used, and dummy rods (outer diameter of 30 m) are provided at both ends of the glass rod.
mφ, length 400 mm). The outer diameter of the obtained porous base material was 250 mmφ, the deposition rate was 30 g / min, and the shape yield [effective part length / (effective part length + non-effective part length)] was 80%.

【0012】(実施例2)OVD法において、実施例1
と同様の出発材を作成し、ロッドを縦方向に配置した。
3本バーナの配置は、表1のように設定して多孔質母材
の製造を行った。使用したバーナ構造は、実施例1と同
様であり、ガスの流量条件は、6ポートH 2 流量のみ1
20リットル/分に増量した以外、同じく設定した。ま
た、出発材を500mm/分の速度で往復移動させ、外
径230mmになるまで、ガラス微粒子を積層させた。
(Embodiment 2) In the OVD method, Embodiment 1
A starting material similar to the above was prepared, and the rod was arranged in the vertical direction.
The arrangement of the three burners is set as shown in Table 1 and the porous base material
Was manufactured. The burner structure used was the same as in Example 1.
The gas flow condition is 6 port H TwoOnly flow rate 1
The same settings were used except that the volume was increased to 20 liters / minute. Ma
The starting material was reciprocated at a speed of 500 mm / min.
Glass particles were laminated until the diameter became 230 mm.

【0013】[0013]

【表1】 [Table 1]

【0014】以上の実験結果をグラフにまとめると図7
及び8のようになる。即ち、周方向に隣接するバーナ角
度としては、45〜120°が好ましく、バーナ中心軸
と出発材の軸とのなす角度は、60〜90°が好まし
い。
FIG. 7 is a graph summarizing the above experimental results.
And 8. That is, the burner angle adjacent in the circumferential direction is preferably 45 to 120 °, and the angle between the burner center axis and the starting material axis is preferably 60 to 90 °.

【0015】[0015]

【発明の効果】本発明に従いガラス原料を火炎加水分解
又は酸化させ、ガラス微粒子を出発材に堆積、成長させ
て光ファイバ用母材を製造する際にガラス微粒子生成用
バーナを母材周方向の特定位置、すなわち少なくとも3
方向から母材に向けて配置しながら堆積、成長を行うこ
とにより、堆積速度と形状歩留を著しく増加させること
ができる。
According to the present invention, a glass raw material is flame-hydrolyzed or oxidized, and glass fine particles are deposited and grown on a starting material to produce a glass fiber preform. Specific location, ie at least 3
By performing deposition and growth while arranging the substrate toward the base material from the direction, the deposition rate and the shape yield can be significantly increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ガラス微粒子を出発材に堆積して得られる光フ
ァイバ用母材の有効部長さと非有効部長さを示すモデル
図。
FIG. 1 is a model diagram showing an effective portion length and an ineffective portion length of an optical fiber preform obtained by depositing glass fine particles on a starting material.

【図2】本発明の方法を実施する一態様を示す3方向配
置でVAD法によるものを示す概念図。
FIG. 2 is a conceptual diagram showing a method according to a VAD method in a three-way arrangement showing one embodiment of implementing the method of the present invention.

【図3】本発明の方法を実施する一態様を示す3方向配
置でOVD法によるものを示す概念図。
FIG. 3 is a conceptual diagram showing an OVD method in a three-way arrangement showing one embodiment of implementing the method of the present invention.

【図4】本発明により周方向に配置される隣接するバー
ナ中心軸の角度αを示す概念図。
FIG. 4 is a conceptual diagram showing an angle α between adjacent burner central axes arranged in the circumferential direction according to the present invention.

【図5】本発明により周方向に配置されるバーナ中心軸
と出発材の軸とのなす角度θを示す概念図。
FIG. 5 is a conceptual diagram showing an angle θ between a central axis of a burner arranged in a circumferential direction and an axis of a starting material according to the present invention.

【図6】θ=90°の場合に、周方向に角度αで配置さ
れるバーナの軸方向の間隔lを示す概念図。
FIG. 6 is a conceptual diagram showing an axial interval l of burners arranged at an angle α in the circumferential direction when θ = 90 °.

【図7】本発明の実施例で得られた周方向に隣接するバ
ーナ角度αと堆積速度、収率との関係を示すグラフ。
FIG. 7 is a graph showing the relationship between the burner angle α adjacent to the circumferential direction, the deposition rate, and the yield obtained in the example of the present invention.

【図8】本発明の実施例で得られたバーナ中心軸を出発
材とのなす角度θと堆積速度、収率との関係を示すグラ
フ。
FIG. 8 is a graph showing the relationship between the angle θ between the burner center axis and the starting material, the deposition rate, and the yield obtained in the example of the present invention.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ガラス原料を火炎加水分解又は酸化さ
せ、ガラス微粒子を出発材に堆積、成長させる光ファイ
バ用母材の製造方法において、ガラス微粒子生成用バー
ナを母材周方向に配置し、かつ3方向以上から配置する
ことを特徴とする光ファイバ用母材の製造方法。
1. A method for producing a base material for an optical fiber in which a glass raw material is subjected to flame hydrolysis or oxidation to deposit and grow glass fine particles on a starting material, wherein a burner for producing glass fine particles is arranged in a circumferential direction of the base material; A method for manufacturing a preform for an optical fiber, wherein the preform is arranged from three or more directions.
【請求項2】 周方向に配置される隣接するバーナの角
度を45〜120°とすることを特徴とする請求項1に
記載の光ファイバ用母材の製造方法。
2. The method of manufacturing an optical fiber preform according to claim 1, wherein an angle between adjacent burners arranged in the circumferential direction is 45 to 120 °.
【請求項3】 バーナの中心軸と出発材の軸とのなす角
度を60〜100°とすることを特徴とする請求項1又
は2に記載の光ファイバ用母材の製造方法。
3. The method according to claim 1, wherein the angle between the central axis of the burner and the axis of the starting material is 60 to 100 °.
【請求項4】 ガラス微粒子の堆積、生成をVAD法で
行うことを特徴とする請求項1〜3のいずれかに記載の
光ファイバ用母材の製造方法。
4. The method for producing a preform for an optical fiber according to claim 1, wherein the deposition and generation of the glass fine particles are performed by a VAD method.
【請求項5】 ガラス微粒子の堆積、生成をOVD法で
行うことを特徴とする請求項1〜3のいずれかに記載の
光ファイバ用母材の製造方法。
5. The method for producing a preform for an optical fiber according to claim 1, wherein the deposition and generation of the glass particles are performed by an OVD method.
JP22972096A 1996-08-30 1996-08-30 Production of optical fiber preform Pending JPH1072230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22972096A JPH1072230A (en) 1996-08-30 1996-08-30 Production of optical fiber preform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22972096A JPH1072230A (en) 1996-08-30 1996-08-30 Production of optical fiber preform

Publications (1)

Publication Number Publication Date
JPH1072230A true JPH1072230A (en) 1998-03-17

Family

ID=16896651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22972096A Pending JPH1072230A (en) 1996-08-30 1996-08-30 Production of optical fiber preform

Country Status (1)

Country Link
JP (1) JPH1072230A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103663959A (en) * 2012-09-24 2014-03-26 信越化学工业株式会社 Method of manufacturing porous glass deposition body for optical fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103663959A (en) * 2012-09-24 2014-03-26 信越化学工业株式会社 Method of manufacturing porous glass deposition body for optical fiber
JP2014076942A (en) * 2012-09-24 2014-05-01 Shin Etsu Chem Co Ltd Optical fiber porous glass deposit manufacturing method

Similar Documents

Publication Publication Date Title
JP3543537B2 (en) Method for synthesizing glass fine particles and focus burner therefor
CN103663959B (en) The manufacture method of optical fiber porous glass lithosomic body
JP4614782B2 (en) Method for producing quartz glass preform for optical fiber
JP2006182624A (en) Method for manufacturing glass rod-like body
JPH1072230A (en) Production of optical fiber preform
JP2612941B2 (en) Method for producing porous optical fiber preform
JPH059035A (en) Production of soot base material for optical fiber
JP3290559B2 (en) Method for producing porous glass preform for optical fiber
JP3003173B2 (en) Method for producing glass particle deposit
JP2002249326A (en) Method for producing accumulated body of fine glass particle
JP3917022B2 (en) Method for producing porous preform for optical fiber
JPH03112820A (en) Production of porous glass preform
JP4398114B2 (en) Manufacturing method of glass base material for optical fiber with less unevenness
JPS60260433A (en) Manufacture of base material for optical fiber
JP2005247636A (en) Method of manufacturing porous preform for optical fiber and glass preform
JPS63225540A (en) Production of deposit of fine glass particles
JPH107429A (en) Production of preform for optical fiber
JPH05330844A (en) Production of optical fiber preform
JPH0777968B2 (en) Optical fiber preform base material manufacturing method
JPS63123828A (en) Production of porous preform for optical fiber
JP3118723B2 (en) Method for producing porous glass preform for optical fiber
JPH0733469A (en) Production of preform for optical fiber
JP2004026518A (en) Method of manufacturing silica porous preform
JPH0712954B2 (en) Method for manufacturing base material for optical fiber
JPH0435429B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050610

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051018