JPH1070335A - Manufacture of semiconductor laser - Google Patents

Manufacture of semiconductor laser

Info

Publication number
JPH1070335A
JPH1070335A JP20994096A JP20994096A JPH1070335A JP H1070335 A JPH1070335 A JP H1070335A JP 20994096 A JP20994096 A JP 20994096A JP 20994096 A JP20994096 A JP 20994096A JP H1070335 A JPH1070335 A JP H1070335A
Authority
JP
Japan
Prior art keywords
grooves
substrate
groove
semiconductor
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20994096A
Other languages
Japanese (ja)
Inventor
Yoshihiro Hara
義博 原
Yuzaburo Ban
雄三郎 伴
Masahiro Kume
雅博 粂
Akihiko Ishibashi
明彦 石橋
Nobuyuki Kamimura
信行 上村
Yoshiteru Hasegawa
義晃 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP20994096A priority Critical patent/JPH1070335A/en
Publication of JPH1070335A publication Critical patent/JPH1070335A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To divide a laser chip into individual chips without giving damage to the laser chip by a method wherein linear or broken line-shaped grooves are all formed in a substrate consisting of a semiconductor crystal by etching or the like in the directions vertical and parallel to striped luminous regions and the semiconductor crystal is cleaved along these grooves. SOLUTION: Etching grooves 111 and 112 are respectively formed in a substrate 102 from the rear of the substrate 102 in the directions vertical and parallel to striped electrodes 101. The grooves in the direction vertical to the electrodes 101 are formed in such a way that the width between the grooves is equal to a resonator length and the grooves in the direction parallel to the electrodes 101 are formed in such a way that the positions of the grooves are positioned in roughly the center between the electrodes 101, which are adjacent to each other. As the grooves in the direction vertical to the electrodes 101 are formed from the rear of the substrate 102 and the thickness of an epitaxial layer is about 10μm or thinner compared with that of 100 to 200μm or thereabouts of the substrate 102, the grooves 111, which are used as guide grooves for cleavage, can be bored fully deep. Thereby, a semiconductor crystal can be easily cleaved and the yield of the manufacture of a semiconductor laser can be enhanced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体レーザの製造
方法に関するもので、良好な共振器を形成するための方
法を提供するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor laser, and a method for forming a good resonator.

【0002】[0002]

【従来の技術】図3は従来の半導体レーザの製造方法を
説明するための模式図である。図3(a)は劈開前の基
板を裏面から見た図で、同図(b)は劈開後の個々のレ
ーザチップを示している。このように、室温で連続発振
する半導体レーザは通常何らかのストライプ構造を有し
ている。これは、半導体結晶の全域をレーザ発振に寄与
させるのではなく、上記ストライプ部分のみを寄与させ
て動作電流を低減させるためである。
2. Description of the Related Art FIG. 3 is a schematic view for explaining a conventional method for manufacturing a semiconductor laser. FIG. 3A is a view of the substrate before cleavage as viewed from the back surface, and FIG. 3B shows individual laser chips after cleavage. Thus, a semiconductor laser that continuously oscillates at room temperature usually has some kind of stripe structure. This is because the entire region of the semiconductor crystal does not contribute to laser oscillation, but only the stripe portion contributes to reduce the operating current.

【0003】図3(b)はストライプ構造の一種である
電極ストライプ構造を示している。301が(p型)ス
トライプ電極を示す。302は半導体基板を示し、30
3として示す各層は活性層やクラッド層などと呼ばれ、
レーザが低しきい値電流で発振するためにこのような多
層構造をとっている。活性層の中のストライプ状の発光
領域304が実際の発振に寄与する。また、305はn
型電極である。
FIG. 3B shows an electrode stripe structure which is a kind of stripe structure. Reference numeral 301 denotes a (p-type) stripe electrode. 302 denotes a semiconductor substrate;
Each layer shown as 3 is called an active layer or a cladding layer,
Such a multilayer structure is adopted because the laser oscillates at a low threshold current. The stripe-shaped light emitting region 304 in the active layer contributes to actual oscillation. 305 is n
Type electrode.

【0004】このような構造により、レーザのpn接合
を流れる電流をストライプ電極301の下部の領域にの
み制限することができ、レーザ発振する領域をこのスト
ライプ領域に制限することができる。個々のレーザチッ
プに分割するためには、図3(a)に示すように、レー
ザの共振器長を幅とする数本のエッチング溝311をス
トライプ電極301の方向と垂直な方向に基板の裏面に
形成し、この溝に刃を当てて力を加えて、劈開によりま
ず数個のレーザチップを含む数個のバー状の結晶に分割
する。その後ストライプ電極と平行な方向にはストライ
プ電極間のおよそ真中の位置に刃を当てて力を加えるこ
とにより個々のレーザチップに分割する。
With such a structure, the current flowing through the pn junction of the laser can be limited only to the region below the stripe electrode 301, and the laser oscillation region can be limited to this stripe region. In order to divide the laser chip into individual laser chips, as shown in FIG. 3A, several etching grooves 311 having a width equal to the laser cavity length are formed on the back surface of the substrate in a direction perpendicular to the direction of the stripe electrode 301. Then, a force is applied by applying a blade to this groove, and the groove is first divided by cleavage into several bar-shaped crystals including several laser chips. Thereafter, in a direction parallel to the stripe electrodes, a blade is applied to a position approximately at the center between the stripe electrodes to apply a force to divide the laser chips into individual laser chips.

【0005】[0005]

【発明が解決しようとする課題】このような従来の方法
は半導体の結晶構造が立方晶構造を持つものに対しては
有効な方法であるが、SiCのような六方結晶のC面上
にエピタキシャル成長させた結晶においては、個々のレ
ーザチップに分割する際に、互いに垂直な2つの方向に
劈開することが困難である。このため上述したような従
来の方法では、数個のレーザチップを含むバー状の結晶
にうまく劈開できたとしても、個々のチップに分割する
ためにバーの方向と垂直方向に劈開するのは難しく、高
い歩留まりを期待するのは難しい。
Although such a conventional method is effective for a semiconductor having a cubic crystal structure, it has been found that epitaxial growth on a C-plane of a hexagonal crystal such as SiC is difficult. When the crystal is divided into individual laser chips, it is difficult to cleave the crystal in two directions perpendicular to each other. For this reason, in the conventional method as described above, even if it can be successfully cleaved into a bar-shaped crystal including several laser chips, it is difficult to cleave in a direction perpendicular to the direction of the bar because it is divided into individual chips. It is difficult to expect high yield.

【0006】本発明はこのような従来の課題を解決し、
レーザチップを損傷させることなく高い歩留まりで個々
のレーザチップに分割する方法を提供するものである。
The present invention solves such a conventional problem,
An object of the present invention is to provide a method for dividing a laser chip into individual laser chips at a high yield without damaging the laser chip.

【0007】[0007]

【課題を解決するための手段】この課題を解決するため
に、本発明では半導体結晶中のストライプ状の発光領域
に垂直な方向および平行な方向に共にエッチング等によ
る直線または破線状の溝を形成し、この溝に沿って上記
半導体結晶を劈開することにより歩留まりの高い半導体
レーザの製造方法を提供する。また、溝形成前に半導体
結晶の基板側を研磨により薄くすることにより、さらに
歩留まりの高い半導体レーザの製造方法を提供する。
In order to solve this problem, according to the present invention, a straight or broken groove is formed by etching or the like in both directions perpendicular and parallel to a stripe-shaped light emitting region in a semiconductor crystal. Then, a method for manufacturing a semiconductor laser with a high yield is provided by cleaving the semiconductor crystal along the groove. Further, a method for manufacturing a semiconductor laser with a higher yield is provided by thinning the substrate side of a semiconductor crystal by polishing before forming a groove.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。
Embodiments of the present invention will be described below.

【0009】(実施の形態1)図1は本発明による六方
晶基板を用いた半導体レーザの製造方法の第1の実施の
形態を示すものである。図1(a)は劈開前の基板を裏
面より簡易的に示したもので、同図(b)は劈開後の個
々のレーザチップを示している。また、同図(c)は六
方晶結晶のC面上での結晶軸を示している。図1(b)
において基板102は六方晶構造を持つ6H−SiCで
あり、そのC面上にn−GaN、n−AlGaN、In
GaN、p−AlGaN、p−GaN等の層103が順
次エピタキシャル成長により形成されており、その上部
にストライプ状のp型電極101が形成されている。1
05はn型の電極を示す。結晶面121はSiCの(1
−100)面、結晶面122は同様に(11−20)面
を示す。
(Embodiment 1) FIG. 1 shows a first embodiment of a method for manufacturing a semiconductor laser using a hexagonal substrate according to the present invention. FIG. 1A is a simplified view of the substrate before cleavage from the back surface, and FIG. 1B shows individual laser chips after cleavage. FIG. 3C shows the crystal axis of the hexagonal crystal on the C plane. FIG. 1 (b)
The substrate 102 is 6H-SiC having a hexagonal structure, and n-GaN, n-AlGaN, In
A layer 103 of GaN, p-AlGaN, p-GaN or the like is sequentially formed by epitaxial growth, and a stripe-shaped p-type electrode 101 is formed thereon. 1
05 denotes an n-type electrode. The crystal face 121 is made of SiC (1
The (-100) plane and the crystal plane 122 also indicate the (11-20) plane.

【0010】このような個々のレーザチップに分割する
ために、劈開前の基板に、図1(a)に示すように基板
裏面よりエッチング溝111および112をストライプ
電極101にそれぞれ垂直および平行な方向に形成す
る。垂直な方向の溝は溝間の幅が共振器長に等しくなる
ように形成し、平行な方向の溝はその位置が隣り合うス
トライプ電極間の大体真中にくるように形成する。垂直
方向の溝111が発光領域104に達するとこの部分が
損傷を受け、光共振器用の鏡面として十分な役割を果た
すことができず、レーザ発振をおこすことができない
が、本発明では垂直方向の溝は裏面より形成し、基板1
02の厚さが100〜200μmに比べてエピタキシャ
ル層は10μm以下のため、劈開用のガイド溝としての
エッチング溝111を十分に深く掘ることができ、劈開
を容易にすることができる。
In order to divide the laser chip into such individual laser chips, etching grooves 111 and 112 are formed on the substrate before cleavage in a direction perpendicular to and parallel to the stripe electrode 101 from the back surface of the substrate as shown in FIG. Formed. The grooves in the vertical direction are formed so that the width between the grooves is equal to the length of the resonator, and the grooves in the parallel direction are formed so that their positions are approximately in the middle between adjacent stripe electrodes. When the vertical groove 111 reaches the light-emitting region 104, this portion is damaged, cannot play a sufficient role as a mirror surface for an optical resonator, and cannot cause laser oscillation. The groove is formed from the back surface and the substrate 1
Since the thickness of the epitaxial layer is 10 μm or less as compared with 100 to 200 μm, the etching groove 111 serving as a cleavage guide groove can be dug sufficiently deep, and the cleavage can be facilitated.

【0011】ストライプ電極と平行な方向についても同
様に十分な深さのエッチング溝112を形成する。そし
て、まずストライプ電極と垂直な方向に刃を当てて力を
加えて劈開し、次に同様にストライプ電極と平行な方向
に刃を当てて力を加えて劈開する。ストライプ電極と垂
直な方向は(1−100)面、平行な方向は(11−2
0)面を切り出すことになる。
Similarly, an etching groove 112 having a sufficient depth is formed in a direction parallel to the stripe electrode. Then, first, a blade is applied in a direction perpendicular to the stripe electrode to apply a force to cleave, and then similarly, a blade is applied in a direction parallel to the stripe electrode to apply a force to cleave. The direction perpendicular to the stripe electrode is the (1-100) plane, and the direction parallel thereto is the (11-2) plane.
0) The plane is cut out.

【0012】図1(c)に示すように、六方結晶におい
てはC面に垂直な方向の劈開は、劈開が最も容易な(1
−100)面でも結晶の周期構造の任意の点で所望の劈
開方向131以外にも図中132および133で示され
る比較的容易に劈開される2つの方向が存在する。した
がってガイドとなる溝なくして数個のレーザチップの幅
にわたって一方向の劈開面を得るのは立方晶の結晶に比
べてはるかに難しい。(11−20)面は(1−10
0)面に比べて劈開が困難であるので、ガイドとなる溝
なくして一方向の劈開面をレーザチップの幅にわたって
得るのはさらに難しい。
As shown in FIG. 1C, in a hexagonal crystal, cleavage in the direction perpendicular to the C plane is the easiest cleavage (1
In the (-100) plane, there are two directions relatively easily cleaved indicated by 132 and 133 in the drawing other than the desired cleavage direction 131 at an arbitrary point in the periodic structure of the crystal. Therefore, it is much more difficult to obtain a one-way cleavage plane over the width of several laser chips without a groove serving as a guide as compared with a cubic crystal. The (11-20) plane is (1-10)
Since cleavage is more difficult than in the 0) plane, it is more difficult to obtain a one-way cleavage plane over the width of the laser chip without a groove serving as a guide.

【0013】また、SiCは非常に硬い結晶であるので
硬度の面からもガイド溝なしでの劈開は困難である。ガ
イド溝なしで六方晶基板を劈開したときの基板の分割の
様子を図3(c)に示す。図中、方向341は<1−1
00>方向、方向342は<11−20>方向であり、
所望の劈開方向を示す。このように、立方結晶の場合よ
りもはるかに高い確率で劈開方向からずれた方向に基板
が分割してしまう。
[0013] Since SiC is a very hard crystal, it is difficult to cleave without a guide groove from the viewpoint of hardness. FIG. 3C shows how the substrate is divided when the hexagonal substrate is cleaved without guide grooves. In the figure, the direction 341 is <1-1.
00> direction and direction 342 are <11-20> directions,
Indicates the desired cleavage direction. As described above, the substrate is divided in a direction shifted from the cleavage direction at a much higher probability than in the case of the cubic crystal.

【0014】しかし本発明によれば、エッチング溝11
1および112が劈開のガイド溝となり、従来の方法に
比べてはるかに高い確率で個々のレーザチップへの劈開
を成功させることができ、半導体レーザの製造歩留まり
を大幅に向上させることができる。図1(d)に、本発
明における六方晶基板の劈開の様子を示す。
However, according to the present invention, the etching grooves 11
The grooves 1 and 112 serve as cleavage guide grooves, so that the cleavage into individual laser chips can be successfully performed at a much higher probability than in the conventional method, and the production yield of the semiconductor laser can be greatly improved. FIG. 1D shows a state of cleavage of the hexagonal substrate according to the present invention.

【0015】このように、図3(c)に比べてはるかに
高い確率で基板を互いに垂直な方向に劈開することが可
能となる。本発明の効果は以上に述べたような六方晶の
結晶構造を有する半導体レーザに限るものでないことは
明らかであるが、本実施の形態で述べたように、請求項
2で述べたような六方晶基板のC面上にエピタキシャル
成長させた半導体結晶において特に顕著な効果を示す。
As described above, it becomes possible to cleave the substrates in directions perpendicular to each other with a much higher probability than in FIG. It is clear that the effect of the present invention is not limited to the semiconductor laser having the hexagonal crystal structure as described above, but as described in the present embodiment, the hexagonal crystal structure described in claim 2 is used. A particularly remarkable effect is exhibited in a semiconductor crystal epitaxially grown on the C-plane of a crystal substrate.

【0016】(実施の形態2)図2は請求項3に示した
方法によってエッチング溝を形成したことを特徴とす
る、(実施の形態1)と同様の半導体結晶の基板および
劈開後の個々のレーザチップを示す。図2(a)に示す
ように、ストライプ電極と垂直な方向にはストライプ電
極の下部を避けて基板裏面より破線状のエッチング溝2
11を形成し、平行な方向には隣り合うストライプ電極
の大体真中に連続したエッチング溝212を形成してい
る。
(Embodiment 2) FIG. 2 is similar to (Embodiment 1) in that an etching groove is formed by the method according to claim 3 and a substrate of a semiconductor crystal and individual parts after cleavage are formed. 3 shows a laser chip. As shown in FIG. 2 (a), in the direction perpendicular to the stripe electrode, avoid the lower part of the stripe electrode, and form a dotted etching groove 2 from the back surface of the substrate.
11 are formed, and a continuous etching groove 212 is formed substantially at the center of the adjacent stripe electrodes in the parallel direction.

【0017】この方法によれば、図2(b)に示すよう
に発光領域204の下部にはエッチング溝211が存在
しないので、図1(b)に示したような、エッチング溝
の方向が劈開方向からわずかにズレていることにより生
ずる段差106が発光領域204で生じにくく、さらに
歩留まりの向上した半導体レーザの製造方法を提供でき
る。なお、本実施の形態ではストライプ状電極を有する
半導体レーザを例として説明したが、本発明の効果はこ
れに限られるものではなく、別のストライプ構造の半導
体レーザにも適用できることは明らかであり、レーザチ
ップの幅に対し発光領域の幅が十分に小さい構造であれ
ば本発明を適用できる。
According to this method, since the etching groove 211 does not exist below the light emitting region 204 as shown in FIG. 2B, the direction of the etching groove is cleaved as shown in FIG. The step 106 caused by slight deviation from the direction is less likely to occur in the light emitting region 204, and a method of manufacturing a semiconductor laser with improved yield can be provided. In the present embodiment, a semiconductor laser having a stripe-shaped electrode has been described as an example, but the effect of the present invention is not limited to this, and it is apparent that the present invention can be applied to a semiconductor laser having another stripe structure. The present invention can be applied to a structure in which the width of the light emitting region is sufficiently smaller than the width of the laser chip.

【0018】(実施の形態3)本発明においては、実施
の形態1および2で述べたガイド溝の底と半導体のエピ
タキシャル成長層表面の距離が短いほど顕著な効果を得
ることができる。これを実現するためには、ガイド溝の
作成前に基板の裏面側を研磨することにより基板自体の
厚さを薄くするか、あるいは、ガイド溝を数10μm以
上の深さに深く形成すればよい。
(Embodiment 3) In the present invention, a remarkable effect can be obtained as the distance between the bottom of the guide groove and the surface of the semiconductor epitaxial growth layer described in Embodiments 1 and 2 becomes shorter. In order to realize this, the thickness of the substrate itself may be reduced by polishing the back surface side of the substrate before the formation of the guide groove, or the guide groove may be formed deep to several tens μm or more. .

【0019】基板の研磨は、ダイヤモンドの砥粒などを
用いればSiCのような硬い基板でも所望の厚さに研磨
することが可能である。このようにして劈開用のガイド
溝の作成前に基板を150μm程度以下に薄くすること
により、半導体レーザのチップの劈開をより高い確率で
成功させることができる。
For polishing the substrate, a hard substrate such as SiC can be polished to a desired thickness by using diamond abrasive grains or the like. By thus reducing the thickness of the substrate to about 150 μm or less before forming the cleavage guide groove, the cleavage of the semiconductor laser chip can be successfully performed with a higher probability.

【0020】また、数10μm以上の深さのガイド溝の
形成は、エッチングされやすい材料であればガイド溝の
エッチング用マスクを用いてウェットあるいはドライエ
ッチングにより形成可能である。また、SiCやサファ
イアのような硬い材料でもレーザ加工技術を駆使して深
い溝を形成することができる。さらに、試料基板の比抵
抗がある基準値以下であれば、火花放電による放電加工
も可能である。このようにしてガイド溝をより深く形成
することにより、互いに垂直な方向の劈開がより行いや
すくなり、実施の形態1および2で述べた本発明の効果
をより顕著なものにすることができる。
The guide groove having a depth of several tens of μm or more can be formed by wet or dry etching using a guide groove etching mask as long as the material is easily etched. Further, a deep groove can be formed even by using a hard material such as SiC or sapphire by making full use of a laser processing technique. Further, if the specific resistance of the sample substrate is equal to or less than a certain reference value, electric discharge machining by spark discharge is also possible. By forming the guide groove deeper in this manner, cleavage in directions perpendicular to each other is more easily performed, and the effects of the present invention described in the first and second embodiments can be made more remarkable.

【0021】[0021]

【発明の効果】以上のように本発明によれば、ストライ
プ状の発光領域を有する半導体レーザにおいて、基板側
よりストライプと垂直および平行な方向にエッチング等
により溝を形成しこの溝に沿って半導体結晶を劈開する
ことにより、半導体レーザの製造の歩留まりを向上させ
ることができる。
As described above, according to the present invention, in a semiconductor laser having a stripe-shaped light emitting region, a groove is formed by etching or the like in a direction perpendicular and parallel to the stripe from the substrate side, and the semiconductor is formed along the groove. By cleaving the crystal, the production yield of the semiconductor laser can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1における半導体基板およ
びレーザチップおよび結晶軸の方向を示す図
FIG. 1 shows a semiconductor substrate, a laser chip, and a direction of a crystal axis according to a first embodiment of the present invention.

【図2】本発明の実施の形態2における半導体基板およ
びレーザチップを示す図
FIG. 2 is a diagram showing a semiconductor substrate and a laser chip according to a second embodiment of the present invention.

【図3】従来の半導体レーザの製造方法における半導体
基板およびレーザチップを示す図
FIG. 3 is a view showing a semiconductor substrate and a laser chip in a conventional semiconductor laser manufacturing method.

【符号の説明】[Explanation of symbols]

101,201,301 ストライプ電極 102,202,302 半導体基板 104,204,304 発光領域 105,205,305 n型電極 106,306 劈開による段差 111,112,211,212,311 エッチング
溝 131,132,133 結晶軸の方向
101, 201, 301 Stripe electrodes 102, 202, 302 Semiconductor substrates 104, 204, 304 Light-emitting regions 105, 205, 305 N-type electrodes 106, 306 Steps 111, 112, 211, 212, 311 due to cleavage Etching grooves 131, 132, 133 direction of crystal axis

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石橋 明彦 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 上村 信行 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 長谷川 義晃 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Akihiko Ishibashi 1006 Kazuma Kadoma, Osaka Pref. Matsushita Electric Industrial Co., Ltd. 72) Inventor Yoshiaki Hasegawa 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】半導体結晶中にストライプ状の発光領域を
有する半導体レーザにおいて、上記半導体結晶の基板側
より上記ストライプと垂直および平行な方向に溝を形成
し上記溝に沿って上記半導体結晶を劈開することを特徴
とする半導体レーザの製造方法。
In a semiconductor laser having a stripe-shaped light emitting region in a semiconductor crystal, a groove is formed in a direction perpendicular and parallel to the stripe from the substrate side of the semiconductor crystal, and the semiconductor crystal is cleaved along the groove. A method of manufacturing a semiconductor laser.
【請求項2】半導体結晶が六方晶基板の(0001)面
すなわちC面上にエピタキシャル成長されたものである
ことを特徴とする請求項1に記載の半導体レーザの製造
方法。
2. The method according to claim 1, wherein the semiconductor crystal is epitaxially grown on a (0001) plane, that is, a C plane of a hexagonal substrate.
【請求項3】前記溝が少なくとも一方の方向で破線状に
形成されていることを特徴とする請求項1または2に記
載の半導体レーザの製造方法。
3. The method of manufacturing a semiconductor laser according to claim 1, wherein said groove is formed in a dashed shape in at least one direction.
【請求項4】前記溝をエッチングにより形成することを
特徴とする請求項1、2または3に記載の半導体レーザ
の製造方法。
4. The method according to claim 1, wherein the groove is formed by etching.
【請求項5】前記溝をレーザ加工により形成することを
特徴とする請求項1、2または3に記載の半導体レーザ
の製造方法。
5. The method according to claim 1, wherein said groove is formed by laser processing.
【請求項6】前記溝を放電加工により形成することを特
徴とする請求項1、2または3に記載の半導体レーザの
製造方法。
6. The method for manufacturing a semiconductor laser according to claim 1, wherein said groove is formed by electric discharge machining.
【請求項7】前記溝を形成する前に前記半導体結晶の基
板側を研磨して、基板の厚さを薄くする工程を具備する
ことを特徴とする請求項1から6のいずれか1項に記載
の半導体レーザの製造方法。
7. The method according to claim 1, further comprising a step of polishing the substrate side of the semiconductor crystal to reduce the thickness of the substrate before forming the groove. The manufacturing method of the semiconductor laser according to the above.
JP20994096A 1996-06-20 1996-08-08 Manufacture of semiconductor laser Pending JPH1070335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20994096A JPH1070335A (en) 1996-06-20 1996-08-08 Manufacture of semiconductor laser

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-159369 1996-06-20
JP15936996 1996-06-20
JP20994096A JPH1070335A (en) 1996-06-20 1996-08-08 Manufacture of semiconductor laser

Publications (1)

Publication Number Publication Date
JPH1070335A true JPH1070335A (en) 1998-03-10

Family

ID=26486192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20994096A Pending JPH1070335A (en) 1996-06-20 1996-08-08 Manufacture of semiconductor laser

Country Status (1)

Country Link
JP (1) JPH1070335A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017790A (en) * 2001-07-03 2003-01-17 Matsushita Electric Ind Co Ltd Nitride-based semiconductor device and manufacturing method
JP2005136093A (en) * 2003-10-29 2005-05-26 Nec Corp Semiconductor element and its manufacturing method
JP2005159278A (en) * 2003-07-11 2005-06-16 Nichia Chem Ind Ltd Nitride semiconductor laser device and method of manufacturing the same
JP2006203171A (en) * 2004-12-24 2006-08-03 Nichia Chem Ind Ltd Nitride semiconductor element and method of manufacturing same
JP2007012740A (en) * 2005-06-29 2007-01-18 Sumitomo Electric Ind Ltd Method of processing compound semiconductor substrate
US7459377B2 (en) * 2004-06-08 2008-12-02 Panasonic Corporation Method for dividing substrate
JP2009105466A (en) * 2009-02-16 2009-05-14 Sharp Corp Nitride semiconductor wafer, and method for manufacturing of nitride semiconductor element
JP2012156566A (en) * 2001-03-30 2012-08-16 Philips Lumileds Lightng Co Llc Forming optical element in light emitting device for improving light extraction efficiency
JP2013093619A (en) * 2013-02-05 2013-05-16 Sharp Corp Nitride semiconductor wafer
JP2013118250A (en) * 2011-12-02 2013-06-13 Nichia Chem Ind Ltd Semiconductor laser element and method of manufacturing the same
US8861561B2 (en) 2009-12-04 2014-10-14 Sharp Kabushiki Kaisha Semiconductor laser chip, semiconductor laser device, and semiconductor laser chip manufacturing method
CN105742957A (en) * 2016-03-24 2016-07-06 中国科学院上海微系统与信息技术研究所 Regeneration method of edge-emitting semiconductor laser cavity surface
US9553425B2 (en) 2014-09-10 2017-01-24 Nichia Corporation Methods of manufacturing semiconductor laser element and semiconductor laser device
CN115376904A (en) * 2022-08-18 2022-11-22 武汉敏芯半导体股份有限公司 Cleavage method of semiconductor optical chip

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012156566A (en) * 2001-03-30 2012-08-16 Philips Lumileds Lightng Co Llc Forming optical element in light emitting device for improving light extraction efficiency
JP2003017790A (en) * 2001-07-03 2003-01-17 Matsushita Electric Ind Co Ltd Nitride-based semiconductor device and manufacturing method
JP2005159278A (en) * 2003-07-11 2005-06-16 Nichia Chem Ind Ltd Nitride semiconductor laser device and method of manufacturing the same
JP4539077B2 (en) * 2003-10-29 2010-09-08 日本電気株式会社 Manufacturing method of semiconductor device
JP2005136093A (en) * 2003-10-29 2005-05-26 Nec Corp Semiconductor element and its manufacturing method
US7183585B2 (en) 2003-10-29 2007-02-27 Nec Corporation Semiconductor device and a method for the manufacture thereof
US7459377B2 (en) * 2004-06-08 2008-12-02 Panasonic Corporation Method for dividing substrate
JP2006203171A (en) * 2004-12-24 2006-08-03 Nichia Chem Ind Ltd Nitride semiconductor element and method of manufacturing same
JP2007012740A (en) * 2005-06-29 2007-01-18 Sumitomo Electric Ind Ltd Method of processing compound semiconductor substrate
JP2009105466A (en) * 2009-02-16 2009-05-14 Sharp Corp Nitride semiconductor wafer, and method for manufacturing of nitride semiconductor element
US8861561B2 (en) 2009-12-04 2014-10-14 Sharp Kabushiki Kaisha Semiconductor laser chip, semiconductor laser device, and semiconductor laser chip manufacturing method
JP2013118250A (en) * 2011-12-02 2013-06-13 Nichia Chem Ind Ltd Semiconductor laser element and method of manufacturing the same
JP2013093619A (en) * 2013-02-05 2013-05-16 Sharp Corp Nitride semiconductor wafer
US9553425B2 (en) 2014-09-10 2017-01-24 Nichia Corporation Methods of manufacturing semiconductor laser element and semiconductor laser device
US9735548B2 (en) 2014-09-10 2017-08-15 Nichia Corporation Semiconductor laser element and semiconductor laser device
CN105742957A (en) * 2016-03-24 2016-07-06 中国科学院上海微系统与信息技术研究所 Regeneration method of edge-emitting semiconductor laser cavity surface
CN115376904A (en) * 2022-08-18 2022-11-22 武汉敏芯半导体股份有限公司 Cleavage method of semiconductor optical chip

Similar Documents

Publication Publication Date Title
JP3822976B2 (en) Semiconductor device and manufacturing method thereof
JP4854275B2 (en) Nitride semiconductor light emitting device and manufacturing method thereof
JPH1070335A (en) Manufacture of semiconductor laser
JP4201725B2 (en) Manufacturing method of nitride semiconductor light emitting device
JP4539077B2 (en) Manufacturing method of semiconductor device
JP2008066475A (en) Compound semiconductor device and its manufacturing method
JPH10135140A (en) Hetero-epitaxial growing method, hetero-epitaxial layer and semiconductor light-emitting device
JP2009004645A (en) Nitride-based semiconductor laser device and manufacturing method therefor
JP2008244080A (en) Semiconductor device manufacturing method
JP4294077B2 (en) Manufacturing method of nitride semiconductor light emitting device
JP2002204031A (en) Semiconductor laser diode, and manufacturing method therefor
JPH10215031A (en) Semiconductor laser element
JP3199594B2 (en) Method of forming optical resonance surface of nitride semiconductor laser device
JP2005322786A (en) Nitride semiconductor element and its manufacturing method
US6667186B2 (en) Method of isolating semiconductor laser diode
JP2004241515A (en) Nitride semiconductor laser device and its manufacturing method
JP2005191547A (en) Semiconductor laser element and its manufacturing method
JP3424634B2 (en) Nitride semiconductor laser device
JPH0983081A (en) Fabrication of semiconductor laser element
JPH0552676B2 (en)
JP2001358404A (en) Semiconductor laser element and its manufacturing method
JP2006286785A (en) Semiconductor light emitting device and its manufacturing method
JP3327179B2 (en) Method for manufacturing nitride semiconductor laser device
JP2018195749A (en) Semiconductor laser element and method of manufacturing the same
JP2000082866A (en) Nitride semiconductor laser element and its manufacture