JPH10215031A - Semiconductor laser element - Google Patents

Semiconductor laser element

Info

Publication number
JPH10215031A
JPH10215031A JP1631397A JP1631397A JPH10215031A JP H10215031 A JPH10215031 A JP H10215031A JP 1631397 A JP1631397 A JP 1631397A JP 1631397 A JP1631397 A JP 1631397A JP H10215031 A JPH10215031 A JP H10215031A
Authority
JP
Japan
Prior art keywords
layer
layer film
film crystal
substrate
intermediate layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1631397A
Other languages
Japanese (ja)
Inventor
Kazu Kaneko
和 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HP Inc
Original Assignee
Hewlett Packard Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hewlett Packard Co filed Critical Hewlett Packard Co
Priority to JP1631397A priority Critical patent/JPH10215031A/en
Priority to EP98903741A priority patent/EP0956623A1/en
Priority to PCT/US1998/001494 priority patent/WO1998034304A1/en
Publication of JPH10215031A publication Critical patent/JPH10215031A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0201Separation of the wafer into individual elements, e.g. by dicing, cleaving, etching or directly during growth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4918Disposition being disposed on at least two different sides of the body, e.g. dual array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0201Separation of the wafer into individual elements, e.g. by dicing, cleaving, etching or directly during growth
    • H01S5/0202Cleaving
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0201Separation of the wafer into individual elements, e.g. by dicing, cleaving, etching or directly during growth
    • H01S5/0203Etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/0213Sapphire, quartz or diamond based substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • H01S5/32341Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm blue laser based on GaN or GaP

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To form a reflecting surface having high reflectance by forming an aluminum nitride intermediate layer on a substrate, whose cleavage is difficult, forming a light emitting element constituting layer on the intermediate layer, selectively etching the lower part of a layer constituting a resonator and cleaving the substrate. SOLUTION: On the substrate, whose cleavage is difficult, such as a saphire substrate 8 or the like, an intermediate layer 9 comprising aluminum nitride or the like is formed. On the intermediate layer 9, a clad layer, wherein an N-type GaN 10 is made to be the base, an active layer and the like, and a light emitting part comprising the clad layer and furthermore an N-type GaN and the like are deposited. Thereafter, the lower part of the intermediate layer 9 constituting a resonator is selectively etched, and the intermediate layer 9 is removed. One part of the part, which becomes the resonator, is floated in the physical cantilever shape, and a cleavage surface 15 is formed. Thus, the reflecting surface having the high reflectance can be formed, and the threshold- value current can be lowered.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、半導体レーザ・ダイオ
ードに関するものであり、さらに詳細にはへき開面を有
する半導体レーザー・ダイオードに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser diode, and more particularly to a semiconductor laser diode having a cleavage surface.

【0002】[0002]

【従来の技術】近年、半導体発光素子の開発が進み、さ
まざまな分野で応用されるようになってきた。従来、半
導体発光素子の開発は赤色および黄色半導体発光素子の
開発が先行し青色半導体発光素子の開発は遅れていた。
半導体発光素子はLEDとLD(レーザ・ダイオード)
に分けられる。LEDとしての応用分野を考えると、フ
ルカラーのカラー画像を出すためには、光の三原色であ
る赤色、黄色、青色が必要であり、青色半導体LEDの
開発が待たれていた。また、交通信号機のシグナルとし
ての応用分野には特に大きな期待が持たれている。これ
は、既に一部試験的に採用されており、発光LEDを使
った信号機は点灯していない色が見えないため誤認が少
ない。さらに低消費電力、高信頼性、長寿命という長所
も備えている。次にLD(レーザ・ダイオード)として
の応用分野では、赤色レーザに比較して青色レーザーを
使うと波長が短いので高密度のデータが記憶でき、これ
によって長時間の動画がコンパクトディスクに記録でき
る。この様な様々な応用分野から実用的な青色半導体発
光素子の開発が待たれていた。
2. Description of the Related Art In recent years, semiconductor light emitting devices have been developed and applied to various fields. Conventionally, the development of semiconductor light emitting devices has been preceded by the development of red and yellow semiconductor light emitting devices, and the development of blue semiconductor light emitting devices has been delayed.
Semiconductor light emitting devices are LED and LD (laser diode)
Divided into Considering the application field as an LED, in order to produce a full-color image, three primary colors of light, red, yellow and blue, are required, and development of a blue semiconductor LED has been awaited. In addition, there is a particularly high expectation in the application field as a signal of a traffic signal. This has already been adopted on a trial basis, and a traffic light using a light-emitting LED does not show a color that is not lit, so that there is little misunderstanding. It also has the advantages of low power consumption, high reliability and long life. Next, in the field of application as an LD (laser diode), using a blue laser as compared to a red laser allows a high-density data to be stored since the wavelength is short, and thus a long-time moving image can be recorded on a compact disc. Development of a practical blue semiconductor light emitting device has been awaited from such various application fields.

【0003】ここ数年来、青色半導体LEDの開発が飛
躍的に進み、赤色及び黄色半導体LEDと比較して、遜
色ない高信頼性、高輝度の特性を持つ製品が一部市販さ
れるようになってきた。しかしながら、青色半導体レー
ザ・ダイオードに関しては、試作段階での成果は報告さ
れているが、赤色および黄色半導体レーザ・ダイオード
と比べて、連続発振時間、しきい値電流、信頼性などの
面からはまだ改良の余地がある。
In recent years, the development of blue semiconductor LEDs has progressed dramatically, and some products having high reliability and high brightness characteristics comparable to those of red and yellow semiconductor LEDs have become commercially available. Have been. However, while blue semiconductor laser diodes have been reported at the prototype stage, they have still been compared with red and yellow semiconductor laser diodes in terms of continuous oscillation time, threshold current, and reliability. There is room for improvement.

【0004】一般に、半導体レーザ・ダイオードでは、
図1に示すように、PN接合間にある活性領域(発光領
域)における電子の再結合による誘導放出発光を利用す
る。活性層の内部でつぎつぎに誘導放出が起こり、光は
増幅されながら両端面(反射面2)で反射を繰り返し発
振にいたる。
Generally, in a semiconductor laser diode,
As shown in FIG. 1, stimulated emission light is utilized by recombination of electrons in an active region (light emitting region) between PN junctions. Stimulated emission occurs one after another inside the active layer, and the light is repeatedly reflected on both end faces (reflection surface 2) while being amplified, leading to oscillation.

【0005】半導体レーザでは、反射面2は容易に形成
することが出来る。活性層の構成する結晶層は、屈折率
が空気に比べて非常に大きいため、空気に対して充分大
きな反射率を持っている。この反射面2は結晶の結晶面
に沿って単に割る、すなわちへき開することによって得
られる。図2に示すように、活性層からなる導波路を矢
印Bの方向にへき開することにより、反射面2が得られ
る。半導体レーザの基板として比較的柔らかいGaAs等を
使用した場合には、容易にへき開できる。すなわち、ス
クライバをもちいて基板の裏側に切れ目を入れてから基
板と一緒に割る。あるいは、基板の端にブレードを当
て、結晶面に沿って基板と一緒に割る。割ることにより
導波路のへき開面が反射面となる。これによって、レー
ザの共振器さらに半導体レーザが形成される。
In a semiconductor laser, the reflection surface 2 can be easily formed. Since the refractive index of the crystal layer constituting the active layer is much larger than that of air, the crystal layer has a sufficiently large reflectance to air. This reflecting surface 2 is obtained by simply breaking, ie cleaving, along the crystal plane of the crystal. As shown in FIG. 2, the reflection surface 2 is obtained by cleaving the waveguide made of the active layer in the direction of arrow B. When relatively soft GaAs or the like is used as the substrate of the semiconductor laser, it can be easily cleaved. That is, a cut is made on the back side of the substrate using a scriber, and then the substrate is split together with the substrate. Alternatively, a blade may be applied to the edge of the substrate and split along with the substrate along the crystal plane. By splitting, the cleavage surface of the waveguide becomes the reflection surface. Thus, a laser resonator and a semiconductor laser are formed.

【0006】ところが、青色半導体レーザの場合には従
来方法が使えない場合がある。青色半導体レーザは、一
般に基板としてサファイアを用いる。サファイア基板の
上にGaNの中間層を堆積し、その上にGaNをベースにし
た、クラッド層、活性層などからなる発光部を形成する
方法がよく知られている。中間層にGaNを用いる理由
は、平坦で高品位な膜が形成出来るからである。その中
間層の上にGaNをベースとする多層膜結晶を成長させ
る。問題は、活性層を形成した後へき開面を造るとき、
サファイア基板が硬すぎるために容易には割れないこと
である。
However, in the case of a blue semiconductor laser, there are cases where the conventional method cannot be used. A blue semiconductor laser generally uses sapphire as a substrate. It is well known that a GaN intermediate layer is deposited on a sapphire substrate, and a GaN-based light-emitting portion composed of a cladding layer, an active layer, and the like is formed thereon. The reason why GaN is used for the intermediate layer is that a flat and high-quality film can be formed. A GaN-based multilayer crystal is grown on the intermediate layer. The problem is that when creating a cleaved surface after forming the active layer,
The sapphire substrate is too hard to break easily.

【0007】無理やり割っても、サファイア、中間層の
GaN、および活性層を形成するGaNは結晶的に一体化され
ており、所望の活性領域面でのへき開が困難である。言
い換えると、レーザ発振の共振器が必ず出来る保証は得
られないことである。そこで反射面を生成する方法とし
てエッチング法が用いられている。これは活性層の両面
を反応性イオン・エッチング法によって部分的に除去
し、このとき出来る端面を反射面とするものである。し
かしながら、この方法の問題点は、この反射面が完全な
鏡面とはならないことである。この表面には微細な凹凸
ができる。反射面に凹凸が出来ると活性層内で発生した
光が反射面に反射する際に乱反射が起こり、効率が低下
する。その結果、レーザ発振のためのしきい値電流が大
きくなる。
[0007] Even if you forcibly crack,
GaN and GaN forming the active layer are crystallographically integrated, and it is difficult to cleave a desired active region. In other words, there is no guarantee that a laser oscillation resonator can always be obtained. Therefore, an etching method is used as a method for generating a reflection surface. In this method, both surfaces of the active layer are partially removed by a reactive ion etching method, and an end face formed at this time is used as a reflection surface. However, a problem with this method is that the reflecting surface is not a perfect mirror. This surface has fine irregularities. If irregularities are formed on the reflection surface, irregular reflection occurs when light generated in the active layer is reflected on the reflection surface, and the efficiency is reduced. As a result, the threshold current for laser oscillation increases.

【0008】[0008]

【発明が解決しようとする課題】青色半導体レーザとし
て、サファイア基板の上に、GaNを中間層として用い、
その上にGaNをベースにした、クラッド層、活性層など
からなる発光部を形成する方法が知られている。レーザ
の共振面である反射面を生成する方法としてエッチング
法が用いられている。これは活性層の両面を、反応性イ
オン・エッチング法によって、部分的に除去し、このと
き出来る端面を反射面とするものである。しかしなが
ら、この方法の問題点は、反射面が完全な鏡面とはなら
ず、表面には微細な凹凸が出来る、反射面に凹凸が出来
ると活性層内で発生した光が反射面に反射する際に乱反
射が起こり、効率が低下することである。その結果、レ
ーザ発振のためのしきい値電流が大きくなる。これは余
分な熱が発生し信頼性の低下にもつながる。従って本明
細書では、これらの問題点を解決するために、半導体レ
ーザ発振のために高い反射率を有する反射面(共振面)
の提供、及び散乱の少ない反射面をへき開により確実に
つくる方法を開示する。
SUMMARY OF THE INVENTION As a blue semiconductor laser, GaN is used as an intermediate layer on a sapphire substrate,
There is known a method of forming a GaN-based light-emitting portion composed of a cladding layer, an active layer, and the like thereon. An etching method is used as a method for generating a reflection surface which is a laser resonance surface. In this method, both surfaces of the active layer are partially removed by a reactive ion etching method, and an end surface formed at this time is used as a reflection surface. However, the problem with this method is that the reflection surface does not become a perfect mirror surface and fine irregularities are formed on the surface. If the reflection surface has irregularities, light generated in the active layer is reflected on the reflection surface. Irregular reflection occurs on the surface, and the efficiency is reduced. As a result, the threshold current for laser oscillation increases. This generates extra heat and leads to a decrease in reliability. Therefore, in this specification, in order to solve these problems, a reflection surface (resonance surface) having a high reflectance for semiconductor laser oscillation is used.
And a method for reliably forming a reflecting surface with less scattering by cleavage.

【0009】[0009]

【課題を解決するための手段】サファイア等基板等のへ
き開が困難な基板の上に、AlN(窒化アルミニウム)等
から成る中間層を形成する。 その中間層の上に、共振
器となる活性層からなる発光素子構成層を形成する。そ
の後、共振器を構成する層の下の部分を選択的にエッチ
ングすることにより削り取る。これにより、共振器の一
部は、物理的にサファイア基板から浮きあがる。この浮
き上がった共振器を、超音波法あるいはブレ−ドを当て
るなどの従来方法でへき開し、反射利率の高い反射面を
形成する。
An intermediate layer made of AlN (aluminum nitride) or the like is formed on a substrate such as sapphire, which is difficult to cleave. On the intermediate layer, a light emitting element constituting layer composed of an active layer serving as a resonator is formed. Thereafter, a portion under the layer constituting the resonator is removed by selective etching. Thereby, a part of the resonator physically floats from the sapphire substrate. The raised resonator is cleaved by an ultrasonic method or a conventional method such as applying a blade to form a reflection surface having a high reflection rate.

【0010】[0010]

【実施例】【Example】

実施例1: 基板上に単結晶膜を成長させる場合、成長
させる単結晶膜の格子定数(結晶を構成する原子間の距
離)とほぼ同じ格子定数の単結晶基板を使うのが一般的
である。単結晶基板の結晶配列が、その上に成長させる
膜の原子配列に強い影響を及ぼすためである。膜と同じ
格子定数の基板を選べば、基板上に成長させる膜も単結
晶になりやすい。しかしGaNの場合、GaNの格子定数とほ
ぼ同じ格子の基板がない。このため格子定数が15.4 %も
違う単結晶サファイア( Al2O3)を基板に使うのが一般
的である。サファイア基板の表面は、そのままでは青色
レーザ発振に必要な窒化物単層結晶膜あるいは多層結晶
膜は形成できない。そこで、サファイア基板と窒化物結
晶膜の間に中間層を形成する。
Embodiment 1: When growing a single crystal film on a substrate, it is common to use a single crystal substrate having a lattice constant substantially equal to the lattice constant (distance between atoms constituting the crystal) of the single crystal film to be grown. . This is because the crystal arrangement of the single crystal substrate has a strong influence on the atomic arrangement of a film grown thereon. If a substrate having the same lattice constant as the film is selected, the film grown on the substrate is likely to be single crystal. However, in the case of GaN, there is no substrate having a lattice substantially equal to the lattice constant of GaN. For this reason, it is common to use single crystal sapphire (Al 2 O 3 ) having a lattice constant different by 15.4% for the substrate. On the surface of the sapphire substrate, a nitride single-layer crystal film or a multilayer crystal film required for blue laser oscillation cannot be formed as it is. Therefore, an intermediate layer is formed between the sapphire substrate and the nitride crystal film.

【0011】図3に示すように、この中間層はAlNで堆
積する。このAlN層は、50nmないし200nmの厚さを有し、
MOCVD(有機金属CVD)法により約500℃の比較的低温で
形成させる。中間層としては、平坦な膜が容易に形成で
き、その上の窒化物単結晶膜の生成が容易であること、
また選択エッチングの容易性などを考慮するとAlNが好
適である。さらに図3に示すように、AlNの上にn型Ga
N、GaNをベースにしたクラッド層、活性層等、およびク
ラッド層から成る発光部、さらにp型GaNなどを堆積し
ていく。これによりレーザ・ダイオードの基本部分が構
成できる。次に図4に示すように、両側をエッチングし
マイナス電極側となるn型GaN を露出させる。ちなみに
p型GaNはプラス電極側となる。
As shown in FIG. 3, this intermediate layer is deposited with AlN. The AlN layer has a thickness of 50 nm to 200 nm,
It is formed at a relatively low temperature of about 500 ° C. by MOCVD (organic metal CVD). As the intermediate layer, a flat film can be easily formed, and a nitride single crystal film thereon can be easily formed.
Also, considering the ease of selective etching and the like, AlN is preferable. Further, as shown in FIG. 3, n-type Ga
A light emitting portion composed of a cladding layer based on N and GaN, an active layer and the like, and a cladding layer, and further a p-type GaN and the like are deposited. This makes up the basic part of a laser diode. Next, as shown in FIG. 4, both sides are etched to expose n-type GaN on the negative electrode side. Incidentally, p-type GaN is on the positive electrode side.

【0012】図5はウエーハ上に本発明により形成され
たレ−ザ・ダイオードの基本部分を示す。レ−ザ・ダイ
オードを構成しない部分はサファイア基板まで反応性イ
オン・エッチングで取り除く。導波路となる窒化物多結
晶膜からなる活性層、クラッド層部分はn型GaN部分よ
り長めに残しておく。斜線部分はAlNからなる中間層を
示す。選択エッチングにより、長めに残しておいた導波
路となる部分の下のAlN中間層を取り除く。図6にはこ
の部分のAlN中間層が取り除かれた後のウエーハを示
す。これにより、導波路すなわち共振器となる部分の一
部を物理的に、片持ち梁状に浮かすことが出来る。ここ
で、図7に示すように、この共振器部分にC方向にブレ
ードを当てる、あるいは超音波振動を当てることにより
へき開しへき開面15をつくる。このように固いサファ
イア基板に触れることなく、容易に導波路をへき開し所
望の反射率を有する反射面が形成できる。図8に示すよ
うに、これらの導波路を横方向および縦方向にダイシン
グによって切り離す。その後切り離された導波路をパッ
ケージに入れ、n型GaN電極およびp型GaN電極に配線す
ることにより、青色半導体レーザが形成される。
FIG. 5 shows the basic parts of a laser diode formed according to the present invention on a wafer. The portion not forming the laser diode is removed by reactive ion etching up to the sapphire substrate. The active layer and the cladding layer made of a nitride polycrystalline film serving as a waveguide are left longer than the n-type GaN part. The hatched portion indicates the intermediate layer made of AlN. By selective etching, the AlN intermediate layer under the portion that becomes the waveguide, which has been left longer, is removed. FIG. 6 shows the wafer after this portion of the AlN intermediate layer has been removed. Thus, a part of the waveguide, that is, the part that becomes the resonator can be physically floated in a cantilever shape. Here, as shown in FIG. 7, a cleavage surface 15 is formed by applying a blade to the resonator portion in the direction C or applying ultrasonic vibration. Thus, the waveguide can be easily cleaved without touching the hard sapphire substrate, and a reflection surface having a desired reflectance can be formed. As shown in FIG. 8, these waveguides are separated by dicing in the horizontal and vertical directions. Thereafter, the separated waveguide is placed in a package and wired to the n-type GaN electrode and the p-type GaN electrode, whereby a blue semiconductor laser is formed.

【0013】実施例2: 実施例1はへき開を行って共
振器を形成した後で、ダイシングを行って各チップを切
り離したが、本発明の応用例の一つとして、横方向のダ
イシングの後で選択エッチングすることが出来る。これ
によりエッチングのプロセスの一部を省くことが出来
る。これについて説明する。n型GaN部分までエッチン
グするところまでは、実施例1と同じなので割愛する。
ただし、反応性イオン・エッチングによりサファイア基
板まで削り取るプロセスは不要である。図9は導波路が
形成されているウエーハをDで示す横方向にダイシング
したものを示す。ダイシングによって、反応性イオン・
エッチングすることなく中間層であるAlN層が外部に露
出する。ちなみに、ダイシングした面は凹凸が多く反射
鏡としては使えない。このAlN層を選択エッチングする
ことにより、導波路部分およびN型GaN部分が片もち梁状
に物理的にサファイア面から浮かびあがる。図10はこ
の状態を示す。14で示すクロス斜線の部分はエッチン
グされて空洞になった部分を示している。この後、図1
1に示すように、E方向に沿ってへき開し反射面を形成
する。その後、図12に示すように縦方向に切り離し、
パッケージに入れn型GaN電極およびp型GaN電極に配線
することは同様である。以上の方法により、選択エッチ
ングを行うためにサファイア基板まで反応性イオン・エ
ッチングを行いAlN層を露出させるプロセスを省くこと
が出来る。
Embodiment 2 In Embodiment 1, dicing was performed to separate each chip after cleavage was performed to form a resonator. As one application example of the present invention, after dicing in the horizontal direction, To perform selective etching. Thereby, a part of the etching process can be omitted. This will be described. The description up to the point of etching up to the n-type GaN portion is the same as that of the first embodiment, and will not be repeated.
However, there is no need for a process of cutting down to the sapphire substrate by reactive ion etching. FIG. 9 shows a wafer on which a waveguide is formed, which is diced in the horizontal direction indicated by D. By dicing, reactive ions
The AlN layer as the intermediate layer is exposed to the outside without etching. Incidentally, the diced surface has many irregularities and cannot be used as a reflector. By selectively etching this AlN layer, the waveguide portion and the N-type GaN portion are physically lifted from the sapphire surface in a cantilevered beam shape. FIG. 10 shows this state. The cross-hatched portion indicated by 14 indicates a portion that has been etched to form a cavity. After this, FIG.
As shown in FIG. 1, cleavage is performed along the E direction to form a reflection surface. Then, as shown in FIG.
The wiring in the n-type GaN electrode and the p-type GaN electrode in the package is the same. According to the above method, the process of performing reactive ion etching to the sapphire substrate to perform selective etching and exposing the AlN layer can be omitted.

【0014】[0014]

【発明の効果】以上のように、本発明により、サファイ
ア基板のように非常に固く加工が困難な基板上に半導体
レーザを構成する場合に、従来方法より簡単にへき開面
を有する青色レーザ半導体が提供できる。また、従来の
エッチング法による反射面形成方法と比較しても、より
高い反射率を持つ反射面が実現でき、発振のためのしき
い値電流を低くすることが出来る。これにより、高信頼
性かつ長寿命の半導体レーザーが提供できる。本明細書
に開示した例だけではなく、広範囲の応用に適用できる
ことは明らかである。
As described above, according to the present invention, when a semiconductor laser is formed on a substrate that is very hard and difficult to process, such as a sapphire substrate, a blue laser semiconductor having a cleavage surface can be formed more easily than the conventional method. Can be provided. Further, as compared with a conventional method of forming a reflection surface by an etching method, a reflection surface having a higher reflectance can be realized, and a threshold current for oscillation can be reduced. Thereby, a highly reliable and long-life semiconductor laser can be provided. Obviously, it is applicable to a wide range of applications, not just the examples disclosed herein.

【図面の簡単な説明】[Brief description of the drawings]

【図1】半導体レーザにおける再結合による発光を示す
図である。
FIG. 1 is a diagram showing light emission due to recombination in a semiconductor laser.

【図2】へき開による反射面の形成を示す図である。FIG. 2 is a diagram showing formation of a reflecting surface by cleavage.

【図3】窒化物層の堆積を示す図である。FIG. 3 shows the deposition of a nitride layer.

【図4】エッチングによるn型GaNの露出を示す図であ
る。
FIG. 4 is a diagram showing exposure of n-type GaN by etching.

【図5】ウエーハ上のレーザチップの等角図である。FIG. 5 is an isometric view of a laser chip on a wafer.

【図6】ウエーハ上のレーザチップの等角図である。FIG. 6 is an isometric view of a laser chip on a wafer.

【図7】ウエーハ上のレーザチップの等角図である。FIG. 7 is an isometric view of a laser chip on a wafer.

【図8】ダイシングされたレーザチップの等角図であ
る。
FIG. 8 is an isometric view of a diced laser chip.

【図9】ウエーハ上のレーザチップの等角図である。FIG. 9 is an isometric view of a laser chip on a wafer.

【図10】ウエーハ上のレーザチップの等角図である。FIG. 10 is an isometric view of a laser chip on a wafer.

【図11】ウエーハ上のレーザチップの等角図である。FIG. 11 is an isometric view of a laser chip on a wafer.

【図12】ダイシングされたレーザチップの等角図であ
る。
FIG. 12 is an isometric view of a diced laser chip.

【符号の説明】[Explanation of symbols]

1:反射面1 2:反射面2 3:p型半導体 4:n型半導体 5:正電極 6:負電極 7:活性領域(発光領域) 8:サファイア基板 9:AlN中間層 10:n型GaN 11:クラッド層 12:活性層 13: p型GaN 14:選択エッチングされたAlN層 15:へき開面 1: Reflecting surface 1 2: Reflecting surface 2 3: P-type semiconductor 4: N-type semiconductor 5: Positive electrode 6: Negative electrode 7: Active region (light-emitting region) 8: Sapphire substrate 9: AlN intermediate layer 10: n-type GaN 11: clad layer 12: active layer 13: p-type GaN 14: selectively etched AlN layer 15: cleaved surface

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】へき開が困難な基板上に形成された、選択
エッチング可能な中間層、およびへき開可能な単層膜結
晶または多層膜結晶を有する半導体素子において、該単
層膜結晶または多層膜結晶の下に位置する該中間層を選
択エッチングすることにより、該単層膜結晶または多層
膜結晶を片もち梁状に浮かし、該単層膜結晶または多層
膜結晶をへき開することにより形成される共振器を有す
る半導体レーザ素子。
In a semiconductor device having a selectively etchable intermediate layer and a cleavable single-layer film crystal or a multi-layer film crystal formed on a substrate which is difficult to cleave, said single-layer film crystal or a multi-layer film crystal By selectively etching the intermediate layer located below the single-layer film crystal or the multi-layer film crystal, the single-layer film crystal or the multi-layer film crystal is floated in a beam shape and the resonance is formed by cleaving the single-layer film crystal or the multi-layer film crystal. Semiconductor laser device having a cavity.
【請求項2】前記へき開可能な単層膜結晶または多層膜
結晶が窒化物半導体結晶であることを特徴とする請求項
1に記載の半導体レーザ素子。
2. The semiconductor laser device according to claim 1, wherein said cleavable single-layer film crystal or multi-layer film crystal is a nitride semiconductor crystal.
【請求項3】前記選択エッチング可能な中間層がAlNで
あることを特徴とする請求項1に記載の半導体レーザ素
子。
3. The semiconductor laser device according to claim 1, wherein said selectively etchable intermediate layer is AlN.
【請求項4】前記へき開が困難な基板がサファイアであ
ることを特徴とする請求項1に記載の半導体レーザ素
子。
4. The semiconductor laser device according to claim 1, wherein said substrate difficult to cleave is sapphire.
【請求項5】へき開が困難な基板上に形成された、選択
エッチング可能な中間層、およびへき開可能な単層膜結
晶または多層膜結晶を有する半導体素子において、該単
層膜結晶または多層膜結晶の下に位置する該中間層を選
択エッチングすることにより、該単層膜結晶または多層
膜結晶を片もち梁状に浮かし、該単層膜結晶または多層
膜結晶をへき開することにより半導体レーザ素子の共振
器を形成する方法。
5. A semiconductor device having a selectively etchable intermediate layer and a cleavable single-layer film crystal or a multi-layer film crystal formed on a substrate which is difficult to cleave. By selectively etching the intermediate layer located below the single-layer film crystal or the multi-layer film crystal, the single-layer film crystal or the multi-layer film crystal is floated in a beam shape, and the single-layer film crystal or the multi-layer film crystal is cleaved. A method for forming a resonator.
【請求項6】前記へき開可能な単層膜結晶または多層膜
結晶が窒化物半導体結晶であることを特徴とする請求項
5に記載の半導体レーザ素子の共振器を形成する方法。
6. The method for forming a resonator of a semiconductor laser device according to claim 5, wherein said cleavable single-layer film crystal or multi-layer film crystal is a nitride semiconductor crystal.
【請求項7】前記選択エッチング可能な中間層がAlNで
あることを特徴とする請求項5に記載の半導体レーザ素
子の共振器を形成する方法。
7. The method according to claim 5, wherein the selectively etchable intermediate layer is AlN.
【請求項8】前記へき開が困難な基板がサファイアであ
ることを特徴とする請求項5に記載の半導体レーザ素子
の共振器を形成する方法。
8. The method according to claim 5, wherein the substrate that is difficult to cleave is sapphire.
JP1631397A 1997-01-30 1997-01-30 Semiconductor laser element Pending JPH10215031A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP1631397A JPH10215031A (en) 1997-01-30 1997-01-30 Semiconductor laser element
EP98903741A EP0956623A1 (en) 1997-01-30 1998-01-27 Semiconductor laser device
PCT/US1998/001494 WO1998034304A1 (en) 1997-01-30 1998-01-27 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1631397A JPH10215031A (en) 1997-01-30 1997-01-30 Semiconductor laser element

Publications (1)

Publication Number Publication Date
JPH10215031A true JPH10215031A (en) 1998-08-11

Family

ID=11913037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1631397A Pending JPH10215031A (en) 1997-01-30 1997-01-30 Semiconductor laser element

Country Status (3)

Country Link
EP (1) EP0956623A1 (en)
JP (1) JPH10215031A (en)
WO (1) WO1998034304A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103460A (en) * 2005-09-30 2007-04-19 Sanyo Electric Co Ltd Semiconductor laser device and its manufacturing method
JP2008252030A (en) * 2007-03-30 2008-10-16 Sanyo Electric Co Ltd Semiconductor laser element and its fabrication process
WO2011121911A1 (en) * 2010-03-30 2011-10-06 豊田合成株式会社 Semiconductor light-emitting element

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU747260B2 (en) 1997-07-25 2002-05-09 Nichia Chemical Industries, Ltd. Nitride semiconductor device
JP2000244068A (en) * 1998-12-22 2000-09-08 Pioneer Electronic Corp Nitride semiconductor laser and fabrication thereof
JP3770014B2 (en) 1999-02-09 2006-04-26 日亜化学工業株式会社 Nitride semiconductor device
EP1168539B1 (en) 1999-03-04 2009-12-16 Nichia Corporation Nitride semiconductor laser device
US6309803B1 (en) * 1999-07-01 2001-10-30 Lumenon, Innovative Lightwave Technology, Inc. On-substrate cleaving of sol-gel waveguide
TWI362769B (en) 2008-05-09 2012-04-21 Univ Nat Chiao Tung Light emitting device and fabrication method therefor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6177385A (en) * 1984-09-25 1986-04-19 Fujitsu Ltd Manufacture of photosemiconductor device
JPS61154193A (en) * 1984-12-27 1986-07-12 Nec Corp Integrated semiconductor laser
JPH0716077B2 (en) * 1985-10-11 1995-02-22 三菱電機株式会社 Method of manufacturing semiconductor laser device
DE69204828T2 (en) * 1992-06-09 1996-05-02 Ibm Manufacture of laser diodes with cleavage faces on a complete wafer.
US5604763A (en) * 1994-04-20 1997-02-18 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor laser diode and method for producing same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103460A (en) * 2005-09-30 2007-04-19 Sanyo Electric Co Ltd Semiconductor laser device and its manufacturing method
JP2008252030A (en) * 2007-03-30 2008-10-16 Sanyo Electric Co Ltd Semiconductor laser element and its fabrication process
US7822087B2 (en) 2007-03-30 2010-10-26 Sanyo Electric Co., Ltd. Semiconductor laser device and method of manufacturing the same
WO2011121911A1 (en) * 2010-03-30 2011-10-06 豊田合成株式会社 Semiconductor light-emitting element
JP2011211074A (en) * 2010-03-30 2011-10-20 Toyoda Gosei Co Ltd Semiconductor light-emitting element
US9054269B2 (en) 2010-03-30 2015-06-09 Toyoda Gosei Co., Ltd. Semiconductor light-emitting device

Also Published As

Publication number Publication date
WO1998034304A1 (en) 1998-08-06
EP0956623A1 (en) 1999-11-17

Similar Documents

Publication Publication Date Title
US5604763A (en) Group III nitride compound semiconductor laser diode and method for producing same
US5814532A (en) Method of manufacturing semiconductor laser
KR100483049B1 (en) A METHOD OF PRODUCING VERTICAL GaN LIGHT EMITTING DIODES
JPH08330628A (en) Light-emitting semiconductor element and its manufacture
JP4617907B2 (en) Optically integrated semiconductor light emitting device
JP2001053056A (en) Method for separating epitaxial layer from substrate and transporting it to another substrate
JP2002246698A (en) Nitride semiconductor light-emitting device and method of manufacturing the same
JPH10321910A (en) Light-emitting semiconductor element
US8367443B2 (en) Method of manufacturing semiconductor light emitting device
JP4539077B2 (en) Manufacturing method of semiconductor device
JP3691934B2 (en) Gallium nitride compound semiconductor light emitting device and method for manufacturing the same
JPH10215031A (en) Semiconductor laser element
JP4493041B2 (en) Nitride semiconductor light emitting device
JP2000101138A (en) Semiconductor light emitting element
US20040169185A1 (en) High luminescent light emitting diode
JP3790677B2 (en) Semiconductor light emitting device and manufacturing method thereof
KR100421224B1 (en) Method of isolating semiconductor laser diode
JP2000077770A (en) Semiconductor laser and formation method of there
JPH09219560A (en) Manufacture of nitride semiconductor light emitting element
KR100957437B1 (en) Seperating method of semiconductor laser diode
JP2001358404A (en) Semiconductor laser element and its manufacturing method
JP3327179B2 (en) Method for manufacturing nitride semiconductor laser device
JP2000004066A (en) Manufacture of nitride semiconductor laser element
JP2003008145A (en) Semiconductor laser and its manufacturing method
JP3940729B2 (en) Semiconductor light emitting device and manufacturing method thereof