JPS6177385A - Manufacture of photosemiconductor device - Google Patents

Manufacture of photosemiconductor device

Info

Publication number
JPS6177385A
JPS6177385A JP59198727A JP19872784A JPS6177385A JP S6177385 A JPS6177385 A JP S6177385A JP 59198727 A JP59198727 A JP 59198727A JP 19872784 A JP19872784 A JP 19872784A JP S6177385 A JPS6177385 A JP S6177385A
Authority
JP
Japan
Prior art keywords
width
cleavage
optical semiconductor
semiconductor element
beam portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59198727A
Other languages
Japanese (ja)
Inventor
Osamu Wada
修 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59198727A priority Critical patent/JPS6177385A/en
Publication of JPS6177385A publication Critical patent/JPS6177385A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To locate the cleavage surface, produced by breaking a beam part, almost as designed, by a method wherein, in forming the photo emission surfce of the title device by micro cleavage, a beam part to be removed by cleavage is so shaped as to be narrower toward the photo emission surface of a photo conductor semiconductor element, and as to be wider on the farther side. CONSTITUTION:The width at the joint of a beam pat 10A, i.e on the closer side to the photo emission surface of a semiconductor laser is narrower, and the width on the farther side is wider. Here, a larger width means a width enough to have no trouble in pressure application, regardless of either mechanical force or ultrasonic waves, at the time of breaking the beam part 10A, whereas a small width may be a width to give no allowance for abuttment of e.g. a jig which applies pressure. Such a formation of the beam pat 10A enables the position 10q of the cleavage surface to be reproduced always as designed. The shape of the beam pat 10A can be obtained by forming the mask film pattern in such a manner, and the other processes are the same as by the conventional technique.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体レーザ或いは端面放射型発光ダイオー
ド等の光放射面を局所的劈開に依って形成する工程を必
要とする光半導体装置の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to the production of optical semiconductor devices that require a step of forming a light emitting surface of a semiconductor laser, an edge-emitting light emitting diode, etc. by local cleavage. Regarding the method.

〔従来の技術〕[Conventional technology]

近年、光集積回路についての開発・研究が盛んであり、
その場合、該光集積回路には、当然、半導体レーザが組
み込まれる。
In recent years, development and research on optical integrated circuits has been active.
In that case, a semiconductor laser is naturally incorporated into the optical integrated circuit.

従来、個別形式の半導体レーザに於ける光放射面(鏡面
)は劈開に依って形成されていて、現在のところ、この
技法に依る鏡面が最高の性能を示している。
Conventionally, the light emitting surface (mirror surface) in a discrete type semiconductor laser has been formed by cleavage, and at present, the mirror surface formed by this technique has shown the best performance.

ところが、光集積回路の場合、半導体レーザの外に他の
機能をもつ半導体素子がモノリシックに集積化されてい
る。
However, in the case of optical integrated circuits, semiconductor elements having other functions in addition to the semiconductor laser are monolithically integrated.

従って、そのような光集積回路に対して、個別形式の半
導体レーザに適用されているような劈開技術を用いると
基板まで分離されてしまうので、実施不可能か、或いは
、ごく小規模のものしか得られない。
Therefore, if the cleavage technology applied to individual type semiconductor lasers is used for such optical integrated circuits, the substrate would be separated, so it would be impossible to implement it, or it would only be possible to use it on a very small scale. I can't get it.

そこで、光放射面を、反応性イオン・エツチング(re
active  ton  etching:RIE)
法などのドライ・エツチング法、或いは、化学混液など
を用いたウェット・エツチング法等を適用して形成する
ことが試みられているが、劈開した場合のような良質の
鏡面は得ることができない。
Therefore, the light emitting surface was subjected to reactive ion etching (reactive ion etching).
active ton etching (RIE)
Attempts have been made to form the film by applying a dry etching method, such as the method, or a wet etching method, using a chemical mixture, etc., but it is not possible to obtain a mirror surface of good quality as in the case of cleavage.

このような従来技術の欠点を解消する為、マイクロ・ク
リープ(microcleave)法なる技術が開発さ
れ、半導体レーザの局所的劈開を行うことが可能になっ
てきた。
In order to overcome these drawbacks of the prior art, a technique called micro-creep has been developed, and it has become possible to locally cleave a semiconductor laser.

第2図乃至第5図は従来技術を解説する為の工程要所に
於ける光半導体装置の要部切断側面図及び要部切断斜面
図であり、以下、これ等の図を参照しつつ説明する。
2 to 5 are a cut-away side view and a cut-away oblique view of the main parts of an optical semiconductor device at key points in the process for explaining the conventional technology, and the explanation will be given below with reference to these figures. do.

第2図参照 fal  液相エピタキシャル成長(liquid  
phase  epitaxy:LPE)法、気相エピ
タキシャル成長(vapor  phaseepita
xy:VPE)法、有機金属化学気相堆積(metal
organics  Chemical  vapou
r  deposition:MOCVD)法、分子線
エピタキシャル成長(molecular  beam
  epitaxy:MBE)法など、適宜の技法を選
択して適用することに依り、n+型GaAs基板1上に
厚さが約3〔μm〕程度のn+型GaAsバッファ層2
、厚さが約3〔μm〕程度のn型A7!GaAsクラッ
ド層3、厚さが約0゜2〔μm〕程度のn型GaAs活
性層4、厚さが約3〔μm〕程度のp型A 7!o1s
G a o、 55A sクラッド層5、厚さが約0.
3〔μm〕程度のp+型GaAsコンタクト層6を成長
させる。
See Figure 2fal Liquid phase epitaxial growth
phase epitaxy (LPE) method, vapor phase epitaxial growth (vapor phase epitaxy)
xy:VPE) method, organometallic chemical vapor deposition (metal
organics chemical vapor
r deposition: MOCVD) method, molecular beam epitaxial growth (molecular beam epitaxial growth)
By selecting and applying an appropriate technique such as epitaxy (MBE) method, an n+ type GaAs buffer layer 2 with a thickness of about 3 [μm] is formed on an n+ type GaAs substrate 1.
, n-type A7 with a thickness of about 3 [μm]! GaAs cladding layer 3, n-type GaAs active layer 4 with a thickness of about 0°2 [μm], p-type A with a thickness of about 3 [μm] 7! o1s
Gao, 55A s cladding layer 5, thickness approximately 0.
A p+ type GaAs contact layer 6 of about 3 [μm] is grown.

尚、第2図では、各半導体層の層構造を説明するのが目
的である為、ウェハではなく、単体状に表しである。
In addition, since the purpose of FIG. 2 is to explain the layer structure of each semiconductor layer, the semiconductor layer is shown not as a wafer but as a single unit.

fbl  通常の技法を適用することに依り、諸電極な
どを形成し、光半導体装置が作り込まれたウェハとして
完成させる。
fbl By applying ordinary techniques, various electrodes and the like are formed, and a wafer on which an optical semiconductor device is fabricated is completed.

第3図参照 (C)  %l開を必要とする半導体レーザの部分及び
その他に保護を必要とする部分を覆うマスク膜9を形成
する。尚、このマスク膜9としてはフォト・レジストや
二酸化シリコン(Si02)を用いることができる。
Refer to FIG. 3 (C) A mask film 9 is formed to cover the portion of the semiconductor laser that requires opening and other portions that require protection. Note that as this mask film 9, photoresist or silicon dioxide (Si02) can be used.

ここで、記号8は、例えば金(Au)  ・亜鉛(Zn
)からなるp側ストライプ電極を、また、記号10は半
導体層構成のうち、ダブル・ヘテロ構造(double
  heterostructure:DH)部分、即
ち、DH部分を示している。
Here, the symbol 8 is, for example, gold (Au), zinc (Zn
), and symbol 10 represents a double hetero structure (double
A heterostructure (DH) portion, that is, a DH portion is shown.

!dl  エッチャントを例えば、 8H202+IH,2SO4+1’H20とする化学エ
ツチング法を適用することに依り、DH部分10のエツ
チングを行う。
! The DH portion 10 is etched by applying a chemical etching method in which the dl etchant is, for example, 8H202+IH, 2SO4+1'H20.

第4図参照、 (el  エッチャントを例えば、 20 H202+ I N H40H とする選択的化学エツチング法を適用することに依り、
n生型GaAS基板1を選択的にエツチングする。
By applying a selective chemical etching method using (el etchant as, for example, 20 H202+ I N H40H), see FIG.
The n-type GaAS substrate 1 is selectively etched.

これに依り、DH部分10に劈開で除去されるべき梁部
分10Aが形成される。
As a result, a beam portion 10A to be removed by cleavage is formed in the DH portion 10.

ff)  マスク膜9を除去する。ff) Remove the mask film 9.

第5図参照 (gl  適当な治具を用い梁部分10Aに圧力を加え
て劈開を行う。
Refer to FIG. 5 (gl) Cleavage is performed by applying pressure to the beam portion 10A using a suitable jig.

これに依り、DH部分10にはレーザ光放出端面10B
(光放射面)が形成される。
As a result, the DH portion 10 has a laser beam emitting end face 10B.
(light emitting surface) is formed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記説明した従来のマイクロ・クリープ法に於いては、
第3図に見られるマスク膜9の形状如何に依って同図に
記号10Pで指示した部分の形状が変化し易く、その結
果、第4図に見られるn1型GaAs基板1のエツチン
グ面IPの形状が不確定となり、その状態で梁部分10
Aを折って劈開を行うと、第5図に見られるレーザ光放
出端面10Bも不確定なものとなり、レーザ本体に食い
込んだ部分に劈開面が形成されたり、梁部分10Aの一
部が残ったりする。
In the conventional micro-creep method explained above,
Depending on the shape of the mask film 9 shown in FIG. 3, the shape of the portion indicated by the symbol 10P in the same figure is likely to change, and as a result, the etched surface IP of the n1 type GaAs substrate 1 shown in FIG. The shape becomes uncertain, and in that state the beam portion 10
When A is folded and cleaved, the laser beam emitting end face 10B shown in FIG. 5 also becomes uncertain, and a cleavage plane is formed in the part that bites into the laser body, or a part of the beam part 10A remains. do.

本発明は、マイクロ・クリープ法に依る劈開を行うに際
し、梁部分を折った場合、常に所定の部分に劈開面が形
成されるようにする。
In the present invention, when performing cleavage using the micro-creep method, a cleavage plane is always formed at a predetermined portion when a beam portion is broken.

C問題点を解、決するための手段〕 本発明の光半導体装置の製造方法では、半導体基板上に
活性層を含む能動層部分をエピタキシャル成長させ、次
いで、光半導体素子上及びその光半導体素子の光放射面
となるべき部分に近接する側が狭幅に且つ離隔した側が
広幅になる梁部分上を覆うマスク膜を形成し、次いで、
前記能動層部分を該マスク膜通りにエツチングして前記
半導体基板の一部表面を露出させ、次いで、該半導体基
板の選択的エツチングを行って少なくとも前記梁部分下
に空所が形成されるように該半導体基板を除去し、次い
で、該梁部分を折って前記光半導体素子の光放射面を劈
開で形成する工程が含まれている。
Means for Solving and Resolving Problem C] In the method for manufacturing an optical semiconductor device of the present invention, an active layer portion including an active layer is epitaxially grown on a semiconductor substrate, and then an optical layer on the optical semiconductor element and the optical semiconductor element of the optical semiconductor element are grown epitaxially. A mask film is formed to cover the beam portion which is narrow on the side close to the portion to become the radiation surface and wide on the side remote from it, and then
The active layer portion is etched along the mask film to expose a part of the surface of the semiconductor substrate, and then the semiconductor substrate is selectively etched so that a void is formed at least under the beam portion. The method includes the steps of removing the semiconductor substrate, then folding the beam portion to form a light emitting surface of the optical semiconductor element by cleaving.

〔作用〕[Effect]

前記手段に依れば、マイクロ・クリープ法に依って除去
される梁部分は、光半導体素子の光放射面に近い側の幅
が狭く、遠い側の幅が広くなっている。その結果、梁部
分を折った場合に生成される劈開面の位置は略確定され
、製造歩留りは向上する。
According to the above means, the beam portion removed by the micro-creep method has a narrow width on the side close to the light emitting surface of the optical semiconductor element and a wide width on the far side. As a result, the position of the cleavage plane generated when the beam portion is folded is approximately determined, and the manufacturing yield is improved.

〔実施例〕〔Example〕

第1図は本発明一実施例を説明する為の工程要所に於け
る光半導体装置の要部切断斜面図を表し、第2図乃至第
5図に関して説明した部分と同部分は同記号で指示しで
ある。
FIG. 1 shows a cut-away perspective view of the main parts of an optical semiconductor device at key points in the process for explaining one embodiment of the present invention, and the same parts as those explained with reference to FIGS. 2 to 5 are designated by the same symbols. It is an instruction.

第1図は従来技術の説明に於ける第4図に相当するもの
であり、従来例と相違する点は、梁部分10Aの形状で
ある。
FIG. 1 corresponds to FIG. 4 in the explanation of the prior art, and the difference from the conventional example is the shape of the beam portion 10A.

図から判るように、梁部分10Aに於ける元の部分、即
ち、半導体レーザの光放射面に近い側の幅は狭く、また
、それより遠い側の幅は広く形成されている。ここで、
幅が広いとは、梁部分1゜Aを折るに際し、機械力であ
ると超音波であるとを問わず、圧力を加えるに支障がな
い程度の幅である旨の意味であり、幅が狭いとは、例え
ば圧力を加える治具を当接するような余裕もないような
幅であっても良い旨の意味である。
As can be seen from the figure, the width of the original portion of the beam portion 10A, that is, the side close to the light emitting surface of the semiconductor laser is narrow, and the width of the side farther from it is wide. here,
Wide means that the width is such that there is no problem in applying pressure, whether by mechanical force or ultrasonic, when folding the beam part 1°A. This means that, for example, the width may be such that there is no margin for contact with a jig that applies pressure.

梁部分10Aを前記説明のような形状にすることに依り
、劈開面の位置10Qを常に設計通り再現することが可
能である。
By shaping the beam portion 10A as described above, it is possible to always reproduce the position 10Q of the cleavage plane as designed.

第1図に見られるような梁部分10への形状は第3図に
見られるマスク膜9のパターンをそのように形成するこ
とで得られ、その他の工程は、第2図乃至第5図につい
て説明した従来技術と同様である。
The shape of the beam portion 10 as shown in FIG. 1 is obtained by forming the pattern of the mask film 9 shown in FIG. 3 in this way, and the other steps are as shown in FIGS. This is similar to the prior art described above.

第1図に示しである諸寸法の一例は次の通りである。An example of the dimensions shown in FIG. 1 is as follows.

DI=20  Cμm〕 D2=50  Cμm〕 D3=15  Cμm〕 D4=10  Cμm〕 また、p側ストライプ電極8の幅を3 〔μm〕に、ま
た、その長さを200〔μm〕とし、第2図に破線で示
されている部分7を除去すること番こ依り得られるリッ
ジ、即ち、p+型GaAsコンタクト層6及びp型A 
j! o、 a、G a o、 ssA Sクラッド層
5の一部で構成されるストライプ部分を設けた構造とし
て半導体レーザを完成させたところ、閾値電流Ithが
30(mA)の高成績が得られた。
DI=20 Cμm] D2=50 Cμm] D3=15 Cμm] D4=10 Cμm] In addition, the width of the p-side stripe electrode 8 was set to 3 [μm], the length was set to 200 [μm], and the second By removing the portion 7 shown in broken lines in the figure, a ridge is obtained, namely the p+ type GaAs contact layer 6 and the p type A
j! o, a, G a o, ssA When a semiconductor laser was completed with a structure including a stripe portion consisting of a part of the S cladding layer 5, a high performance with a threshold current Ith of 30 (mA) was obtained. .

尚、前記りッジは、第2図に関して説明した工程(b)
に於いて、p側ストライプ電極を形成するのに用いたマ
スクを流用すると共に例えばイオン・ビーム・エツチン
グ法などを適用し、第2図に示したDが約0.3 〔μ
m〕程度となるように部分7をエツチングして除去する
ことに依り形成できる。
Note that the ridge is formed in step (b) explained with reference to FIG.
In this process, we reused the mask used to form the p-side stripe electrode and applied, for example, an ion beam etching method, so that D shown in Figure 2 was approximately 0.3 [μ
It can be formed by etching and removing the portion 7 so as to have a thickness of about 100 m.

〔発明の効果〕〔Effect of the invention〕

本発明の光半導体装置の製造方法に於いては、マイクロ
・クリープ法で光半導体装置の光放射面を形成するに際
し、劈開に依って除去されるべき梁部分の形状が、光半
導体素子の光放射面に近い側の幅を狭く、また、遠い側
の幅を広く形成するようにしている。
In the method for manufacturing an optical semiconductor device of the present invention, when forming the light emitting surface of the optical semiconductor device by the micro-creep method, the shape of the beam portion to be removed by cleavage is such that the light emitting surface of the optical semiconductor device is The width on the side closer to the radiation surface is narrower, and the width on the side farther from the radiation surface is wider.

従って、前記梁部分を折った場合に生成される劈開面の
位置は略設計通りに確定され、製造歩留りは向上する。
Therefore, the position of the cleavage plane generated when the beam portion is folded is determined approximately as designed, and the manufacturing yield is improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明一実施例を説明する為の工程要所に於け
る光半導体装置の要部切断斜面図、第2図は光半導体装
置の要部切断側面図、第3図乃至第5図は従来技術を説
明する為の工程要所に於ける光半導体装置の要部切断斜
面図をそれぞれ表している。 図に於いて、1はn1型GaAs基板、2はn+型Ga
Asバッファ層、3はn型A#GaAsクラッド層、4
はn型GaAs活性層、5はp型A (l o、 4S
G a o、 ssA Sクラッド層、6はp+型Ga
Asコンタクト層、7はリッジを形成する為に除去され
るべき部分、8はp側ストライブ電極、9はマスク膜、
10はDH部分、IOAは梁部分、10Qは劈開面の位
置をそれぞれ示している。
FIG. 1 is a cut-away perspective view of the main parts of an optical semiconductor device at key points in the process for explaining one embodiment of the present invention, FIG. 2 is a cut-away side view of the main parts of the optical semiconductor device, and FIGS. The figures each represent a cut-away oblique view of a main part of an optical semiconductor device at key points in the process for explaining the conventional technology. In the figure, 1 is an n1 type GaAs substrate, 2 is an n+ type GaAs substrate, and 2 is an n+ type GaAs substrate.
As buffer layer, 3 is n-type A#GaAs cladding layer, 4
is an n-type GaAs active layer, 5 is a p-type A (lo, 4S
Gao, ssA S cladding layer, 6 is p+ type Ga
An As contact layer, 7 a portion to be removed to form a ridge, 8 a p-side stripe electrode, 9 a mask film,
10 indicates the DH portion, IOA the beam portion, and 10Q the position of the cleavage plane.

Claims (1)

【特許請求の範囲】[Claims]  半導体基板上に活性層を含む能動層部分をエピタキシ
ャル成長させ、次いで、光半導体素子上及びその光半導
体素子の光放射面となるべき部分に近接する側が狭幅に
且つ離隔した側が広幅になる梁部分上を覆うマスク膜を
形成し、次いで、前記能動層部分のエッチングを行って
前記半導体基板の一部表面を露出させ、次いで、該半導
体基板の選択的エッチングを行って少なくとも前記梁部
分下の該半導体基板を除去し、次いで、該梁部分を折っ
て前記光半導体素子の光放射面を劈開で形成する工程が
含まれてなることを特徴とする光半導体装置の製造方法
An active layer portion including an active layer is epitaxially grown on a semiconductor substrate, and then a beam portion is formed which has a narrow width on the side close to the optical semiconductor element and the portion that is to become the light emitting surface of the optical semiconductor element and a wider width on the side away from the optical semiconductor element. A mask film is formed to cover the active layer, and then the active layer portion is etched to expose a part of the surface of the semiconductor substrate, and the semiconductor substrate is selectively etched to remove at least the area under the beam portion. A method for manufacturing an optical semiconductor device, comprising the steps of removing a semiconductor substrate, then folding the beam portion to form a light emitting surface of the optical semiconductor element by cleaving.
JP59198727A 1984-09-25 1984-09-25 Manufacture of photosemiconductor device Pending JPS6177385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59198727A JPS6177385A (en) 1984-09-25 1984-09-25 Manufacture of photosemiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59198727A JPS6177385A (en) 1984-09-25 1984-09-25 Manufacture of photosemiconductor device

Publications (1)

Publication Number Publication Date
JPS6177385A true JPS6177385A (en) 1986-04-19

Family

ID=16395980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59198727A Pending JPS6177385A (en) 1984-09-25 1984-09-25 Manufacture of photosemiconductor device

Country Status (1)

Country Link
JP (1) JPS6177385A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0450902A2 (en) * 1990-04-02 1991-10-09 Sharp Kabushiki Kaisha A method for the production of a semiconductor laser device
WO1998034304A1 (en) * 1997-01-30 1998-08-06 Hewlett-Packard Company Semiconductor laser device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0450902A2 (en) * 1990-04-02 1991-10-09 Sharp Kabushiki Kaisha A method for the production of a semiconductor laser device
WO1998034304A1 (en) * 1997-01-30 1998-08-06 Hewlett-Packard Company Semiconductor laser device

Similar Documents

Publication Publication Date Title
US10103517B2 (en) High reliability etched-facet photonic devices
US5882988A (en) Semiconductor chip-making without scribing
US5272109A (en) Method for fabricating visible light laser diode
US7606277B2 (en) Etched-facet ridge lasers with etch-stop
JP4964878B2 (en) AlGaInN-based laser manufactured using etch facet technology
US6337223B1 (en) Semiconductor optical device and method for fabricating the same
EP0394167B1 (en) Formation of laser mirror facets and integration of optoelectronics
JPS6177385A (en) Manufacture of photosemiconductor device
US4707219A (en) Integrated devices including cleaved semiconductor lasers
JPH07112099B2 (en) Optoelectronic semiconductor device and manufacturing method thereof
KR100319774B1 (en) Fabrication method of self aligned planar buried heterostructure semiconductor laser
JPS6197887A (en) Manufacture of photosemiconductor device
US6387746B2 (en) Method of fabricating semiconductor laser diode
JPH11251679A (en) Semiconductor laser
KR100230732B1 (en) Method of manufacturing compound semiconductor
JPH0666512B2 (en) Method for manufacturing semiconductor laser
KR20040074327A (en) Semiconductor laser diode array, and Method for manufacturing the same
JPH0710017B2 (en) Method of manufacturing semiconductor laser device
JPS6196786A (en) Manufacture of photosemiconductor device
JPH0267781A (en) Manufacture of photoelectronic integrated circuit device
JPH09321380A (en) Semiconductor light emitting device and its manufacture
KR19990004356A (en) Compound semiconductor laser diode
JPH09331108A (en) Optical device and manufacture thereof
JPH09281353A (en) Flush type optical semiconductor device and its production
JP2001244561A (en) Semiconductor light emitting device and method of manufacturing semiconductor light emitting device