JPH1069924A - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JPH1069924A
JPH1069924A JP8228964A JP22896496A JPH1069924A JP H1069924 A JPH1069924 A JP H1069924A JP 8228964 A JP8228964 A JP 8228964A JP 22896496 A JP22896496 A JP 22896496A JP H1069924 A JPH1069924 A JP H1069924A
Authority
JP
Japan
Prior art keywords
electrode
discharge capacity
battery
secondary battery
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8228964A
Other languages
Japanese (ja)
Other versions
JP3845479B2 (en
Inventor
Takayuki Yamahira
隆幸 山平
Yoshiaki Takeuchi
由明 竹内
Norio Mamada
紀雄 間々田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP22896496A priority Critical patent/JP3845479B2/en
Priority to DE69736411T priority patent/DE69736411T8/en
Priority to EP97107214A priority patent/EP0807601B1/en
Priority to CN97111574A priority patent/CN1132259C/en
Priority to US08/854,847 priority patent/US6174625B1/en
Publication of JPH1069924A publication Critical patent/JPH1069924A/en
Application granted granted Critical
Publication of JP3845479B2 publication Critical patent/JP3845479B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To ensure high capacity of a battery by restricting a discharge capacity per unit reaction area of an electrode. SOLUTION: A negative electrode having a carbon material as active substance and a positive electrode having a lithium composite oxide as active material are laminated in three or more layers and is stored in a battery case. An electrode thickness and the number of laminates are determined so that the discharge capacity per unit reaction area of the electrode laminate is 6 to 100mAh/cm<2> . Thereby, high capacity of a battery can be ensured. Restriction of this discharge capacity ensures high capacity during light load, and good characteristics can be obtained even during practical load of about 5 hours %. When the discharge capacity is more than 100mAh/cm<2> , the number of laminates is reduced, and satisfactory characteristics cannot be obtained in an ordinary rectangular or cylindrical secondary battery. When the discharge capacity is less than 6mAh/cm<2> , the number of laminates is increased, and the capacity is similar to that of a conventional battery. Consequently, the discharge capacity is restricted in this range and preferably 6 to 30mAh/cm<2> .

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、負極活物質として
炭素質材料を用いた非水電解質二次電池に関するもので
ある。
The present invention relates to a nonaqueous electrolyte secondary battery using a carbonaceous material as a negative electrode active material.

【0002】[0002]

【従来の技術】近年、ビデオカメラやラジオカセットテ
ープレコーダ等のポータブル機器の普及にともない、使
い捨てである一次電池に代わって繰り返し使用できる二
次電池に対する需要が高まっている。
2. Description of the Related Art In recent years, with the spread of portable devices such as video cameras and radio cassette tape recorders, demand for secondary batteries which can be used repeatedly instead of disposable primary batteries has been increasing.

【0003】現在使用されている二次電池のほとんど
は、アルカリ電解液を用いたニッケルカドミウム電池で
ある。しかし、ニッケルカドミウム電池は、電圧が約
1.2Vと低く、電池のエネルギー密度を向上させるこ
とが困難である。また、常温での自己放電率が1カ月で
20%以上と高い。
Most of the secondary batteries currently used are nickel cadmium batteries using an alkaline electrolyte. However, the voltage of a nickel cadmium battery is as low as about 1.2 V, and it is difficult to improve the energy density of the battery. The self-discharge rate at room temperature is as high as 20% or more in one month.

【0004】一方、電解液に非水溶媒を使用し、また負
極にリチウム等の軽金属を使用する非水電解質二次電池
が検討されている。この非水電解質二次電池は、電圧が
3V以上と高く、高エネルギー密度を有し、しかも自己
放電率が低い。しかし、このような二次電池では、負極
に使用する金属リチウム等が充放電の繰り返しによりデ
ンドライト状に成長して正極と接触し、その結果電池内
部に短絡が生じてしまう。そのため、短寿命となる欠点
を有しており、実用化が困難となっている。
On the other hand, non-aqueous electrolyte secondary batteries using a non-aqueous solvent for the electrolyte and a light metal such as lithium for the negative electrode have been studied. This nonaqueous electrolyte secondary battery has a high voltage of 3 V or more, a high energy density, and a low self-discharge rate. However, in such a secondary battery, metallic lithium or the like used for the negative electrode grows in a dendrite shape by repeated charge and discharge and comes into contact with the positive electrode, and as a result, a short circuit occurs inside the battery. Therefore, it has a drawback that it has a short life, and its practical use is difficult.

【0005】このため、リチウム等を他の金属と合金化
し、この合金を負極に使用する非水電解質二次電池が検
討されている。しかし、このような二次電池では、充放
電を繰り返すことにより合金が微細粒子となり、やはり
短寿命となる欠点を有しているため、実用化が困難とな
っている。
For this reason, a non-aqueous electrolyte secondary battery in which lithium or the like is alloyed with another metal and this alloy is used for a negative electrode has been studied. However, such a secondary battery has a drawback that the alloy becomes fine particles due to repeated charging and discharging, and also has a short service life.

【0006】そこで、例えば、特開昭62−90863
号公報にて開示されているように、コークス等の炭素質
材料を負極活物質として使用する非水電解質二次電池が
提案されている。このような二次電池は、負極の炭素層
間或いは微細孔へのリチウムのドープ・脱ドープを電池
反応に利用するものであり、負極が上述したような欠点
を有しておらず、安全性、サイクル寿命特性に優れてい
る。このような二次電池の正極活物質には、本願発明者
らが先に特開昭63−135099号公報において提案
したようなLixMO2(Mは、1種類以上の遷移金属を
表し、0.05<X<1.10である。)が使用でき
る。
Accordingly, for example, Japanese Patent Application Laid-Open No. 62-90863
As disclosed in Japanese Patent Application Laid-Open Publication No. H10-209, a non-aqueous electrolyte secondary battery using a carbonaceous material such as coke as a negative electrode active material has been proposed. Such a secondary battery utilizes the doping / dedoping of lithium into the carbon layer or the fine pores of the negative electrode for the battery reaction, and the negative electrode does not have the above-mentioned disadvantages, and has safety, Excellent cycle life characteristics. The positive electrode active material of such a secondary battery includes Li x MO 2 (M represents one or more transition metals, as proposed by the present inventors in Japanese Patent Application Laid-Open No. 63-135099, 0.05 <X <1.10.) Can be used.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、炭素質
材料を負極活物質として用いた非水電解質二次電池は、
金属リチウム等を負極活物質として用いた非水電解質二
次電池に比べて、サイクル寿命、安全性に優れるもの
の、エネルギー密度の点においては劣っている。
However, a non-aqueous electrolyte secondary battery using a carbonaceous material as a negative electrode active material,
Compared to a non-aqueous electrolyte secondary battery using metallic lithium or the like as a negative electrode active material, it has excellent cycle life and safety, but is inferior in energy density.

【0008】この原因としては、活物質の粉末体同士を
結着させておくためのバインダーの使用が挙げられる。
すなわち、炭素質材料は、ピッチ等を焼成して粉砕する
か、または、粉砕後再度仮焼した炭素粉末体のかたちで
用いられる。そして、この粉末体にゴム等のバインダ
ー、分散剤等を加えてスラリー化し、その後、この合剤
スラリーを集電体に塗布するか、あるはモールディング
してペレット状にすることで、負極を作製するのが一般
的である。したがって、電極構成としては、炭素質材
料、バインダー、集電体の3点からなっており、バイン
ダーは、通常3〜20%程度添加される。このバインダ
ーの添加分だけ、電極当たりの活物質量(充填密度)が
制限され、電池の高容量化に限界がある。
[0008] One of the causes is the use of a binder for binding the powders of the active material to each other.
That is, the carbonaceous material is used in the form of a carbon powder body which is obtained by firing pitch or the like and pulverizing the carbonaceous material or recalcining after pulverizing. Then, a binder such as rubber or the like, a dispersant, etc. is added to the powder to form a slurry, and then, the mixture slurry is applied to a current collector or molded or formed into a pellet to prepare a negative electrode. It is common to do. Therefore, the electrode configuration is composed of three points: a carbonaceous material, a binder, and a current collector, and the binder is usually added at about 3 to 20%. The amount of the active material (filling density) per electrode is limited by the amount of the binder added, and there is a limit in increasing the capacity of the battery.

【0009】そこで、本発明は、上述のような問題点を
解決するために提案されたものであり、高容量の非水電
解質二次電池を提供することを目的とする。
Accordingly, the present invention has been proposed to solve the above-described problems, and has as its object to provide a high-capacity non-aqueous electrolyte secondary battery.

【0010】[0010]

【課題を解決するための手段】そこで、本発明者らは鋭
意検討を重ねた結果、電極積層体の単位反応面積当たり
の放電容量を規制し、それに合うように電極層数や厚み
を選択することで高容量の非水電解質二次電池を提供で
きる技術を見いだした。
The inventors of the present invention have made intensive studies, and as a result, regulated the discharge capacity per unit reaction area of the electrode laminate, and selected the number and thickness of the electrode layers to meet the regulation. This has led to the discovery of a technology that can provide a high capacity non-aqueous electrolyte secondary battery.

【0011】本発明に係る非水電解質二次電池は、炭素
材料を負極活物質とする負極と、リチウム複合酸化物を
正極活物質とする正極とを合わせて3層以上となるよう
に積層された電極積層体を有し、電極積層体の単位反応
面積当たりの放電容量が6〜100mAh/cm2であ
ることを特徴とする。
The nonaqueous electrolyte secondary battery according to the present invention is formed by stacking three or more layers including a negative electrode using a carbon material as a negative electrode active material and a positive electrode using a lithium composite oxide as a positive electrode active material. Characterized in that the electrode laminate has a discharge capacity per unit reaction area of 6 to 100 mAh / cm 2 .

【0012】ここで、上記単位反応面積当たりの放電容
量は、0.1C以下での放電容量で6〜100mAh/
cm2である。
The discharge capacity per unit reaction area is 6 to 100 mAh / discharge capacity at 0.1 C or less.
cm 2 .

【0013】本発明に係る非水電解質二次電池において
は、電極の単位反応面積当たりの放電容量が6〜100
mAh/cm2となるように、電極の厚みと積層枚数と
が決定されることにより、電池の高容量化を図ることが
できる。
In the nonaqueous electrolyte secondary battery according to the present invention, the discharge capacity per unit reaction area of the electrode is 6 to 100.
By determining the thickness of the electrode and the number of laminated layers so as to be mAh / cm 2 , the capacity of the battery can be increased.

【0014】電極の単位反応面積当たりの放電容量が1
00mAh/cm2を越えると、積層枚数が少なくな
り、0.1C以下で使用するようなバックアップ用途の
電池としては使用できるが、通常の形態の角型二次電
池、筒型二次電池においては、満足な特性を得ることが
難しくなる。
The discharge capacity per unit reaction area of the electrode is 1
When it exceeds 00 mAh / cm 2 , the number of stacked layers decreases, and it can be used as a backup battery used at 0.1 C or less. However, in a normal form of a rectangular secondary battery or a cylindrical secondary battery, , It is difficult to obtain satisfactory characteristics.

【0015】また、電極の単位反応面積当たりの放電容
量が6mAh/cm2未満では、積層枚数が増え、従来
の電池と同様な容量となってしまう。
On the other hand, if the discharge capacity per unit reaction area of the electrode is less than 6 mAh / cm 2 , the number of stacked layers increases and the capacity becomes similar to that of a conventional battery.

【0016】[0016]

【発明の実施の形態】以下、本発明に係る非水電解質二
次電池の好適な実施の形態について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the non-aqueous electrolyte secondary battery according to the present invention will be described below.

【0017】本発明に係る非水電解質二次電池は、炭素
材料を負極活物質とする負極と、リチウム複合酸化物を
正極活物質とする正極とを合わせて3層以上となるよう
に積層された電極積層体が電池容器内に収納されて構成
されている。そして、特にこの電池では、電極積層体の
単位反応面積当たりの放電容量が6〜100mAh/c
2に規制されている。
The nonaqueous electrolyte secondary battery according to the present invention is formed by stacking three or more layers including a negative electrode using a carbon material as a negative electrode active material and a positive electrode using a lithium composite oxide as a positive electrode active material. The stacked electrode body is housed in a battery container. And especially in this battery, the discharge capacity per unit reaction area of the electrode laminate is 6 to 100 mAh / c.
It is regulated in m 2.

【0018】ここで、単位面積当たりの放電容量は、
0.1C以下での放電容量を基準として、反応有効面積
(正極反応面積)で割った値とする。
Here, the discharge capacity per unit area is:
The value is divided by the effective reaction area (positive electrode reaction area) based on the discharge capacity at 0.1 C or less.

【0019】本発明に係る非水電解質二次電池では、こ
のようにして求められる電極積層体の単位反応面積当た
りの放電容量が6〜100mAh/cm2となるよう
に、電極の厚みと積層枚数とが決定される。
In the non-aqueous electrolyte secondary battery according to the present invention, the thickness of the electrode and the number of layers are determined so that the discharge capacity per unit reaction area of the electrode laminate thus obtained is 6 to 100 mAh / cm 2. Is determined.

【0020】電極積層体では、同じ材料を用いた場合、
電極厚みが厚くなり積層枚数が少なくなるほど、単位反
応面積当たりの放電容量が大きくなる。逆に、電極厚み
が薄くなり積層枚数が多くなるほど、単位反応面積当た
りの放電容量が小さくなる。
In the electrode laminate, when the same material is used,
As the electrode thickness increases and the number of stacked layers decreases, the discharge capacity per unit reaction area increases. Conversely, the discharge capacity per unit reaction area decreases as the electrode thickness decreases and the number of stacked layers increases.

【0021】このように、単位反応面積当たりの放電容
量を基準にして電極厚みや電極積層枚数を選択すること
により、電池の高容量化を図ることができる。また、単
位反応面積当たりの放電容量を規制すると、軽負荷にお
いて高容量であるばかりではなく、5時間率程度の実用
負荷においても、良好な特性が得られる。
As described above, by selecting the electrode thickness and the number of laminated electrodes based on the discharge capacity per unit reaction area, the capacity of the battery can be increased. Further, when the discharge capacity per unit reaction area is regulated, not only high capacity under light load but also good characteristics can be obtained under practical load of about 5 hours rate.

【0022】電極の単位反応面積当たりの放電容量が1
00mAh/cm2を越えた場合には、積層枚数が少な
くなり、0.1C以下で使用するようなバックアップ用
途の電池としては使用できるが、通常の形態の角型二次
電池、筒型二次電池においては、満足な特性を得ること
が難しくなる。また、電極の単位反応面積当たりの放電
容量が6mAh/cm2未満の場合には、積層枚数が増
え、従来の電池と同様な容量となってしまう。
The discharge capacity per unit reaction area of the electrode is 1
If it exceeds 00 mAh / cm 2 , the number of stacked layers will be small, and it can be used as a backup battery used at 0.1 C or less. In a battery, it is difficult to obtain satisfactory characteristics. If the discharge capacity per unit reaction area of the electrode is less than 6 mAh / cm 2 , the number of stacked layers increases and the capacity becomes similar to that of a conventional battery.

【0023】したがって、電極の単位反応面積当たりの
放電容量は、6〜100mAh/cm2が好ましく、6
〜30mAh/cm2がより好ましい。
Therefore, the discharge capacity per unit reaction area of the electrode is preferably 6 to 100 mAh / cm 2 ,
-30 mAh / cm 2 is more preferable.

【0024】本発明では、以上のように電極積層体の単
位反応面積当たりの放電容量を規制するが、この放電容
量は、電極積層体を構成する各電極の活物質の厚さや活
物質の充填密度によって制御される。したがって、各電
極の構成は、これとの兼ね合いで選択するのが望まし
い。
In the present invention, the discharge capacity per unit reaction area of the electrode laminate is regulated as described above. This discharge capacity is determined by the thickness of the active material of each electrode constituting the electrode laminate and the filling of the active material. Controlled by density. Therefore, it is desirable to select the configuration of each electrode in consideration of this.

【0025】電極積層体を構成する負極や正極として
は、具体的には、次のようなものが用いられる。
As the negative electrode and the positive electrode constituting the electrode laminate, the following are specifically used.

【0026】先ず、負極は、活物質となる炭素質材料
と、バインダー及び分散剤よりなる負極合材スラリーを
集電体に塗布、乾燥後、成形することで作製される塗布
型のものが用いられる。
First, as the negative electrode, a coating type one prepared by applying a negative electrode mixture slurry composed of a carbonaceous material serving as an active material, a binder and a dispersant to a current collector, drying and molding is used. Can be

【0027】あるいは、炭素質材料にバインダーを添加
して造粒し、この造粒体をメッシュ状の集電体とともに
成型することで作製されるモールディング型のものであ
ってもよい。造粒法としては、成型性等を考慮すると、
溶融材料をノズルにより粉霧して加熱するスプレードラ
イ法が最適である。
Alternatively, it may be a molding type produced by adding a binder to a carbonaceous material, granulating the granulated material, and molding the granulated material together with a mesh-shaped current collector. As a granulation method, considering moldability, etc.,
The spray drying method, in which the molten material is atomized by a nozzle and heated, is optimal.

【0028】さらには、焼結によって炭素化する材料を
メッシュ状の集電体とともに焼結させた複合焼結体も用
いることができる。特に、この複合焼結体は、バインダ
ーを含まない分、活物質の充填密度を高くでき、電池の
高容量化に有利である。
Further, a composite sintered body obtained by sintering a material which is carbonized by sintering together with a mesh-like current collector can be used. In particular, since the composite sintered body does not include the binder, the packing density of the active material can be increased, which is advantageous for increasing the capacity of the battery.

【0029】この複合焼結体に用いる炭素質材料として
は、石油ピッチ、バインダーピッチ、高分子樹脂等を熱
処理し、メソフェーズピッチ化したもの、メソフェーズ
ピッチを部分的に酸化したもの、メソフェーズピッチを
部分的に炭素化したもの、メソフェーズピッチを完全に
炭素化したもの、またはグリーンコークス等のように完
全に炭素体となっていない焼結性を有するものが使用で
きる。
As the carbonaceous material used for the composite sintered body, petroleum pitch, binder pitch, polymer resin or the like is heat-treated to be mesophase pitch, mesophase pitch is partially oxidized, and mesophase pitch is partially A carbonized material, a completely carbonized mesophase pitch, or a material having a sintering property such as green coke that is not completely carbonized can be used.

【0030】また、これらに炭素化を終了した黒鉛、熱
分解炭素類、コークス類(石油コークス、ピッチコーク
ス等)、カーボンブラック(アセチレンブラック等)、
ガラス状炭素、有機高分子材料焼成体(有機高分子材料
を不活性ガス気流中、あるいは真空中で500℃以上の
適当な温度で焼成したもの)、炭素繊維等と前記樹脂分
を含んだピッチ類や焼結性の高い樹脂、例えばフラン樹
脂、ジビニルベンゼン、ポリフッ化ビニリデン、ポリ塩
化ビニリデン等を使用し、焼成処理を行い、粉砕後の粒
度調整したものを加えて使用することができる。
Carbonized carbon, pyrolytic carbons, cokes (petroleum coke, pitch coke, etc.), carbon black (acetylene black, etc.)
Glassy carbon, fired organic polymer material (fired organic polymer material in an inert gas stream or vacuum at an appropriate temperature of 500 ° C. or more), a pitch containing carbon fibers and the above resin component A resin having a high particle size and a high sintering property, for example, a furan resin, divinylbenzene, polyvinylidene fluoride, polyvinylidene chloride, etc., is subjected to a baking treatment, and a resin whose particle size after pulverization is adjusted can be used.

【0031】一方、正極も、活物質となるリチウム複合
酸化物と、バインダー、導電剤及分散剤よりなる正極合
材スラリーを集電体に塗布、乾燥後、成形することで作
製される塗布型のものや、リチウム複合酸化物にバイン
ダーを添加して造粒し、この造粒体をメッシュ状の集電
体とともに成型することで作製されるモールディング型
のもの、さらには、焼結させることで正極活物質をメッ
シュ状の集電体に保持させた成型体が用いられる。
On the other hand, the positive electrode is also formed by applying a positive electrode mixture slurry comprising a lithium composite oxide as an active material, a binder, a conductive agent and a dispersant to a current collector, drying and molding the same. And a molding type produced by adding a binder to a lithium composite oxide and granulating the granulated body together with a mesh-shaped current collector, and further by sintering. A molded body in which the positive electrode active material is held by a mesh-like current collector is used.

【0032】リチウム複合酸化物は、LixMOy(但
し、Mは、1種類以上の遷移金属を表し、x,yは、そ
れぞれLi,Oの組成比を示す。)で表され、具体的に
は、LiCoO2、LiNiO2、LixNiyCo(1-y)
2(但し、0.05≦x≦1.10、0<y<1)が
挙げられ、遷移金属MにCo、またはNi、Feの少な
くとも1種を使用し、0.05≦x≦1.10であるこ
とが好ましい。
The lithium composite oxide is represented by Li x MO y (where M represents one or more kinds of transition metals, and x and y each represent a composition ratio of Li and O). Include LiCoO 2 , LiNiO 2 , Li x Ni y Co (1-y)
O 2 (however, 0.05 ≦ x ≦ 1.10, 0 <y <1), and at least one of Co, Ni, and Fe is used as the transition metal M, and 0.05 ≦ x ≦ 1 10 is preferred.

【0033】上記リチウム複合酸化物は、例えばリチウ
ム、コバルト、ニッケル等の炭酸塩を組成に応じて混合
し、酸素存在雰囲気下600〜1000℃の温度範囲で
焼成することにより得られる。なお、出発原料は、炭酸
塩に限定されず、水酸化物、酸化物からも同様に合成可
能である。
The above-mentioned lithium composite oxide is obtained by mixing carbonates such as lithium, cobalt, nickel and the like in accordance with the composition, and calcining the mixture in a temperature range of 600 to 1000 ° C. in an atmosphere containing oxygen. The starting materials are not limited to carbonates, but can be synthesized from hydroxides and oxides.

【0034】電解液には、有機溶剤に電解質を溶解した
ものを使用し、従来から知られたものがいずれも使用で
きる。有機溶剤としては、プロピレンカーボネート、エ
チレンカーボネート、γ−ブチロラクトン等のエステル
類や、ジエチルエーテル、テトラヒドロフラン、置換テ
トロヒドロフラン、ジオキソラン、ピラン及びその誘導
体、ジメトキシエタン、ジエトキシエタン等のエーテル
類や、3−メチル−2−オキサゾリジノン等の3置換−
2−オキサゾリジノン類や、スルホラン、メチルスルホ
ラン、アセトニトリル、プロピオニトリル等が挙げら
れ、これらを単独、もしくは2種類以上混合して使用さ
れる。
As the electrolytic solution, a solution obtained by dissolving an electrolyte in an organic solvent is used, and any of those conventionally known can be used. Examples of the organic solvent include esters such as propylene carbonate, ethylene carbonate, and γ-butyrolactone, ethers such as diethyl ether, tetrahydrofuran, substituted tetrahydrofuran, dioxolan, pyran and derivatives thereof, dimethoxyethane, diethoxyethane, and the like. -Trisubstitution such as methyl-2-oxazolidinone-
Examples thereof include 2-oxazolidinones, sulfolane, methylsulfolane, acetonitrile, propionitrile, and the like, and these are used alone or as a mixture of two or more.

【0035】また、電解質としては、過塩素酸リチウ
ム、ホウフッ化リチウム、リンフッ化リチウム、塩化ア
ルミン酸リチウム、ハロゲン化リチウム、トリフルオロ
メタンスルホン酸リチウム等が使用できる。
As the electrolyte, lithium perchlorate, lithium borofluoride, lithium phosphofluoride, lithium aluminate, lithium halide, lithium trifluoromethanesulfonate and the like can be used.

【0036】[0036]

【実施例】以下、本発明を適用した非水電解質二次電池
について図1に示すような角型二次電池を作製し、その
特性を評価した。なお、図1において、正極と負極の積
層枚数は、各実施例及び比較例と異なる。
EXAMPLE A non-aqueous electrolyte secondary battery to which the present invention was applied was fabricated into a rectangular secondary battery as shown in FIG. 1 and its characteristics were evaluated. In FIG. 1, the number of stacked positive electrodes and negative electrodes is different from each of Examples and Comparative Examples.

【0037】実施例1 先ず、負極1は次のようにして作製した。 Example 1 First, the negative electrode 1 was manufactured as follows.

【0038】固定炭素88.5%、全膨張率0%(石炭
の熱膨張試験に用いられるディラトメータによる試験に
よる)である低膨張性メソフェーズカーボン粉体250
メッシュアンダー品を酸化雰囲気中にて(ここでは、空
気中にて)800℃で1時間焼成し、平均粒径20ミク
ロンの粉末を得た。これを炭素質材料Aとする。
Low-expansion mesophase carbon powder 250 having a fixed carbon of 88.5% and a total expansion of 0% (by a dilatometer used for a thermal expansion test of coal).
The mesh-under product was fired in an oxidizing atmosphere (here, in air) at 800 ° C. for 1 hour to obtain a powder having an average particle size of 20 μm. This is designated as carbonaceous material A.

【0039】固定炭素88.5%、全膨張率0%(石炭
の熱膨張試験に用いられるディラトメータによる試験に
よる)である低膨張性メソフェーズカーボン粉体250
メッシュアンダー品を酸化雰囲気中にて(ここでは、空
気中にて)800℃で1時間焼成し、その後酸化雰囲気
を不活性ガス(窒素)に変更し、不活性ガス中900℃
で3時間焼成し、コークス状としたものを粉砕し、平均
粒径20ミクロンの粉末を得た。これを炭素質材料Bと
する。
A low-expansion mesophase carbon powder 250 having a fixed carbon of 88.5% and a total expansion of 0% (by a dilatometer used for a thermal expansion test of coal).
The mesh-under product is baked at 800 ° C. for 1 hour in an oxidizing atmosphere (here, in air), and then the oxidizing atmosphere is changed to an inert gas (nitrogen), and 900 ° C. in an inert gas.
For 3 hours to obtain a coke-like product, which was pulverized to obtain a powder having an average particle size of 20 μm. This is designated as carbonaceous material B.

【0040】次に、この炭素質材料A、炭素質材料Bを
70:30にて混合し、バインダーとしてポリビニルア
ルコール(分子量)を加え、溶媒として水を加えて混練
した。その後、250ミクロン以下、150ミクロン以
上のメッシュを使用して、造粒、及び粒度調整を行っ
た。
Next, the carbonaceous materials A and B were mixed at 70:30, and polyvinyl alcohol (molecular weight) was added as a binder, and water was added as a solvent and kneaded. Thereafter, granulation and particle size adjustment were performed using a mesh of 250 microns or less and 150 microns or more.

【0041】そして、この造粒品を負極集電体となる銅
メッシュとともに加圧し、角型形状にて成型し、このメ
ッシュ一体化電極を不活性ガス中にて1000度で3時
間焼成し、負極(複合焼結体)1を得た。この負極活物
質層の体積密度は、1.25g/mlであり、真比重
は、1.75g/mlであった。負極1の厚みは、最外
周の2枚は、0.18mmとし、それ以外のものは、
0.36mmとした。
Then, the granulated product is pressed together with a copper mesh serving as a negative electrode current collector to form a square shape, and the mesh-integrated electrode is fired in an inert gas at 1000 ° C. for 3 hours. A negative electrode (composite sintered body) 1 was obtained. The negative electrode active material layer had a volume density of 1.25 g / ml and a true specific gravity of 1.75 g / ml. The thickness of the negative electrode 1 is set to 0.18 mm for the outermost two sheets,
0.36 mm.

【0042】次に、正極2は、次のようにして作製し
た。
Next, the positive electrode 2 was produced as follows.

【0043】正極活物質としてLiCoO2を91重量
部と、導電剤としてケッチェンブラックを3重量部と、
結着剤としてポリフッ化ビニリデン2.5重量部とを混
合し、これにジメチルフォルムアミドを分散剤として加
えて、スラリーを作製した。これを、有機溶媒用スプレ
ードライヤー(坂本技研社製)を用い、150℃の熱風
にて乾燥し、平均粒径約100ミクロンのほぼ真球形の
パウダー状の造粒品を作製した。この造粒品を正極集電
体となるアルミニウムメッシュとともに角型形状に成型
し、正極2を得た。この正極活物質層の体積密度は、
3.1g/mlであった。正極2の厚みは、0.36m
mとした。
91 parts by weight of LiCoO 2 as a positive electrode active material, 3 parts by weight of Ketjen black as a conductive agent,
2.5 parts by weight of polyvinylidene fluoride was mixed as a binder, and dimethylformamide was added as a dispersant to this to prepare a slurry. This was dried with hot air at 150 ° C. using a spray dryer for organic solvent (manufactured by Sakamoto Giken Co., Ltd.) to produce a nearly spherical powder-like granulated product having an average particle size of about 100 μm. The granulated product was formed into a square shape together with an aluminum mesh serving as a positive electrode current collector, and a positive electrode 2 was obtained. The volume density of this positive electrode active material layer is
It was 3.1 g / ml. The thickness of the positive electrode 2 is 0.36 m
m.

【0044】これらの負極1を41.5×32.3m
m、正極2を39.5×31.0mmの短冊状にそれぞ
れ打ち抜いた。そして、この負極1及び正極2と、30
μmの微孔性ポリエチレンフィルムからなるセパレータ
3とを順々に積層し、負極1を8枚、正極2を7枚使用
し、合計15枚の電極を17枚のセパレータ3を介して
積層した。最後に幅40mmの粘着テープ10により終
端部を固定し、電極積層体を作製した。
These negative electrodes 1 were 41.5 × 32.3 m
m and the positive electrode 2 were punched into a strip shape of 39.5 × 31.0 mm. Then, the negative electrode 1 and the positive electrode 2 and 30
A separator 3 made of a microporous polyethylene film having a thickness of μm was sequentially laminated, eight negative electrodes 1 and seven positive electrodes 2 were used, and a total of 15 electrodes were laminated via 17 separators 3. Lastly, the end portion was fixed with an adhesive tape 10 having a width of 40 mm to produce an electrode laminate.

【0045】次に、ニッケルメッキを施した角型電池缶
4に絶縁板5を配置し、スプリング板6と電極圧迫剤1
1と共に、上記電極積層体を収納した。そして、負極1
の集電を取るためにニッケル製の負極リード7の一端を
負極1に圧着し、他端を電池缶4に溶接した。また、正
極2の集電を取るためにアルミニウム製の正極リード8
の一端を正極2に取付け、他端を正極端子9にレーザー
溶接した。正極端子9は、電池内圧に応じて電流を遮断
し、かつ開裂弁を有する安全装置を内蔵している。
Next, the insulating plate 5 is placed on the nickel-plated square battery can 4, and the spring plate 6 and the electrode pressing agent 1 are placed.
1 together with the electrode laminate. And the negative electrode 1
One end of a negative electrode lead 7 made of nickel was crimped to the negative electrode 1 and the other end was welded to the battery can 4 in order to collect current. In order to collect the current of the positive electrode 2, a positive electrode lead 8 made of aluminum is used.
Was attached to the positive electrode 2 and the other end was laser-welded to the positive electrode terminal 9. The positive electrode terminal 9 interrupts current according to the internal pressure of the battery, and has a built-in safety device having a cleavage valve.

【0046】そして、この電池缶4内にプロピレンカー
ボネート50体積%とジエチルカーボネート50体積%
との混合溶媒中にLiPF6を1mol/l溶解させた
電解液を注入した。レーザーにより正極端子9を溶接
し、厚み8mm、高さ48mm、幅34mmの角型二次
電池を作製した。
The battery can 4 contains 50% by volume of propylene carbonate and 50% by volume of diethyl carbonate.
An electrolyte solution in which LiPF 6 was dissolved at 1 mol / l in a mixed solvent with was added. The positive electrode terminal 9 was welded with a laser to produce a rectangular secondary battery having a thickness of 8 mm, a height of 48 mm, and a width of 34 mm.

【0047】実施例2〜実施例6 電極の厚みと積層枚数を表1に示すように変えた以外
は、実施例1と同様に角型二次電池を作製した。これら
の角型二次電池を実施例2〜実施例6とする。
Examples 2 to 6 Rectangular secondary batteries were produced in the same manner as in Example 1 except that the thickness of the electrodes and the number of layers were changed as shown in Table 1. These prismatic secondary batteries are referred to as Examples 2 to 6.

【0048】以上、負極に複合焼結体を用い、正極に造
粒体からなる成型体を用いた実施例1〜実施例6の電極
の厚みと積層枚数を表1にまとめて示す。
Table 1 summarizes the thickness and the number of laminated electrodes of Examples 1 to 6 in which a composite sintered body was used for the negative electrode and a molded body made of a granulated body was used for the positive electrode.

【0049】[0049]

【表1】 [Table 1]

【0050】実施例7 先ず、始めに負極1は、次のようにして作製した。 Example 7 First, the negative electrode 1 was prepared as follows.

【0051】出発原料として石油ピッチを用い、これに
酸素を含む官能基を10〜20重量%導入し(酸素架
橋)、不活性ガス気流中、温度1000℃で焼成して、
ガラス状カーボンに近い性質をもった炭素質材料を得
た。この炭素質材料について、X線回折測定を行った結
果、(002)面の面間隔は3.76オングストローム
であり、ピクノメータにより測定を行った結果、真比重
は1.58g/cm3であった。この炭素質材料を粉砕
し、平均粒径10ミクロンメートルの炭素質材料粉末と
した。
A petroleum pitch is used as a starting material, 10 to 20% by weight of a functional group containing oxygen is introduced therein (oxygen crosslinking), and calcined at a temperature of 1000 ° C. in an inert gas stream.
A carbonaceous material having properties similar to glassy carbon was obtained. As a result of X-ray diffraction measurement of this carbonaceous material, the (002) plane spacing was 3.76 angstroms, and the true specific gravity was 1.58 g / cm 3 as measured by a pycnometer. . This carbonaceous material was pulverized to obtain a carbonaceous material powder having an average particle size of 10 μm.

【0052】このようにして得られた炭素質材料を負極
活物質とし、これを90重量部と、結着剤としてポリフ
ッ化ビニリデン10重量部とを混合し、負極合剤を調整
した。次に、この負極合材を溶剤であるN−メチルピロ
リドンに分散させて、負極合材をスラリー状にした。
The carbonaceous material thus obtained was used as a negative electrode active material, and 90 parts by weight thereof and 10 parts by weight of polyvinylidene fluoride as a binder were mixed to prepare a negative electrode mixture. Next, this negative electrode mixture was dispersed in N-methylpyrrolidone as a solvent to make the negative electrode mixture into a slurry.

【0053】そして、このスラリー状の負極合材を負極
集電体となる帯状の厚さ0.01mmの銅箔の両面に塗
布し、乾燥後ローラプレス機で圧縮成型して帯状の負極
(塗布型電極)1を作製した。負極1の厚みは、最外周
の2枚は、0.18mmとし、通常のものは、0.36
mmとした。この時の負極集電体を除く体積密度は、
1.0g/mlであった。
Then, the slurry-like negative electrode mixture was applied to both sides of a strip-shaped copper foil having a thickness of 0.01 mm serving as a negative electrode current collector, dried, and compression-molded with a roller press to form a strip-shaped negative electrode (coating material). Mold electrode) 1 was produced. The thickness of the negative electrode 1 is 0.18 mm for the outermost two sheets, and 0.36 mm for the normal one.
mm. At this time, the volume density excluding the negative electrode current collector is:
It was 1.0 g / ml.

【0054】次に、正極2は、次にようにして作製し
た。
Next, the positive electrode 2 was produced as follows.

【0055】炭酸リチウムと炭酸コバルトをモル比でL
i:Co=1:1になるように混合し、空気中で5時間
焼成した。この材料について、X線回折測定を行った結
果、JCPDSカードのLiCoO2とよく一致してい
た。その後、自動乳鉢を用いて粉砕し、LiCoO2
得た。
Lithium carbonate and cobalt carbonate are used in a molar ratio of L
i: Co = 1: 1 was mixed and calcined in air for 5 hours. As a result of X-ray diffraction measurement of this material, the result was in good agreement with LiCoO 2 of the JCPDS card. Then, it was pulverized using an automatic mortar to obtain LiCoO 2 .

【0056】このようにして得られたLiCoO2を正
極活物質とし、これを91重量部と、導電剤としてグラ
ファイト6重量部と、結着剤としてポリフッ化ビニリデ
ン3重量部とを混合し、正極合材を調整し、これをN−
メチルピロリドンに分散してスラリー状にした。そし
て、このスラリー状の正極合材を正極集電体である帯状
の厚さ0.02mmのアルミニウム箔の両面に塗布し
た、正極2の厚みは、0.36mmとした。この時の集
電体を除く体積密度は、3.1g/mlであった。
The LiCoO 2 thus obtained was used as a positive electrode active material, and 91 parts by weight thereof, 6 parts by weight of graphite as a conductive agent, and 3 parts by weight of polyvinylidene fluoride as a binder were mixed. Adjust the mixture and mix it with N-
It was dispersed in methylpyrrolidone to make a slurry. The slurry-like positive electrode mixture was applied to both surfaces of a 0.02 mm-thick aluminum foil as a positive electrode current collector, and the thickness of the positive electrode 2 was 0.36 mm. At this time, the volume density excluding the current collector was 3.1 g / ml.

【0057】このように、正極活物質層の構成を変えて
塗布型にした以外は、実施例1と同じ寸法の電極を作製
し、角型二次電池を作製した。
As described above, an electrode having the same dimensions as in Example 1 was manufactured except that the configuration of the positive electrode active material layer was changed to a coating type, and a square secondary battery was manufactured.

【0058】実施例8〜実施例11 電極の厚みと積層枚数を表2に示すように変えた以外
は、実験例7と同様の構成で角型二次電池を作製した。
これらの角型二次電池を実施例8〜実施例11とする。
Examples 8 to 11 Square secondary batteries were manufactured in the same manner as in Experimental Example 7, except that the thickness of the electrodes and the number of layers were changed as shown in Table 2.
These prismatic secondary batteries are referred to as Examples 8 to 11.

【0059】以上、負極及び正極に塗布型電極を用いた
実施例7〜実施例11の電極の厚みと積層枚数を表2に
まとめて示す。
Table 2 summarizes the electrode thicknesses and the number of laminated electrodes of Examples 7 to 11 in which coating electrodes were used for the negative electrode and the positive electrode.

【0060】[0060]

【表2】 [Table 2]

【0061】比較例1 負極の厚みを0.17mm、正極の厚みを0.18mm
とし、積層枚数を合わせて29枚とした(表1に示す)
以外は、実験例1と同様の構成で角型二次電池を作製し
た。
Comparative Example 1 The thickness of the negative electrode was 0.17 mm, and the thickness of the positive electrode was 0.18 mm.
And the total number of layers was 29 (shown in Table 1)
Except for the above, a prismatic secondary battery was manufactured in the same configuration as in Experimental Example 1.

【0062】比較例2 負極の厚みを2.54mm、正極の厚みを2.54mm
とし、積層枚数を合わせて2枚とした(表1に示す)以
外は、実験例1と同様の構成で角型二次電池を作製し
た。
Comparative Example 2 The thickness of the negative electrode was 2.54 mm, and the thickness of the positive electrode was 2.54 mm
A prismatic secondary battery was manufactured in the same configuration as in Experimental Example 1 except that the number of stacked layers was changed to two (shown in Table 1).

【0063】特性の評価 上述した実施例及び比較例の角型二次電池について、充
電電流400mA、終止電圧4.2Vまで定電流充電を
行い、次に、放電電流200mA(0.2Cで放電)、
及び放電電流50mA(0.05Cで放電)にて、終止
電圧2.5Vまで定電流放電を行うといった充放電を行
い、放電容量を求めた。焼結体電極を用いた実施例1〜
実施例6及び比較例1〜比較例2の角型二次電池につい
ての結果を表3及び図2に示す。また、塗布型電極を用
いた実施例7〜実施例11の角型二次電池についての結
果を表4及び図3に示す。
Evaluation of Characteristics The rectangular secondary batteries of the above Examples and Comparative Examples were charged at a constant current of 400 mA and a final voltage of 4.2 V, and then discharged at a current of 200 mA (discharged at 0.2 C). ,
At a discharge current of 50 mA (discharge at 0.05 C), charge / discharge was performed by performing constant current discharge up to a final voltage of 2.5 V, and a discharge capacity was obtained. Examples 1 to 4 using a sintered body electrode
The results for the prismatic secondary batteries of Example 6 and Comparative Examples 1 and 2 are shown in Table 3 and FIG. Table 4 and FIG. 3 show the results of the square secondary batteries of Examples 7 to 11 using the coating type electrodes.

【0064】[0064]

【表3】 [Table 3]

【0065】[0065]

【表4】 [Table 4]

【0066】これらの結果から、電極の単位反応面積当
たりの放電容量が0.1C以下の放電で6〜100mA
h/cm2である実施例1〜実施例11の角型二次電池
は、比較例の角型二次電池に比べ、放電容量に優れてい
ることがわかる。このように、電極の単位反応面積当た
りの放電容量、すなわち、電極の厚み及び積層枚数を規
制することで、エネルギー密度を向上させ、高容量な電
池を作製できる。また、軽負荷において高容量であるば
かりではなく、5時間率程度の実用負荷においても良好
な特性を発揮できる。特に、単位反応面積当たりの放電
容量が6〜30mAh/cm2の場合には、大幅に放電
容量が向上する。
From these results, it can be seen that the discharge capacity per unit reaction area of the electrode is 6 to 100 mA at a discharge of 0.1 C or less.
It can be seen that the square secondary batteries of Examples 1 to 11 with h / cm 2 have a better discharge capacity than the square secondary batteries of Comparative Example. As described above, by regulating the discharge capacity per unit reaction area of the electrode, that is, the thickness and the number of stacked electrodes, the energy density can be improved and a high-capacity battery can be manufactured. Further, not only high capacity under light load but also good characteristics can be exhibited under practical load of about 5 hours rate. In particular, when the discharge capacity per unit reaction area is 6 to 30 mAh / cm 2 , the discharge capacity is greatly improved.

【0067】さらに、表3、図2からわかるように、実
施例1〜実施例6においては、実施例7〜実施例11に
比べ、反応面積が低下しても容量の低下がなく、負荷特
性を向上させている。これは、実施例7〜実施例11で
は、塗布型電極を用いているに対して、実施例1〜実施
例6では、負極活物質に複合焼結体を用い正極活物質に
造粒品の成型体を用いているためである。つまり、焼結
体及び成型体からなる電極は、バインダーを含まないこ
とから、活物質の充填密度が高く、電池の高容量化に有
利である。
Further, as can be seen from Table 3 and FIG. 2, in Examples 1 to 6, there was no decrease in capacity even when the reaction area was reduced as compared with Examples 7 to 11, and the load characteristics were small. Has been improved. This is because, in Examples 7 to 11, a coated electrode is used, whereas in Examples 1 to 6, a composite sintered body is used as a negative electrode active material and a granulated product is used as a positive electrode active material. This is because a molded body is used. That is, since the electrodes made of the sintered body and the molded body do not contain the binder, the packing density of the active material is high, which is advantageous for increasing the capacity of the battery.

【0068】また、表4、図3の結果からわかるよう
に、塗布型電極を用いた実施例7〜実施例11では、焼
結帯電極を用いた実施例1〜実施例6に比べ、上述した
ようにわずかに特性が劣るが、従来の薄い塗布膜に比べ
厚く塗布することで充填性が向上し、電池の放電容量が
向上している。
As can be seen from the results shown in Table 4 and FIG. 3, in Examples 7 to 11 using the coating type electrode, compared to Examples 1 to 6 using the sintered strip electrode, As described above, although the characteristics are slightly inferior, the filling property is improved and the discharge capacity of the battery is improved by applying a thicker coating than a conventional thin coating film.

【0069】比較例1の角型二次電池ように、電極の単
位反応面積当たりの放電容量が6mAh/cm2未満で
は、すなわち、電極の厚みが薄く積層枚数が多い場合に
は、従来の電池と同様の容量になり、効果が少ない。ま
た、比較例2の角型二次電池のように、電極の単位反応
面積当たりの放電容量が100mAh/cm2を越える
と、積層枚数が少なくなり、通常の形態の角型電池、筒
型電池では満足な特性が得られない。
When the discharge capacity per unit reaction area of the electrode is less than 6 mAh / cm 2 , that is, when the electrode thickness is small and the number of stacked layers is large, as in the prismatic secondary battery of Comparative Example 1, And the effect is small. Further, when the discharge capacity per unit reaction area of the electrode exceeds 100 mAh / cm 2, as in the prismatic secondary battery of Comparative Example 2, the number of stacked batteries decreases, and the prismatic battery in a normal form and the cylindrical battery Cannot provide satisfactory characteristics.

【0070】このように、本実施例においては、電極の
反応面積当たりの放電容量を規制することにより、電極
の厚みと積層枚数を規制でき、高容量な非水電解質二次
電池を作製するうえで、最適な電池設計を行うことがで
きる。
As described above, in this embodiment, by regulating the discharge capacity per reaction area of the electrode, the thickness and the number of stacked electrodes can be regulated, and a high-capacity nonaqueous electrolyte secondary battery can be manufactured. Thus, an optimal battery design can be performed.

【0071】なお、本実施例では、角型電池を例にして
本発明を説明したが、この他に円筒形電池のように、3
層以上の電極からなる電極積層体を用いる電池において
も同様な効果を得ることができる。
In the present embodiment, the present invention has been described by taking a rectangular battery as an example.
A similar effect can be obtained in a battery using an electrode laminate including at least two layers of electrodes.

【0072】[0072]

【発明の効果】以上の説明からも明らかなように、本発
明に係る非水電解質二次電池においては、電極の単位反
応面積当たりの放電容量を規制することにより、電池の
高容量化を図ることができ、高容量な電池を作製する上
で最適な設計を行うことが可能となる。
As is apparent from the above description, in the non-aqueous electrolyte secondary battery according to the present invention, the battery capacity is increased by regulating the discharge capacity per unit reaction area of the electrode. This makes it possible to perform an optimal design for manufacturing a high-capacity battery.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を適用した角型二次電池の縦断面図であ
る。
FIG. 1 is a longitudinal sectional view of a prismatic secondary battery to which the present invention is applied.

【図2】本実施例の焼結体電極の単位反応面積当たりの
放電容量と、放電容量との関係を示す特性図である。
FIG. 2 is a characteristic diagram showing a relationship between a discharge capacity per unit reaction area of the sintered body electrode of the present embodiment and a discharge capacity.

【図3】本実施例の塗布型の電極の単位反応面積当たり
の放電容量と、放電容量との関係を示す特性図である。
FIG. 3 is a characteristic diagram showing a relationship between a discharge capacity per unit reaction area of the coating type electrode of the present embodiment and a discharge capacity.

【符号の説明】[Explanation of symbols]

1 負極、2 正極、3 セパレータ、4 電池缶、5
絶縁板、6 スプリング板、7 負極リード、8 正
極リード、9 正極端子、10 テープ、11電極圧迫
1 negative electrode, 2 positive electrode, 3 separator, 4 battery can, 5
Insulation plate, 6 spring plate, 7 negative electrode lead, 8 positive electrode lead, 9 positive electrode terminal, 10 tape, 11 electrode compress

フロントページの続き (72)発明者 間々田 紀雄 福島県郡山市日和田町高倉字下杉下1番地 の1 株式会社ソニー・エナジー・テック 内Continued on the front page (72) Inventor Norio Mamida 1-1-1 Shimosugishita, Takakura, Hiwada-cho, Koriyama-shi, Fukushima Prefecture Sony Energy Tech Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 炭素材料を負極活物質とする負極と、リ
チウム複合酸化物を正極活物質とする正極とを合わせて
3層以上となるように積層された電極積層体を有する非
水電解液二次電池において、 電極積層体の単位反応面積当たりの放電容量が6〜10
0mAh/cm2であることを特徴とする非水電解質二
次電池。
1. A non-aqueous electrolyte having an electrode laminate in which three or more layers are formed by combining a negative electrode using a carbon material as a negative electrode active material and a positive electrode using a lithium composite oxide as a positive electrode active material. In the secondary battery, the discharge capacity per unit reaction area of the electrode laminate is 6 to 10.
A non-aqueous electrolyte secondary battery having a current of 0 mAh / cm 2 .
【請求項2】 上記単位反応面積当たりの放電容量が、
0.1C以下での放電で6〜100mAh/cm2であ
ることを特徴とする請求項1記載の非水電解質電池。
2. The discharge capacity per unit reaction area is as follows:
The nonaqueous electrolyte battery according to claim 1, wherein the discharge in 0.1C below a 6~100mAh / cm 2.
【請求項3】 上記負極は、炭素質焼結体が金属メッシ
ュと一体成型された複合焼結体であることを特徴とする
請求項1記載の非水電解質二次電池。
3. The non-aqueous electrolyte secondary battery according to claim 1, wherein the negative electrode is a composite sintered body obtained by integrally molding a carbonaceous sintered body with a metal mesh.
【請求項4】 上記正極は、リチウム複合酸化物の造粒
体が金属メッシュと一体成型された成型体からなること
を特徴とする請求項1記載の非水電解質二次電池。
4. The non-aqueous electrolyte secondary battery according to claim 1, wherein the positive electrode comprises a molded body obtained by integrally molding a granulated lithium composite oxide with a metal mesh.
【請求項5】 上記電極の単位反応面積当たりの放電容
量が6〜30mAh/cm2であることを特徴とする請
求項1記載の非水電解質二次電池。
5. The non-aqueous electrolyte secondary battery according to claim 1, wherein the electrode has a discharge capacity per unit reaction area of 6 to 30 mAh / cm 2 .
JP22896496A 1996-05-17 1996-08-29 Nonaqueous electrolyte secondary battery Expired - Fee Related JP3845479B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP22896496A JP3845479B2 (en) 1996-08-29 1996-08-29 Nonaqueous electrolyte secondary battery
DE69736411T DE69736411T8 (en) 1996-05-17 1997-04-30 Anode material, process for its preparation and a non-aqueous electrolyte cell employing such an anode material
EP97107214A EP0807601B1 (en) 1996-05-17 1997-04-30 Anode material, method for producing it and nonaqueous electrolyte cell employing such anode materials
CN97111574A CN1132259C (en) 1996-05-17 1997-05-16 Anode material, method for producing it and nonaqueous electrolyte cell employing such anode materials
US08/854,847 US6174625B1 (en) 1996-05-17 1997-06-12 Anode material, method for producing it and nonaqueous electrolyte cell employing such anode materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22896496A JP3845479B2 (en) 1996-08-29 1996-08-29 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH1069924A true JPH1069924A (en) 1998-03-10
JP3845479B2 JP3845479B2 (en) 2006-11-15

Family

ID=16884633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22896496A Expired - Fee Related JP3845479B2 (en) 1996-05-17 1996-08-29 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3845479B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017537437A (en) * 2014-10-31 2017-12-14 エルジー・ケム・リミテッド Multi-layer cable type secondary battery
JP2018508966A (en) * 2015-02-09 2018-03-29 エルジー・ケム・リミテッド Cable type secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017537437A (en) * 2014-10-31 2017-12-14 エルジー・ケム・リミテッド Multi-layer cable type secondary battery
JP2018508966A (en) * 2015-02-09 2018-03-29 エルジー・ケム・リミテッド Cable type secondary battery
US10361461B2 (en) 2015-02-09 2019-07-23 Lg Chem, Ltd. Cable type secondary battery including an inner electrode having an internal separator between electrodes

Also Published As

Publication number Publication date
JP3845479B2 (en) 2006-11-15

Similar Documents

Publication Publication Date Title
JP3427570B2 (en) Non-aqueous electrolyte secondary battery
JP4524881B2 (en) Nonaqueous electrolyte secondary battery
JP4061586B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP4910243B2 (en) Nonaqueous electrolyte secondary battery
JP3598153B2 (en) Non-aqueous electrolyte secondary battery
JPH0935715A (en) Manufacture of positive electrode active material and nonaqueous electrolyte secondary battery
JP2003173776A (en) Positive electrode active material and secondary battery using it
JP3160920B2 (en) Non-aqueous electrolyte secondary battery
JP2001345101A (en) Secondary battery
JP2001076727A (en) Positive electrode active material for nonaqueous electrolyte battery and nonaqueous electrolyte battery
KR100364069B1 (en) Non-aqueous Electrolyte Secondary Battery
JP4016438B2 (en) Nonaqueous electrolyte secondary battery
JPH1131513A (en) Nonaqueous electrolyte secondary battery
JP2002358965A (en) Positive electrode active substance and non-aqueous electrolyte secondary battery
JP2001023685A (en) Electrolyte and secondary battery using it
JP2001085009A (en) Positive electrode active material and its manufacture
JP3845479B2 (en) Nonaqueous electrolyte secondary battery
JPH10270079A (en) Nonaqueous electrolyte battery
JPH08180878A (en) Lithium secondary battery
JP2002203600A (en) Non-aqueous electrolytic solution secondary battery
JP3427577B2 (en) Non-aqueous electrolyte secondary battery
JP3428034B2 (en) Non-aqueous electrolyte secondary battery
JPH10302752A (en) Nonaqueous electrolyte secondary battery
JPH1197015A (en) Nonaqueous electrolyte secondary cell
JP2003168431A (en) Positive electrode active material for lithium secondary battery, its manufacturing method and lithium secondary battery using the same

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040123

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040220

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060821

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130825

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees