JP3845479B2 - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP3845479B2
JP3845479B2 JP22896496A JP22896496A JP3845479B2 JP 3845479 B2 JP3845479 B2 JP 3845479B2 JP 22896496 A JP22896496 A JP 22896496A JP 22896496 A JP22896496 A JP 22896496A JP 3845479 B2 JP3845479 B2 JP 3845479B2
Authority
JP
Japan
Prior art keywords
electrode
secondary battery
electrolyte secondary
positive electrode
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22896496A
Other languages
Japanese (ja)
Other versions
JPH1069924A (en
Inventor
隆幸 山平
由明 竹内
紀雄 間々田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP22896496A priority Critical patent/JP3845479B2/en
Priority to DE69736411T priority patent/DE69736411T8/en
Priority to EP97107214A priority patent/EP0807601B1/en
Priority to CN97111574A priority patent/CN1132259C/en
Priority to US08/854,847 priority patent/US6174625B1/en
Publication of JPH1069924A publication Critical patent/JPH1069924A/en
Application granted granted Critical
Publication of JP3845479B2 publication Critical patent/JP3845479B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、負極活物質として炭素質材料を用いた非水電解質二次電池に関するものである。
【0002】
【従来の技術】
近年、ビデオカメラやラジオカセットテープレコーダ等のポータブル機器の普及にともない、使い捨てである一次電池に代わって繰り返し使用できる二次電池に対する需要が高まっている。
【0003】
現在使用されている二次電池のほとんどは、アルカリ電解液を用いたニッケルカドミウム電池である。しかし、ニッケルカドミウム電池は、電圧が約1.2Vと低く、電池のエネルギー密度を向上させることが困難である。また、常温での自己放電率が1カ月で20%以上と高い。
【0004】
一方、電解液に非水溶媒を使用し、また負極にリチウム等の軽金属を使用する非水電解質二次電池が検討されている。この非水電解質二次電池は、電圧が3V以上と高く、高エネルギー密度を有し、しかも自己放電率が低い。しかし、このような二次電池では、負極に使用する金属リチウム等が充放電の繰り返しによりデンドライト状に成長して正極と接触し、その結果電池内部に短絡が生じてしまう。そのため、短寿命となる欠点を有しており、実用化が困難となっている。
【0005】
このため、リチウム等を他の金属と合金化し、この合金を負極に使用する非水電解質二次電池が検討されている。しかし、このような二次電池では、充放電を繰り返すことにより合金が微細粒子となり、やはり短寿命となる欠点を有しているため、実用化が困難となっている。
【0006】
そこで、例えば、特開昭62−90863号公報にて開示されているように、コークス等の炭素質材料を負極活物質として使用する非水電解質二次電池が提案されている。このような二次電池は、負極の炭素層間或いは微細孔へのリチウムのドープ・脱ドープを電池反応に利用するものであり、負極が上述したような欠点を有しておらず、安全性、サイクル寿命特性に優れている。このような二次電池の正極活物質には、本願発明者らが先に特開昭63−135099号公報において提案したようなLiMO(Mは、1種類以上の遷移金属を表し、0.05<X<1.10である。)が使用できる。
【0007】
【発明が解決しようとする課題】
しかしながら、炭素質材料を負極活物質として用いた非水電解質二次電池は、金属リチウム等を負極活物質として用いた非水電解質二次電池に比べて、サイクル寿命、安全性に優れるものの、エネルギー密度の点においては劣っている。
【0008】
この原因としては、活物質の粉末体同士を結着させておくためのバインダーの使用が挙げられる。すなわち、炭素質材料は、ピッチ等を焼成して粉砕するか、または、粉砕後再度仮焼した炭素粉末体のかたちで用いられる。そして、この粉末体にゴム等のバインダー、分散剤等を加えてスラリー化し、その後、この合剤スラリーを集電体に塗布するか、あるいはモールディングしてペレット状にすることで、負極を作製するのが一般的である。したがって、電極構成としては、炭素質材料、バインダー、集電体の3点からなっており、バインダーは、通常3〜20%程度添加される。このバインダーの添加分だけ、電極当たりの活物質量(充填密度)が制限され、電池の高容量化に限界がある。
【0009】
そこで、本発明は、上述のような問題点を解決するために提案されたものであり、高容量の非水電解質二次電池を提供することを目的とする。
【0010】
【課題を解決するための手段】
そこで、本発明者らは鋭意検討を重ねた結果、電極積層体の単位反応面積当たりの放電容量を規制し、それに合うように電極層数や厚みを選択することで高容量の非水電解質二次電池を提供できる技術を見いだした。
【0011】
【課題を解決するための手段】
本発明に係る非水電解液二次電池は、炭素質焼結体を金属メッシュと一体成型した複合焼結体からなる負極と、リチウム複合酸化物を正極活物質とする正極とを合わせて3層以上となるように積層された電極積層体を有する非水電解液二次電池であって、電極積層体の単位反応面積当たりの放電容量が、0.05Cの放電で10.21〜61.19mAh/cm であることを特徴とする。
【0014】
電極の単位反応面積当たりの放電容量が61.19mAh/cm を越えると、積層枚数が少なくなり、0.1℃以下で使用するようなバックアップ用途の電池としては使用できるが、通常の形態の角形二次電池、筒型に次電池においては、満足な特性を得ることが難しい。
【0015】
また、電極の単位反応面積当たりの放電容量が10.21mAh/cm 未満では、積層枚数が増え、従来の電池と同様な容量となってしまう。
【0016】
【発明の実施の形態】
以下、本発明に係る非水電解質二次電池の好適な実施の形態について説明する。
【0017】
本発明に係る非水電解質二次電池は、炭素材料を負極活物質とする負極と、リチウム複合酸化物を正極活物質とする正極とを合わせて3層以上となるように積層された電極積層体が電池容器内に収納されて構成されている。そして、特にこの電池では、電極積層体の単位反応面積当たりの放電容量が10.21〜61.19mAh/cm に規制されている。
【0018】
ここで、単位面積当たりの放電容量は、0.05C以下での放電容量を基準として、反応有効面積(正極反応面積)で割った値とする。
【0019】
本発明に係る非水電解質二次電池では、このようにして求められる電極積層体の単位反応面積当たりの放電容量が、0.05Cの放電で10.21〜61.19mAh/cm となるように、電極の厚みと積層枚数とが決定される。
【0020】
電極積層体では、同じ材料を用いた場合、電極厚みが厚くなり積層枚数が少なくなるほど、単位反応面積当たりの放電容量が大きくなる。逆に、電極厚みが薄くなり積層枚数が多くなるほど、単位反応面積当たりの放電容量が小さくなる。
【0021】
このように、単位反応面積当たりの放電容量を基準にして電極厚みや電極積層枚数を選択することにより、電池の高容量化を図ることができる。また、単位反応面積当たりの放電容量を規制すると、軽負荷において高容量であるばかりではなく、5時間率程度の実用負荷においても、良好な特性が得られる。
【0022】
電極の単位反応面積当たりの放電容量が61.19mAh/cm を越えた場合には、積層枚数が少なくなり、0.1C以下で使用するようなバックアップ用途の電池としては使用できるが、通常の形態の角型二次電池、筒型二次電池においては、満足な特性を得ることが難しくなる。また、電極の単位反応面積当たりの放電容量が10.21mAh/cm 未満の場合には、積層枚数が増え、従来の電池と同様な容量となってしまう。
【0023】
したがって、電極の単位反応面積当たりの放電容量は、0.05Cの放電で10.21〜61.19mAh/cm の範囲、好ましくは14.08〜29.71mAh/cm の範囲である。
【0024】
本発明では、以上のように電極積層体の単位反応面積当たりの放電容量を規制するが、この放電容量は、電極積層体を構成する各電極の活物質の厚さや活物質の充填密度によって制御される。したがって、各電極の構成は、これとの兼ね合いで選択するのが望ましい。
【0025】
電極積層体を構成する負極や正極としては、具体的には、次のようなものが用いられる。
【0028】
先ず、負極には、焼結によって炭素化する材料をメッシュ状の集電体とともに焼結させた複合焼結体が用いられる。この複合焼結体は、バインダーを含まない分、活物質の充填密度を高くでき、電池の高容量化に有利である。
【0029】
この複合焼結体に用いる炭素質材料としては、石油ピッチ、バインダーピッチ、高分子樹脂等を熱処理し、メソフェーズピッチ化したもの、メソフェーズピッチを部分的に酸化したもの、メソフェーズピッチを部分的に炭素化したもの、メソフェーズピッチを完全に炭素化したもの、またはグリーンコークス等のように完全に炭素体となっていない焼結性を有するものが使用できる。
【0030】
また、これらに炭素化を終了した黒鉛、熱分解炭素類、コークス類(石油コークス、ピッチコークス等)、カーボンブラック(アセチレンブラック等)、ガラス状炭素、有機高分子材料焼成体(有機高分子材料を不活性ガス気流中、あるいは真空中で500℃以上の適当な温度で焼成したもの)、炭素繊維等と前記樹脂分を含んだピッチ類や焼結性の高い樹脂、例えばフラン樹脂、ジビニルベンゼン、ポリフッ化ビニリデン、ポリ塩化ビニリデン等を使用し、焼成処理を行い、粉砕後の粒度調整したものを加えて使用することができる。
【0031】
一方、正極も、活物質となるリチウム複合酸化物と、バインダー、導電剤及分散剤よりなる正極合材スラリーを集電体に塗布、乾燥後、成形することで作製される塗布型のものや、リチウム複合酸化物にバインダーを添加して造粒し、この造粒体をメッシュ状の集電体とともに成型することで作製されるモールディング型のもの、さらには、焼結させることで正極活物質をメッシュ状の集電体に保持させた成型体が用いられる。
【0032】
リチウム複合酸化物は、LiMO(但し、Mは、1種類以上の遷移金属を表し、x,yは、それぞれLi,Oの組成比を示す。)で表され、具体的には、LiCoO、LiNiO、LiNiCo(1−y)(但し、0.05≦x≦1.10、0<y<1)が挙げられ、遷移金属MにCo、またはNi、Feの少なくとも1種を使用し、0.05≦x≦1.10であることが好ましい。
【0033】
上記リチウム複合酸化物は、例えばリチウム、コバルト、ニッケル等の炭酸塩を組成に応じて混合し、酸素存在雰囲気下600〜1000℃の温度範囲で焼成することにより得られる。なお、出発原料は、炭酸塩に限定されず、水酸化物、酸化物からも同様に合成可能である。
【0034】
電解液には、有機溶剤に電解質を溶解したものを使用し、従来から知られたものがいずれも使用できる。有機溶剤としては、プロピレンカーボネート、エチレンカーボネート、γ−ブチロラクトン等のエステル類や、ジエチルエーテル、テトラヒドロフラン、置換テトロヒドロフラン、ジオキソラン、ピラン及びその誘導体、ジメトキシエタン、ジエトキシエタン等のエーテル類や、3−メチル−2−オキサゾリジノン等の3置換−2−オキサゾリジノン類や、スルホラン、メチルスルホラン、アセトニトリル、プロピオニトリル等が挙げられ、これらを単独、もしくは2種類以上混合して使用される。
【0035】
また、電解質としては、過塩素酸リチウム、ホウフッ化リチウム、リンフッ化リチウム、塩化アルミン酸リチウム、ハロゲン化リチウム、トリフルオロメタンスルホン酸リチウム等が使用できる。
【0036】
【実施例】
以下、本発明を適用した非水電解質二次電池について図1に示すような角型二次電池を作製し、その特性を評価した。なお、図1において、正極と負極の積層枚数は、先行例、実施例及び比較例と異なる。
〈先行例1〉
先ず、負極1は次のようにして作製した。
【0037】
固定炭素88.5%、全膨張率0%(石炭の熱膨張試験に用いられるディラトメータによる試験による)である低膨張性メソフェーズカーボン粉体250メッシュアンダー品を酸化雰囲気中にて(ここでは、空気中にて)800℃で1時間焼成し、平均粒径20ミクロンの粉末を得た。これを炭素質材料Aとする。
【0038】
固定炭素88.5%、全膨張率0%(石炭の熱膨張試験に用いられるディラトメータによる試験による)である低膨張性メソフェーズカーボン粉体250メッシュアンダー品を酸化雰囲気中にて(ここでは、空気中にて)800℃で1時間焼成し、その後酸化雰囲気を不活性ガス(窒素)に変更し、不活性ガス中900℃で3時間焼成し、コークス状としたものを粉砕し、平均粒径20ミクロンの粉末を得た。これを炭素質材料Bとする。
【0039】
次に、この炭素質材料A、炭素質材料Bを70:30にて混合し、バインダーとしてポリビニルアルコール(分子量)を加え、溶媒として水を加えて混練した。その後、250ミクロン以下、150ミクロン以上のメッシュを使用して、造粒、及び粒度調整を行った。
【0040】
そして、この造粒品を負極集電体となる銅メッシュとともに加圧し、角型形状にて成型し、このメッシュ一体化電極を不活性ガス中にて1000度で3時間焼成し、負極(複合焼結体)1を得た。この負極活物質層の体積密度は、1.25g/mlであり、真比重は、1.75g/mlであった。負極1の厚みは、最外周の2枚は、0.18mmとし、それ以外のものは、0.36mmとした。
【0041】
次に、正極2は、次のようにして作製した。
【0042】
正極活物質としてLiCoOを91重量部と、導電剤としてケッチェンブラックを3重量部と、結着剤としてポリフッ化ビニリデン2.5重量部とを混合し、これにジメチルフォルムアミドを分散剤として加えて、スラリーを作製した。これを、有機溶媒用スプレードライヤー(坂本技研社製)を用い、150℃の熱風にて乾燥し、平均粒径約100ミクロンのほぼ真球形のパウダー状の造粒品を作製した。この造粒品を正極集電体となるアルミニウムメッシュとともに角型形状に成型し、正極2を得た。この正極活物質層の体積密度は、3.1g/mlであった。正極2の厚みは、0.36mmとした。
【0043】
これらの負極1を41.5×32.3mm、正極2を39.5×31.0mmの短冊状にそれぞれ打ち抜いた。そして、この負極1及び正極2と、30μmの微孔性ポリエチレンフィルムからなるセパレータ3とを順々に積層し、負極1を8枚、正極2を7枚使用し、合計15枚の電極を17枚のセパレータ3を介して積層した。最後に幅40mmの粘着テープ10により終端部を固定し、電極積層体を作製した。
【0044】
次に、ニッケルメッキを施した角型電池缶4に絶縁板5を配置し、スプリング板6と電極圧迫剤11と共に、上記電極積層体を収納した。そして、負極1の集電を取るためにニッケル製の負極リード7の一端を負極1に圧着し、他端を電池缶4に溶接した。また、正極2の集電を取るためにアルミニウム製の正極リード8の一端を正極2に取付け、他端を正極端子9にレーザー溶接した。正極端子9は、電池内圧に応じて電流を遮断し、かつ開裂弁を有する安全装置を内蔵している。
【0045】
そして、この電池缶4内にプロピレンカーボネート50体積%とジエチルカーボネート50体積%との混合溶媒中にLiPFを1mol/l溶解させた電解液を注入した。レーザーにより正極端子9を溶接し、厚み8mm、高さ48mm、幅34mmの角型二次電池を作製した。
【0046】
〈実施例1〜実施例5〉
電極の厚みと積層枚数を表1に示すように変えた以外は、先行例1と同様に角型二次電池を作製した。これらの角型二次電池を実施例1〜実施例5とする。
【0047】
以上、負極に複合焼結体を用い、正極に造粒体からなる成型体を用いた先行例1、実施例1〜実施例5の電極の厚みと積層枚数を表1にまとめて示す。
【0048】
【表1】

Figure 0003845479
【0060】
〈比較例1〉
負極の厚みを0.17mm、正極の厚みを0.18mmとし、積層枚数を合わせて29枚とした(表1に示す)以外は、先行例1と同様の構成で角型二次電池を作製した。
【0061】
〈比較例2〉
負極の厚みを2.54mm、正極の厚みを2.54mmとし、積層枚数を合わせて2枚とした(表1に示す)以外は、先行例1と同様の構成で角型二次電池を作製した。
【0062】
〈特性の評価〉
上述した実施例及び比較例の角型二次電池について、充電電流400mA、終止電圧4.2Vまで定電流充電を行い、次に、放電電流200mA(0.2Cで放電)、及び放電電流50mA(0.05Cで放電)にて、終止電圧2.5Vまで定電流放電を行うといった充放電を行い、放電容量を求めた。焼結体電極を用いた先行例1、実施例1〜実施例5及び比較例1、2の角型二次電池についての結果を表2及び図2に示す。
【0063】
【表2】
Figure 0003845479
【0065】
これらの結果から、電極の単位反応面積当たりの放電容量が0.05Cの放電で10.21〜61.19mAh/cm で実施例1〜実施例5の角型二次電池は、比較例の角型二次電池に比べ、放電容量に優れていることがわかる。このように、電極の単位反応面積当たりの放電容量、すなわち、電極の厚み及び積層枚数を規制することで、エネルギー密度を向上させ、高容量な電池を作製できる。また、軽負荷において高容量であるばかりではなく、5時間率程度の実用負荷においても良好な特性を発揮できる。特に、単位反応面積当たりの放電容量が14.08〜29.71mAh/cm の場合には、大幅に放電容量が向上する。
【0066】
さらに、表2、図2からわかるように、実施例1〜実施例5においては、反応面積が低下しても容量の低下がなく、負荷特性を向上させている。これは、負極活物質に複合焼結体を用い正極活物質に造粒品の成型体を用いているためである。つまり、焼結体及び成型体からなる電極は、バインダーを含まないことから、活物質の充填密度が高く、電池の高容量化に有利である。
【0068】
比較例1の角型二次電池のように、電極の単位反応面積当たりの放電容量が2.53mAh/cm未満では、すなわち、電極の厚みが薄く積層枚数が多い場合には、従来の電池と同様の容量となり、効果が少ない。また、比較例2の角型二次電池のように、
電極の単位反応面積当たりの放電容量が126.1mAh/cm越えると、積層枚数が少なくなり通常の形態の角型電池、筒型電池では満足な特性が得られない。
【0069】
このように、本実施例においては、電極の反応面積当たりの放電容量を規制することにより、電極の厚みと積層枚数を規制でき、高容量な非水電解質二次電池を作製するうえで、最適な電池設計を行うことができる。
【0070】
なお、本実施例では、角型電池を例にして本発明を説明したが、この他に円筒形電池のように、3層以上の電極からなる電極積層体を用いる電池においても同様な効果を得ることができる。
【0071】
【発明の効果】
以上の説明からも明らかなように、本発明に係る非水電解質二次電池においては、電極の単位反応面積当たりの放電容量を規制することにより、電池の高容量化を図ることができ、高容量な電池を作製する上で最適な設計を行うことが可能となる。
【図面の簡単な説明】
【図1】本発明を適用した角型二次電池の縦断面図である。
【図2】本実施例の焼結体電極の単位反応面積当たりの放電容量と、放電容量との関係を示す特性図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a nonaqueous electrolyte secondary battery using a carbonaceous material as a negative electrode active material.
[0002]
[Prior art]
In recent years, with the spread of portable devices such as video cameras and radio cassette tape recorders, there is an increasing demand for secondary batteries that can be used repeatedly instead of disposable primary batteries.
[0003]
Most secondary batteries currently in use are nickel cadmium batteries using an alkaline electrolyte. However, a nickel cadmium battery has a low voltage of about 1.2 V, and it is difficult to improve the energy density of the battery. Moreover, the self-discharge rate at room temperature is as high as 20% or more in one month.
[0004]
On the other hand, non-aqueous electrolyte secondary batteries using a non-aqueous solvent for the electrolytic solution and a light metal such as lithium for the negative electrode have been studied. This non-aqueous electrolyte secondary battery has a high voltage of 3 V or higher, a high energy density, and a low self-discharge rate. However, in such a secondary battery, metallic lithium or the like used for the negative electrode grows in a dendrite shape by repeated charge and discharge and contacts the positive electrode, resulting in a short circuit inside the battery. For this reason, it has the disadvantage of having a short life, making it difficult to put it to practical use.
[0005]
For this reason, non-aqueous electrolyte secondary batteries in which lithium or the like is alloyed with other metals and this alloy is used for the negative electrode have been studied. However, such a secondary battery has a drawback that the alloy becomes fine particles by repeated charge and discharge, which also has a short life, and thus is difficult to put into practical use.
[0006]
In view of this, for example, as disclosed in JP-A-62-90863, a nonaqueous electrolyte secondary battery using a carbonaceous material such as coke as a negative electrode active material has been proposed. Such a secondary battery uses lithium doping / dedoping to the carbon layer or fine pores of the negative electrode for the battery reaction, and the negative electrode does not have the above-described drawbacks, safety, Excellent cycle life characteristics. As such a positive electrode active material of the secondary battery, Li x MO 2 (M represents one or more kinds of transition metals, as previously proposed in Japanese Patent Application Laid-Open No. 63-135099 by the present inventors, 0.05 <X <1.10).
[0007]
[Problems to be solved by the invention]
However, the non-aqueous electrolyte secondary battery using the carbonaceous material as the negative electrode active material is superior in cycle life and safety compared to the non-aqueous electrolyte secondary battery using metal lithium or the like as the negative electrode active material. It is inferior in terms of density.
[0008]
The cause of this is the use of a binder for binding the active material powders together. That is, the carbonaceous material is used in the form of a carbon powder that is baked and pulverized, or calcinated again after pulverization. Then, a binder such as rubber, a dispersing agent or the like is added to this powder body to form a slurry, and then the mixture slurry is applied to a current collector or molded into a pellet to produce a negative electrode. It is common. Therefore, the electrode configuration is composed of three points of a carbonaceous material, a binder, and a current collector, and the binder is usually added in an amount of about 3 to 20%. The amount of active material per electrode (packing density) is limited by the amount of binder added, and there is a limit to increasing the capacity of the battery.
[0009]
Therefore, the present invention has been proposed to solve the above-described problems, and an object thereof is to provide a high-capacity nonaqueous electrolyte secondary battery.
[0010]
[Means for Solving the Problems]
Therefore, as a result of intensive studies, the present inventors have regulated the discharge capacity per unit reaction area of the electrode laminate, and selected the number of electrode layers and the thickness so as to match the capacity, thereby increasing the capacity of the nonaqueous electrolyte 2. We have found a technology that can provide secondary batteries.
[0011]
[Means for Solving the Problems]
The nonaqueous electrolyte secondary battery according to the present invention includes a negative electrode made of a composite sintered body obtained by integrally molding a carbonaceous sintered body with a metal mesh and a positive electrode using a lithium composite oxide as a positive electrode active material. A non-aqueous electrolyte secondary battery having an electrode laminate laminated so as to be equal to or greater than the number of layers, wherein the discharge capacity per unit reaction area of the electrode laminate is 10.21 to 61.61 at a discharge of 0.05C. It is 19 mAh / cm 2 .
[0014]
When the discharge capacity per unit reaction area of the electrode exceeds 61.19 mAh / cm 2 , the number of stacked layers decreases, and it can be used as a battery for backup use such as being used at 0.1 ° C. or lower. Satisfactory characteristics are difficult to obtain in prismatic secondary batteries and cylindrical batteries.
[0015]
In addition, when the discharge capacity per unit reaction area of the electrode is less than 10.21 mAh / cm 2 , the number of stacked layers increases, resulting in the same capacity as a conventional battery.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the non-aqueous electrolyte secondary battery according to the present invention will be described.
[0017]
The non-aqueous electrolyte secondary battery according to the present invention is an electrode stack in which a negative electrode using a carbon material as a negative electrode active material and a positive electrode using a lithium composite oxide as a positive electrode active material are combined to form three or more layers. The body is housed in a battery container. And especially in this battery, the discharge capacity per unit reaction area of the electrode laminate is regulated to 10.21 to 61.19 mAh / cm 2 .
[0018]
Here, the discharge capacity per unit area is a value divided by the effective reaction area (positive electrode reaction area) on the basis of the discharge capacity at 0.05 C or less.
[0019]
In the nonaqueous electrolyte secondary battery according to the present invention, the discharge capacity per unit reaction area of the electrode laminate thus obtained is 10.21 to 61.19 mAh / cm 2 at a discharge of 0.05 C. In addition, the thickness of the electrode and the number of stacked layers are determined.
[0020]
In the electrode stack, when the same material is used, the discharge capacity per unit reaction area increases as the electrode thickness increases and the number of stacked layers decreases. Conversely, the discharge capacity per unit reaction area decreases as the electrode thickness decreases and the number of stacked layers increases.
[0021]
Thus, by selecting the electrode thickness and the number of electrode stacks based on the discharge capacity per unit reaction area, the capacity of the battery can be increased. In addition, when the discharge capacity per unit reaction area is regulated, not only is the capacity high at a light load, but good characteristics can be obtained even at a practical load of about 5 hours.
[0022]
When the discharge capacity per unit reaction area of the electrode exceeds 61.19 mAh / cm 2 , the number of stacked layers decreases, and it can be used as a battery for backup use such as being used at 0.1 C or less. In the prismatic secondary battery and the cylindrical secondary battery of the form, it becomes difficult to obtain satisfactory characteristics. In addition, when the discharge capacity per unit reaction area of the electrode is less than 10.21 mAh / cm 2 , the number of stacked layers increases, resulting in the same capacity as a conventional battery.
[0023]
Therefore, the discharge capacity per unit reaction area of the electrode is in the range of 10.21 to 61.19 mAh / cm 2 at 0.05 C discharge , preferably in the range of 14.08 to 29.71 mAh / cm 2 .
[0024]
In the present invention, the discharge capacity per unit reaction area of the electrode laminate is regulated as described above. This discharge capacity is controlled by the thickness of the active material of each electrode constituting the electrode laminate and the packing density of the active material. Is done. Therefore, it is desirable to select the configuration of each electrode in consideration of this.
[0025]
Specifically, the following are used as the negative electrode and the positive electrode constituting the electrode laminate.
[0028]
First, a composite sintered body obtained by sintering a material that is carbonized by sintering together with a mesh current collector is used for the negative electrode . Since this composite sintered body does not contain a binder, it can increase the packing density of the active material and is advantageous for increasing the capacity of the battery.
[0029]
Carbonaceous materials used in this composite sintered body include those obtained by heat-treating petroleum pitch, binder pitch, polymer resin, etc., resulting in mesophase pitch, partially oxidized mesophase pitch, and mesophase pitch partially carbonized. It is possible to use a carbonized one, a mesophase pitch that has been completely carbonized, or one that has a sinterability that is not completely carbonized, such as green coke.
[0030]
Also, carbonized carbon, pyrolytic carbons, cokes (petroleum coke, pitch coke, etc.), carbon black (acetylene black, etc.), glassy carbon, organic polymer material fired body (organic polymer material) In an inert gas stream or in vacuum at an appropriate temperature of 500 ° C. or higher), pitches containing carbon fiber and the resin, and highly sinterable resins such as furan resin and divinylbenzene. Polyvinylidene fluoride, polyvinylidene chloride, etc. can be used, subjected to a firing treatment, and added after adjusting the particle size after pulverization.
[0031]
On the other hand, the positive electrode is also a coating type produced by applying a lithium composite oxide as an active material, a positive electrode mixture slurry consisting of a binder, a conductive agent and a dispersing agent to a current collector, drying and molding. Molding type produced by adding a binder to lithium composite oxide and granulating this, and molding this granulated body with a mesh-like current collector, and further, positive electrode active material by sintering A molded body in which a mesh current collector is held is used.
[0032]
The lithium composite oxide is represented by Li x MO y (where M represents one or more transition metals, and x and y represent the composition ratio of Li and O, respectively). LiCoO 2 , LiNiO 2 , Li x Ni y Co (1-y) O 2 (where 0.05 ≦ x ≦ 1.10, 0 <y <1), and the transition metal M is Co, or Ni, It is preferable to use at least one kind of Fe, and 0.05 ≦ x ≦ 1.10.
[0033]
The lithium composite oxide can be obtained, for example, by mixing carbonates such as lithium, cobalt, and nickel according to the composition, and firing in a temperature range of 600 to 1000 ° C. in an oxygen-existing atmosphere. The starting material is not limited to carbonates, and can be synthesized in the same manner from hydroxides and oxides.
[0034]
As the electrolytic solution, a solution obtained by dissolving an electrolyte in an organic solvent can be used, and any conventionally known one can be used. Examples of the organic solvent include esters such as propylene carbonate, ethylene carbonate and γ-butyrolactone, diethyl ether, tetrahydrofuran, substituted tetrohydrofuran, dioxolane, pyran and derivatives thereof, ethers such as dimethoxyethane and diethoxyethane, and 3 -Trisubstituted-2-oxazolidinones such as methyl-2-oxazolidinone, sulfolane, methylsulfolane, acetonitrile, propionitrile and the like can be mentioned, and these are used alone or in admixture of two or more.
[0035]
As the electrolyte, lithium perchlorate, lithium borofluoride, lithium phosphofluoride, lithium chloroaluminate, lithium halide, lithium trifluoromethanesulfonate, or the like can be used.
[0036]
【Example】
Hereinafter, for the non-aqueous electrolyte secondary battery to which the present invention is applied, a prismatic secondary battery as shown in FIG. 1 was produced and its characteristics were evaluated. In FIG. 1, the number of stacked positive and negative electrodes is different from the preceding example, examples, and comparative examples.
<Prior Example 1>
First, the negative electrode 1 was produced as follows.
[0037]
A low-expansion mesophase carbon powder 250 mesh under product having a fixed carbon of 88.5% and a total expansion rate of 0% (according to a test using a dilatometer used for the thermal expansion test of coal) in an oxidizing atmosphere (here, air Bake) at 800 ° C. for 1 hour to obtain a powder with an average particle size of 20 microns. This is carbonaceous material A.
[0038]
A low-expansion mesophase carbon powder 250 mesh under product having a fixed carbon of 88.5% and a total expansion rate of 0% (according to a test using a dilatometer used for the thermal expansion test of coal) in an oxidizing atmosphere (here, air Baked at 800 ° C. for 1 hour, then changed the oxidizing atmosphere to an inert gas (nitrogen), baked in an inert gas at 900 ° C. for 3 hours, crushed coke, and average particle size A 20 micron powder was obtained. This is carbonaceous material B.
[0039]
Next, this carbonaceous material A and carbonaceous material B were mixed at 70:30, polyvinyl alcohol (molecular weight) was added as a binder, and water was added as a solvent and kneaded. Thereafter, granulation and particle size adjustment were performed using a mesh of 250 microns or less and 150 microns or more.
[0040]
Then, this granulated product is pressed together with a copper mesh as a negative electrode current collector, molded into a square shape, and this mesh integrated electrode is fired in an inert gas at 1000 ° C. for 3 hours to form a negative electrode (composite) Sintered body) 1 was obtained. The negative electrode active material layer had a volume density of 1.25 g / ml and a true specific gravity of 1.75 g / ml. The negative electrode 1 had a thickness of 0.18 mm for the outermost two sheets and 0.36 mm for the other ones.
[0041]
Next, the positive electrode 2 was produced as follows.
[0042]
91 parts by weight of LiCoO 2 as a positive electrode active material, 3 parts by weight of ketjen black as a conductive agent, and 2.5 parts by weight of polyvinylidene fluoride as a binder are mixed, and dimethylformamide is used as a dispersant. In addition, a slurry was prepared. This was dried with hot air at 150 ° C. using a spray dryer for organic solvent (manufactured by Sakamoto Giken Co., Ltd.) to produce a substantially spherical powder-like granulated product having an average particle size of about 100 microns. This granulated product was molded into a square shape together with an aluminum mesh serving as a positive electrode current collector, whereby a positive electrode 2 was obtained. The positive electrode active material layer had a volume density of 3.1 g / ml. The thickness of the positive electrode 2 was 0.36 mm.
[0043]
The negative electrode 1 was punched into a strip shape of 41.5 × 32.3 mm, and the positive electrode 2 was punched into a strip shape of 39.5 × 31.0 mm. And this negative electrode 1 and the positive electrode 2 and the separator 3 which consists of a microporous polyethylene film of 30 micrometers are laminated | stacked in order, the negative electrode 1 is used 8 sheets, the positive electrode 2 is used 7 sheets, and a total of 15 electrodes 17 It laminated | stacked through the separator 3 of the sheet. Finally, the terminal portion was fixed with an adhesive tape 10 having a width of 40 mm to produce an electrode laminate.
[0044]
Next, the insulating plate 5 was placed on the nickel-plated rectangular battery can 4 and the electrode laminate was housed together with the spring plate 6 and the electrode compression agent 11. Then, in order to collect current from the negative electrode 1, one end of the negative electrode lead 7 made of nickel was pressure-bonded to the negative electrode 1 and the other end was welded to the battery can 4. Further, in order to collect current from the positive electrode 2, one end of the positive electrode lead 8 made of aluminum was attached to the positive electrode 2, and the other end was laser welded to the positive electrode terminal 9. The positive electrode terminal 9 incorporates a safety device that cuts off the current according to the battery internal pressure and has a cleavage valve.
[0045]
Then, an electrolytic solution in which 1 mol / l of LiPF 6 was dissolved in a mixed solvent of 50% by volume of propylene carbonate and 50% by volume of diethyl carbonate was injected into the battery can 4. The positive electrode terminal 9 was welded with a laser to produce a square secondary battery having a thickness of 8 mm, a height of 48 mm, and a width of 34 mm.
[0046]
<Example 1 to Example 5>
A square secondary battery was fabricated in the same manner as in Example 1 except that the thickness of the electrode and the number of stacked layers were changed as shown in Table 1. These square secondary batteries are referred to as Examples 1 to 5.
[0047]
Table 1 summarizes the thicknesses and the number of layers of the electrodes of Prior Example 1 and Examples 1 to 5 in which a composite sintered body is used for the negative electrode and a molded body made of a granulated body is used for the positive electrode.
[0048]
[Table 1]
Figure 0003845479
[0060]
<Comparative example 1>
A prismatic secondary battery is manufactured with the same configuration as in the first example except that the thickness of the negative electrode is 0.17 mm, the thickness of the positive electrode is 0.18 mm, and the total number of stacked layers is 29 (shown in Table 1). did.
[0061]
<Comparative example 2>
A prismatic secondary battery is fabricated with the same configuration as in the preceding example 1 except that the thickness of the negative electrode is 2.54 mm, the thickness of the positive electrode is 2.54 mm, and the number of stacked layers is two (shown in Table 1). did.
[0062]
<Evaluation of characteristics>
About the square secondary battery of the Example and the comparative example described above , a charging current of 400 mA, a constant current charging to a final voltage of 4.2 V, and then a discharging current of 200 mA (discharging at 0.2 C) and a discharging current of 50 mA ( The battery was charged / discharged at a constant current discharge to a final voltage of 2.5 V and the discharge capacity was determined. Table 2 and FIG. 2 show the results for the prismatic secondary batteries of Prior Example 1, Examples 1 to 5 and Comparative Examples 1 and 2 using the sintered body electrode .
[0063]
[Table 2]
Figure 0003845479
[0065]
From these results, the discharge capacity per unit reaction area of the electrode was 10.21 to 61.19 mAh / cm 2 with a discharge of 0.05 C, and the prismatic secondary batteries of Examples 1 to 5 were of the comparative example. It can be seen that the discharge capacity is superior to that of the prismatic secondary battery. Thus, by regulating the discharge capacity per unit reaction area of the electrode, that is, the thickness of the electrode and the number of stacked layers, the energy density can be improved and a high-capacity battery can be manufactured. In addition to high capacity at light loads, good characteristics can be exhibited even at practical loads of about 5 hours. In particular, when the discharge capacity per unit reaction area is 14.08 to 29.71 mAh / cm 2 , the discharge capacity is greatly improved.
[0066]
Further, as can be seen from Table 2 and FIG. 2, in Examples 1 to 5, there is no reduction in capacity even when the reaction area is reduced, and the load characteristics are improved. This is because a composite sintered body is used for the negative electrode active material and a molded product of a granulated product is used for the positive electrode active material. That is, since the electrode formed of a sintered body and a molded body does not contain a binder, the packing density of the active material is high, which is advantageous for increasing the battery capacity.
[0068]
When the discharge capacity per unit reaction area of the electrode is less than 2.53 mAh / cm 2 as in the square secondary battery of Comparative Example 1, that is, when the electrode is thin and the number of stacked layers is large, the conventional battery The capacity is the same as, and less effective. Moreover, like the square secondary battery of Comparative Example 2,
When the discharge capacity per unit reaction area of the electrode exceeds 126.1 mAh / cm 2 , the number of stacked layers is reduced, and satisfactory characteristics cannot be obtained in a normal type prismatic battery or cylindrical battery.
[0069]
Thus, in this example, by regulating the discharge capacity per reaction area of the electrode, the thickness of the electrode and the number of stacked layers can be regulated, which is optimal for producing a high-capacity nonaqueous electrolyte secondary battery. Battery design.
[0070]
In the present embodiment, the present invention has been described by taking a square battery as an example. However, the same effect can be obtained in a battery using an electrode laminate composed of three or more layers of electrodes, such as a cylindrical battery. Obtainable.
[0071]
【The invention's effect】
As is clear from the above description, in the nonaqueous electrolyte secondary battery according to the present invention, by limiting the discharge capacity per unit reaction area of the electrode, the capacity of the battery can be increased. It becomes possible to design optimally in producing a battery having a capacity.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a prismatic secondary battery to which the present invention is applied.
FIG. 2 is a characteristic diagram showing the relationship between the discharge capacity per unit reaction area of the sintered body electrode of this example and the discharge capacity.

Claims (3)

炭素質焼結体を金属メッシュと一体成型した複合焼結体からなる負極と
リチウム複合酸化物を正極活物質とする正極とを合わせて3層以上となるように積層された電極積層体を有する非水電解液二次電池において、
電極積層体の単位反応面積当たりの放電容量が、0.05Cの放電で10.21〜61.19mAh/cm であることを特徴とする非水電解質二次電池。
A negative electrode comprising a composite sintered body obtained by integrally molding a carbonaceous sintered body with a metal mesh ;
In a non-aqueous electrolyte secondary battery having an electrode laminate that is laminated so as to have three or more layers combined with a positive electrode using a lithium composite oxide as a positive electrode active material,
A nonaqueous electrolyte secondary battery , wherein a discharge capacity per unit reaction area of the electrode laminate is 10.21 to 61.19 mAh / cm 2 at a discharge of 0.05C .
上記正極は、リチウム複合酸化物の造粒体が金属メッシュと一体成型された成型体からなることを特徴とする請求項1記載の非水電解質二次電池。  The non-aqueous electrolyte secondary battery according to claim 1, wherein the positive electrode is formed of a molded body in which a granulated body of a lithium composite oxide is integrally formed with a metal mesh. 上記電極の単位反応面積当たりの放電容量が、0.05Cの放電で14.08〜29.71mAh/cmであることを特徴とする請求項1記載の非水電解質二次電池。 2. The nonaqueous electrolyte secondary battery according to claim 1 , wherein the discharge capacity per unit reaction area of the electrode is 14.08 to 29.71 mAh / cm 2 at a discharge of 0.05 C. 3.
JP22896496A 1996-05-17 1996-08-29 Nonaqueous electrolyte secondary battery Expired - Fee Related JP3845479B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP22896496A JP3845479B2 (en) 1996-08-29 1996-08-29 Nonaqueous electrolyte secondary battery
DE69736411T DE69736411T8 (en) 1996-05-17 1997-04-30 Anode material, process for its preparation and a non-aqueous electrolyte cell employing such an anode material
EP97107214A EP0807601B1 (en) 1996-05-17 1997-04-30 Anode material, method for producing it and nonaqueous electrolyte cell employing such anode materials
CN97111574A CN1132259C (en) 1996-05-17 1997-05-16 Anode material, method for producing it and nonaqueous electrolyte cell employing such anode materials
US08/854,847 US6174625B1 (en) 1996-05-17 1997-06-12 Anode material, method for producing it and nonaqueous electrolyte cell employing such anode materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22896496A JP3845479B2 (en) 1996-08-29 1996-08-29 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH1069924A JPH1069924A (en) 1998-03-10
JP3845479B2 true JP3845479B2 (en) 2006-11-15

Family

ID=16884633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22896496A Expired - Fee Related JP3845479B2 (en) 1996-05-17 1996-08-29 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3845479B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016068684A1 (en) * 2014-10-31 2016-05-06 주식회사 엘지화학 Multilayer cable-type secondary battery
EP3244476B1 (en) 2015-02-09 2019-12-11 LG Chem, Ltd. Cable type secondary battery

Also Published As

Publication number Publication date
JPH1069924A (en) 1998-03-10

Similar Documents

Publication Publication Date Title
JP3427570B2 (en) Non-aqueous electrolyte secondary battery
JP4524881B2 (en) Nonaqueous electrolyte secondary battery
US7374841B2 (en) Positive electrode active matter and secondary battery using this
JP3543437B2 (en) Positive electrode active material and non-aqueous electrolyte secondary battery using this positive electrode active material
JP4910243B2 (en) Nonaqueous electrolyte secondary battery
JP3598153B2 (en) Non-aqueous electrolyte secondary battery
JP4140222B2 (en) Negative electrode, non-aqueous electrolyte secondary battery, and negative electrode manufacturing method
JP3160920B2 (en) Non-aqueous electrolyte secondary battery
JP2001345101A (en) Secondary battery
KR100364069B1 (en) Non-aqueous Electrolyte Secondary Battery
JP4016438B2 (en) Nonaqueous electrolyte secondary battery
JPH1131513A (en) Nonaqueous electrolyte secondary battery
JP2002358965A (en) Positive electrode active substance and non-aqueous electrolyte secondary battery
JP3845479B2 (en) Nonaqueous electrolyte secondary battery
JP2001085009A (en) Positive electrode active material and its manufacture
JP2002151065A (en) Negative electrode active material and non-aqueous electrolyte battery
JPH10302752A (en) Nonaqueous electrolyte secondary battery
JP3427577B2 (en) Non-aqueous electrolyte secondary battery
JP2002203600A (en) Non-aqueous electrolytic solution secondary battery
JP4747392B2 (en) Nonaqueous electrolyte secondary battery
JP2001015157A (en) Electrolytic solution and secondary battery using same
JP3428034B2 (en) Non-aqueous electrolyte secondary battery
JPH1197015A (en) Nonaqueous electrolyte secondary cell
JP3577799B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP3728773B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040123

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040220

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060821

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130825

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees