JPH1068053A - Production of aluminum-lithium base alloy thin sheet material excellent in isotropy of toughness - Google Patents
Production of aluminum-lithium base alloy thin sheet material excellent in isotropy of toughnessInfo
- Publication number
- JPH1068053A JPH1068053A JP24570696A JP24570696A JPH1068053A JP H1068053 A JPH1068053 A JP H1068053A JP 24570696 A JP24570696 A JP 24570696A JP 24570696 A JP24570696 A JP 24570696A JP H1068053 A JPH1068053 A JP H1068053A
- Authority
- JP
- Japan
- Prior art keywords
- toughness
- sheet material
- treatment
- rolling
- base alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Metal Rolling (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、Al−Li系合金薄板
材の製造方法に係り、特に靭性の等方性に優れると共に
伸び値を向上したAl−Li系合金薄板材の製造方法に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an Al--Li alloy sheet, and more particularly to a method for producing an Al--Li alloy sheet having excellent toughness isotropy and an improved elongation value.
【0002】[0002]
【従来の技術】Li1.7〜3.0%とCu,Mg及び
Zrを含むAl−Li系合金は、展伸用Al合金の国際
規格において2020、2091、8090、8091
等で知られている。これらの合金は低密度に加えて高弾
性率化が可能であり、航空・宇宙機器、自動車、軌道車
輌等の軽量化構造材料としてより一層の用途拡大が期待
され、そのためには靭性の一層の向上、特に異方性の無
い靭性が望まれている。2. Description of the Related Art Al-Li alloys containing 1.7 to 3.0% of Li and Cu, Mg and Zr are 2020, 2091, 8090, 8091 in accordance with international standards for wrought Al alloys.
And so on. These alloys are capable of increasing the elastic modulus in addition to the low density, and are expected to expand their applications as lightweight structural materials for aerospace equipment, automobiles, rail vehicles, etc. Improvement, particularly toughness without anisotropy, is desired.
【0003】従来これらAl−Li系合金の靭性向上に
関するものでは、結晶粒形状を冷間圧延によって制御す
ることにより、伸び値及び靭性を改善しようとするもの
(特開昭61−23751)、溶体化処理後に特定速度
で冷却し、冷間圧延を行った後時効処理することによっ
て、破壊靭性を向上させるもの(特開昭60−2215
43)等が提案されている。しかしながら、この種の合
金の用途の多くは薄板材であり、特に航空機の場合では
損傷許容型の設計がなされることが多く、引張特性のみ
でなく靭性における異方性が問題である。ところが薄板
材の場合、靭性の異方性の解消が不十分であった。[0003] In the prior art relating to the improvement of toughness of these Al-Li alloys, an attempt is made to improve elongation value and toughness by controlling the shape of crystal grains by cold rolling (Japanese Patent Application Laid-Open No. 61-233751). Cooling at a specific speed after quenching treatment, cold rolling, and aging treatment to improve fracture toughness (JP-A-60-2215)
43) have been proposed. However, many applications of this type of alloy are thin sheets, and particularly in the case of aircraft, damage-tolerant designs are often made, and the anisotropy in not only tensile properties but also toughness is a problem. However, in the case of a thin plate, the anisotropy of toughness was not sufficiently eliminated.
【0004】一般に、板材の異方性の原因はミクロ組織
にあり、材料組織が変形母相と異なる立方体方位等を含
むランダムな方位に再結晶化することにより異方性が減
少すると考えられているが、これまでは材料組織をラン
ダムな方位に安定的に再結晶化させ異方性を無くすこと
は、従来の技術常識からは非常に困難であると考えら
れ、具体的方法は不明確であった。Generally, it is considered that the anisotropy of a sheet material is caused by a microstructure, and the anisotropy is reduced by recrystallization of the material structure into a random orientation including a cubic orientation different from the deformed matrix. However, it has been considered that it is extremely difficult to eliminate the anisotropy by stably recrystallizing the material structure to a random orientation, and the conventional method is unclear. there were.
【0005】[0005]
【発明が解決しようとする課題】本発明は、上記の事情
を考慮してなされたものであって、靭性の等方性に優れ
ると共に伸び値を向上したAl−Li−Cu−Mg−Z
r系合金薄板材の製造方法を提供することを目的とす
る。DISCLOSURE OF THE INVENTION The present invention has been made in view of the above circumstances, and is an Al-Li-Cu-Mg-Z having excellent isotropic toughness and improved elongation value.
An object of the present invention is to provide a method for producing an r-based alloy sheet material.
【0006】[0006]
【課題を解決するための手段】上記の課題を解決するた
め、本発明者等はAl−Li系合金板の製造方法につい
て鋭意検討した結果、熱間圧延と冷間圧延の間において
特定条件下で中間焼鈍処理を行い、その後特定の圧下率
で冷間圧延する方法により、本発明の目的を達成するこ
とを見出し、この発明をなすに至った。Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have conducted intensive studies on a method for producing an Al-Li-based alloy sheet, and found that under a specific condition between hot rolling and cold rolling. The present inventors have found that the object of the present invention can be achieved by a method of performing an intermediate annealing treatment and then performing cold rolling at a specific reduction rate, and have accomplished the present invention.
【0007】すなわち、本発明の靭性の等方性に優れた
Al−Li系合金薄板材の製造方法は、Li1.0〜
3.0%、Cu1.0〜3.0%、Mg0.5〜2.0
%、Zr0.04〜0.10%を含み、残部Alと不可
避的不純物からなるAl−Li系合金鋳塊を常法により
均質化処理した後、熱間圧延し、その後温度380〜4
20℃で2〜10時間の中間焼鈍処理を行い、ついで加
工率60%以上の冷間圧延を施すことを特徴とし、上記
Al−Li系合金薄板材の組織を微細に再結晶化せし
め、板材の集合組織に立方体方位を導入し、滑りをラン
ダム化することによって延性の向上と靭性の異方性を無
くすものである。That is, the method for producing an Al—Li alloy sheet having excellent toughness isotropic properties according to the present invention is as follows.
3.0%, Cu 1.0-3.0%, Mg 0.5-2.0
%, Zr 0.04 to 0.10%, and after homogenizing an Al-Li alloy ingot consisting of the balance of Al and unavoidable impurities by a conventional method, hot rolling is performed, and then a temperature of 380 to 4%.
It is characterized by performing an intermediate annealing treatment at 20 ° C. for 2 to 10 hours, and then performing cold rolling at a working ratio of 60% or more to finely recrystallize the structure of the Al—Li alloy thin sheet material. In this paper, the cubic orientation is introduced into the texture and the slip is randomized to improve ductility and eliminate anisotropy of toughness.
【0008】本発明における化学成分の限定理由につい
て説明する。Li:Liは、軽量化元素であると共に、
準安定相δ´が析出し、強度向上、高剛性化に寄与す
る。Li含有量が1.0%未満では軽量化及び強度向上
の効果が不十分であり、また3.0%を超えるえると鋳
造割れ感受性が増大すると共に粗大な準安定相δ´を生
成するなどして合金の伸び値及び靭性を低下させるので
Li量の上限は3.0%とする。The reasons for limiting the chemical components in the present invention will be described. Li: Li is a lightening element,
The metastable phase δ ′ precipitates and contributes to strength improvement and high rigidity. If the Li content is less than 1.0%, the effects of weight reduction and strength improvement are insufficient, and if it exceeds 3.0%, casting crack susceptibility increases and a coarse metastable phase δ 'is formed. As a result, the elongation value and the toughness of the alloy are reduced, so the upper limit of the amount of Li is set to 3.0%.
【0009】Cu:Cuは、Al−Cu系の板状析出物
(Al2 Cu)や、Al−Cu−Li系の板状の析出相
(T1 相)を生成して強度及び靭性の向上に寄与する。
しかしその含有量が1.0%未満では効果が十分で無
く、また3.0%を超えると前記効果が飽和すると同時
に軽量化効果を減殺する。なおMg含有量が1.0%未
満の場合は、Cu含有量は1.5〜3.0%が望まし
く、またMg含有量が1.0%を超える場合はMgによ
る強度向上の効果も期待できるので、Cuは1.0〜
2.5%程度でも良い。Cu: Cu forms an Al-Cu-based plate-like precipitate (Al 2 Cu) or an Al-Cu-Li-based plate-like precipitate phase (T 1 phase) to improve strength and toughness. To contribute.
However, if the content is less than 1.0%, the effect is not sufficient, and if it exceeds 3.0%, the effect is saturated and the weight reduction effect is reduced. When the Mg content is less than 1.0%, the Cu content is desirably 1.5 to 3.0%, and when the Mg content exceeds 1.0%, the effect of improving the strength by Mg is also expected. Because Cu can be 1.0 ~
It may be about 2.5%.
【0010】Mg:Mgは固溶効果により、伸び値及び
靭性を低下することなく合金を強化すると同時にAl−
Cu−Mg系の準安定相の板状析出物S´相(Al−C
uMg)を生成し、これによりさらに強度向上に寄与す
る。Mg含有量が0.5%未満では強度向上の効果が十
分でなく、また2.0%を超えると強度は向上するもの
の靭性及び伸び値が低下する。従ってMgは0.5〜
2.0%の範囲が望ましい。Mg: Mg strengthens the alloy without lowering the elongation value and the toughness due to the solid solution effect, and at the same time, Al-
Cu-Mg based metastable phase plate-like precipitate S 'phase (Al-C
uMg), thereby further contributing to strength improvement. If the Mg content is less than 0.5%, the effect of improving strength is not sufficient, and if it exceeds 2.0%, the strength is improved but the toughness and elongation value are reduced. Therefore, Mg is 0.5 to
A range of 2.0% is desirable.
【0011】Zr:Zrは、鋳造組織の微細化や再結晶
の抑制等の目的で含有させるが、その含有量が0.2%
を超えるとAl−Zrの粗大金属間化合物を生成して強
度、靭性及び伸び値を低下するため、通常0.2%以下
に制限される場合が多い。含有量が0.1%を超えると
材料組織の再結晶化が抑制されるため、本発明のごとく
再結晶組織を得ることを目的とする場合は、Zrの組織
微細化効果のみを期待し、再結晶抑制効果が及ばない範
囲にZrの含有量を制限する必要があり、このためその
含有量は0.04〜0.1重量%の範囲とする。Zr: Zr is contained for the purpose of refining the cast structure and suppressing recrystallization, but the content is 0.2%.
If it exceeds, a coarse intermetallic compound of Al-Zr is formed to lower the strength, toughness and elongation value, so that it is often limited to 0.2% or less. When the content exceeds 0.1%, recrystallization of the material structure is suppressed. Therefore, when the purpose is to obtain a recrystallized structure as in the present invention, only the structure refining effect of Zr is expected, It is necessary to limit the content of Zr to a range where the effect of suppressing the recrystallization does not reach. Therefore, the content is set in the range of 0.04 to 0.1% by weight.
【0012】その他の元素は、一般のAl合金に許容さ
れている不純物の量と同等である。すなわち、Fe0.
30%以下、Si0.20%以下、Zn0.25%以
下、Cr0.10%以下、Mn0.10%以下の含有は
差し支えない。しかし、靭性の異方性をより一層少なく
する必要上好ましくは、Fe0.10%以下,Si0.
10%,Zn0.10%以下、Ti0.05%以下、C
r0.05%以下に規制することが望ましい。The other elements are equivalent to the amounts of impurities allowed in general Al alloys. That is, Fe0.
The content of 30% or less, Si 0.20% or less, Zn 0.25% or less, Cr 0.10% or less, and Mn 0.10% or less may be included. However, since it is necessary to further reduce the anisotropy of toughness, it is preferable that Fe0.10% or less and Si0.
10%, Zn 0.10% or less, Ti 0.05% or less, C
It is desirable to restrict r to 0.05% or less.
【0013】Tiは、0.01〜0.05%がAl−T
iまたはAl−Ti−B等の合金、あるいは含Ti化合
物の形で鋳塊組織微細化のため積極的に添加含有され
る。Mnは熱間圧延時の再結晶核となる効果や溶体化後
のストレッチにおいて転移をトラップし、その後の時効
処理における析出の核発生サイトとなる効果を有する
が、Al−Mn系の粗大金属間化合物を生成するため、
その含有量は0.10%を上限とする。[0013] Ti is 0.01-0.05% Al-T
i or an alloy such as Al-Ti-B or a Ti-containing compound is positively added and refined to refine the ingot structure. Mn has the effect of becoming a recrystallization nucleus during hot rolling and trapping the transition in the stretch after solution treatment, and has the effect of becoming a nucleation site for precipitation in the subsequent aging treatment. To produce the compound,
The content is limited to 0.10%.
【0014】次に製造方法について説明する。上記化学
成分を有するAl−Li系合金溶湯を、常法に従ってA
r等の不活性雰囲気中においてLiを保護しつつ半連続
鋳造(DC鋳造)法によって鋳造する。 得られた鋳塊
は、Zr化合物が微細分散された微細組織を有し、該鋳
塊を面削したる後、2段階均熱化処理を施す。第1段で
は、450±20℃において4〜48時間程度の均質化
処理によってAl3Zrを析出させる。ついで第2段で
は、520±20℃において2〜12時間程度の均熱化
処理により添加元素や不純物元素を固溶させる。Next, the manufacturing method will be described. The molten Al-Li alloy having the above-mentioned chemical components is converted into A according to a conventional method.
It is cast by a semi-continuous casting (DC casting) method while protecting Li in an inert atmosphere such as r. The obtained ingot has a microstructure in which a Zr compound is finely dispersed, and after subjecting the ingot to beveling, a two-stage soaking treatment is performed. In the first stage, Al3Zr is precipitated by a homogenization treatment at 450 ± 20 ° C. for about 4 to 48 hours. Next, in the second stage, the additive element and the impurity element are dissolved by a soaking treatment at 520 ± 20 ° C. for about 2 to 12 hours.
【0015】上記均熱化処理の後500〜250℃の温
度範囲において圧延率60%以上の熱間圧延を行う。熱
間圧延温度が500℃を超えると熱間割れを発生する危
険があり、一方250℃未満では耳割れによる板切れが
発生して熱間圧延コイルの製造が困難になる。また熱間
圧延率が60%未満の場合、鋳塊組織を完全な圧延加工
組織とするには不十分であり、冷間圧延板の靭性が不足
する。また熱間圧延率が高いほど加工組織が微細化する
ため上限はあえて設定する必要はないが、工業的には耳
割れや圧延中の温度低下等により制限される。After the above soaking treatment, hot rolling is performed at a rolling ratio of 60% or more in a temperature range of 500 to 250 ° C. If the hot rolling temperature exceeds 500 ° C., there is a risk that hot cracks will occur. On the other hand, if the hot rolling temperature is less than 250 ° C., plate breakage due to edge cracks will occur, making it difficult to manufacture hot rolled coils. On the other hand, when the hot rolling ratio is less than 60%, it is insufficient to make the ingot structure completely rolled, and the toughness of the cold rolled sheet is insufficient. Also, the higher the hot rolling ratio, the finer the work structure becomes, so there is no need to set an upper limit, but it is industrially limited by ear cracks, temperature drop during rolling, and the like.
【0016】本発明においては、上記熱延板を冷間圧延
前に380〜420℃の温度範囲において2〜10時間
の中間焼鈍処理を施し、さらに60%以上の冷間圧延を
行う。 焼鈍後の冷間圧延における圧延率が60%未満
であると再結晶による組織のランダム化が不十分で伸び
値の向上は認められるが靭性の異方性が残り、また圧延
率が80%を超えると、耳割れ等による板切れ等の圧延
トラブルや、トリミング等による製品の歩留り低下が懸
念されるため工業的には80%程度を上限とするのが好
ましい。In the present invention, the hot-rolled sheet is subjected to an intermediate annealing treatment in a temperature range of 380 to 420 ° C. for 2 to 10 hours before cold rolling, and further cold-rolled by 60% or more. If the rolling reduction in the cold rolling after annealing is less than 60%, randomization of the structure by recrystallization is insufficient and the elongation value is improved, but the anisotropy of toughness remains and the rolling reduction is 80%. If it exceeds, there is a concern about rolling troubles such as plate breakage due to edge cracks or the like, and reduction in product yield due to trimming or the like. Therefore, the upper limit is preferably about 80% industrially.
【0017】冷間圧延後、板材の調質のための熱処理を
常法により行う。熱処理はT6(溶体化後人工時効処
理)又はT8(溶体化後冷間加工、ついで人工時効処
理)が普通であるが、T6よりT8処理の方が比強度、
比剛性と共に伸び値と靭性の等方性に優れた結果が得ら
れる。After the cold rolling, heat treatment for tempering the sheet is performed by a conventional method. The heat treatment is usually T6 (artificial aging treatment after solution treatment) or T8 (cold working after solution treatment, then artificial aging treatment), but T8 treatment has higher specific strength than T6.
The result which is excellent in the isotropy of the elongation value and the toughness together with the specific rigidity is obtained.
【0018】[0018]
【実施例】以下、本発明を実施例に基づいて説明する。
Al−Li系合金(Li:2.23 %、Cu:2.30 %、M
g:1.60 %、Zr:0.08%、Ti:0.03 %、Fe:0.05
%、Si:0.03 %、Zn:0.01 %、Al残部)をArガ
ス雰囲気下で溶解し、半連続鋳造法により造塊し、面削
してスラブとした。このスラブを450℃において24
時間、ついで520℃において6時間の2段階均熱処理
を行い、その後熱間圧延を行った。熱間圧延の開始温度
は470℃、終了温度は270℃、圧延率は90%で板
厚6.0mm.の熱延板とした。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments.
Al-Li alloy (Li: 2.23%, Cu: 2.30%, M
g: 1.60%, Zr: 0.08%, Ti: 0.03%, Fe: 0.05
%, Si: 0.03%, Zn: 0.01%, and the balance of Al) were dissolved in an Ar gas atmosphere, formed into an ingot by a semi-continuous casting method, and surface-polished into a slab. The slab is heated at 450 ° C. for 24 hours.
Then, a two-stage soaking treatment was performed at 520 ° C. for 6 hours, and then hot rolling was performed. The starting temperature of the hot rolling is 470 ° C., the ending temperature is 270 ° C., the rolling reduction is 90%, and the sheet thickness is 6.0 mm. Hot rolled sheet.
【0019】上記熱延板を温度360〜440℃におい
て1〜12時間の中間焼鈍を行った後、圧延率20〜8
0%の冷間圧延を行い板厚1.2〜4.8mm.の薄板
材を得た。ついで薄板材を520℃において30分加熱
して溶体化処理した後、3.0±0.5%のストレッ
チ、150℃において24時間の時効処理を行った。After subjecting the hot-rolled sheet to intermediate annealing at a temperature of 360 to 440 ° C. for 1 to 12 hours, a rolling reduction of 20 to 8 hours
0% cold rolling was performed to obtain a sheet thickness of 1.2 to 4.8 mm. Was obtained. Next, the sheet material was heated at 520 ° C. for 30 minutes to perform a solution treatment, and then subjected to a stretch of 3.0 ± 0.5% and an aging treatment at 150 ° C. for 24 hours.
【0020】上記の薄板材から圧延方向に対し角度0
°、45°,90°の方向よりASTMF1引張試験片
と、JIS4号シャルピー試験片各2本を採取し、それ
ぞれ引張試験とシャルピー試験を行った。試験結果は、
表1ないし表4に示す通りである。なお表5は、本発明
の対象であるAl−Li系合金薄板材の前記用途におい
て、一般に要請されている特性値すなわち引張強さ、耐
力、伸び値、シャルピー値の圧延方向別の目標値であ
り、本発明においてもこれを目標達成度の指標とした。From the above-mentioned sheet material, the angle with respect to the rolling direction is 0 °.
An ASTMF1 tensile test piece and two JIS No. 4 Charpy test pieces were sampled from the directions of °, 45 °, and 90 °, and a tensile test and a Charpy test were performed, respectively. The test results are
As shown in Tables 1 to 4. In addition, Table 5 shows, in the above-mentioned use of the Al-Li-based alloy sheet material that is the object of the present invention, target values for generally required characteristic values, namely, tensile strength, proof stress, elongation value, and Charpy value for each rolling direction. In the present invention, this is used as an index of the degree of achievement of the target.
【0021】表1の工程Aは、焼鈍温度400℃(焼鈍
時間は6時間)で溶体化前の圧延率を20〜80%の範
囲で変えた場合であり、表2の工程Bは、焼鈍温度を3
60〜440℃の範囲で変化させ、焼鈍時間を6時間、
溶体化前冷間圧延率を80%で一定とした場合である。
また表3の工程Cは焼鈍温度420℃、表4の工程Dは
焼鈍温度360の場合で、焼鈍時間を1〜12時間に変
えたものである。工程C、Dにおける溶体化処理前の冷
間圧延率は、T8処理材の再結晶を少しでも起こり難く
するため、いずれも80%とした。Step A in Table 1 is a case where the rolling ratio before solution treatment is changed in the range of 20 to 80% at an annealing temperature of 400 ° C. (annealing time is 6 hours), and step B in Table 2 is an annealing. Temperature 3
The temperature was changed in the range of 60 to 440 ° C., and the annealing time was 6 hours,
This is the case where the cold rolling reduction before solution treatment is constant at 80%.
Step C in Table 3 is for an annealing temperature of 420 ° C., and Step D in Table 4 is for an annealing temperature of 360, in which the annealing time is changed to 1 to 12 hours. The cold rolling reduction before the solution treatment in Steps C and D was set to 80% in order to make recrystallization of the T8-treated material as little as possible.
【0022】[0022]
【表1】 《表注》伸びの向上および靭性の等方性 ○:十分効果有り △:効果不十分 ×:効果無し[Table 1] << Table Note >> Improvement of elongation and isotropic toughness ○: Sufficient effect △: Insufficient effect ×: No effect
【0023】[0023]
【表2】 [Table 2]
【0024】[0024]
【表3】 [Table 3]
【0025】[0025]
【表4】 [Table 4]
【0026】[0026]
【表5】 [Table 5]
【0027】表1の工程Aで焼鈍条件を400℃におい
て6時間一定とし、溶体化前の冷延率の影響を見ると、
溶体化前冷延率が60〜80%で各方向の伸び値、シャ
ルピー値共に高くしかも靭性の異方性も無いが、50%
以下では伸び値、シャルピー値のいずれかに問題が認め
られ目標値を満足していない。従って、靭性の異方性を
改善するためには、溶体化前冷延率は、60〜80%の
範囲が適当と評価された。In step A of Table 1, the annealing conditions were kept constant at 400 ° C. for 6 hours, and the effect of the cold rolling rate before solution treatment was observed.
Although the elongation value and Charpy value in each direction are high and there is no toughness anisotropy when the cold rolling rate before solution heat is 60 to 80%, it is 50%
Below, either the elongation value or the Charpy value has a problem, and the target value is not satisfied. Therefore, in order to improve the anisotropy of toughness, the cold rolling reduction before solution treatment was evaluated to be appropriately in the range of 60 to 80%.
【0028】表2の工程Bで熱延板の焼鈍温度の影響を
見ると、焼鈍温度が360℃の場合には、再結晶化が十
分に進まないため異方性が残留し、伸び値も低い。38
0〜420℃の範囲では伸び値も向上し、シャルピー値
の異方性も改善されるが、さらに高温の440℃では溶
体化時に再結晶粒が粗大化するため、シャルピー値の異
方性は無いが伸び値及びシャルピー値共に低下傾向を示
す。それゆえ熱延板の焼鈍温度は380〜420℃が適
当であり、それ以上でもそれ以下でも問題がある。Looking at the effect of the annealing temperature of the hot-rolled sheet in step B of Table 2, when the annealing temperature is 360 ° C., recrystallization does not proceed sufficiently, so that the anisotropy remains and the elongation value also increases. Low. 38
In the range of 0 to 420 ° C., the elongation value is improved, and the anisotropy of the Charpy value is also improved. However, at a higher temperature of 440 ° C., the recrystallized grains are coarsened during solutionizing, so Although not present, both the elongation value and the Charpy value show a decreasing tendency. Therefore, the annealing temperature of the hot-rolled sheet is suitably from 380 to 420 ° C, and there is a problem if the annealing temperature is higher or lower.
【0029】表3の工程Cと表4の工程Dにおいて、熱
延板の焼鈍時間の影響を380〜420℃の温度範囲で
見ると、焼鈍温度が380℃、420℃の場合のいずれ
も焼鈍時間1時間では伸び値、シャルピー値共改善効果
は不十分である。またいずれの場合も焼鈍時間12時間
では、溶体化時に結晶粒が粗大化し、靭性の異方性は消
失するものの、シャルピー値は低下傾向を示し目標値を
下回っている。従って目標値を満足する適切な焼鈍条件
としては、温度380〜420℃において時間は2〜1
0時間の範囲であることが認められた。In the process C of Table 3 and the process D of Table 4, the effect of the annealing time of the hot-rolled sheet is observed in the temperature range of 380 to 420 ° C. When the annealing temperature is 380 ° C. or 420 ° C., When the time is 1 hour, the effect of improving both the elongation value and the Charpy value is insufficient. In each case, when the annealing time is 12 hours, the crystal grains are coarsened during the solution treatment, and the anisotropy of toughness disappears, but the Charpy value tends to decrease and is lower than the target value. Therefore, as an appropriate annealing condition that satisfies the target value, the time is 2-1 to 380 to 420 ° C.
It was found to be in the 0 hour range.
【0030】[0030]
【発明の効果】以上詳述したように本発明によれば、特
定量のLi,Cu,Mg,Zrを必須成分とし残部はA
lと不純物よりなるAl−Li系合金の薄板材の製造に
おいて、熱間圧延と冷間圧延の間において特定条件の中
間焼鈍を施すこと、および冷間圧延の圧延率を特定値以
上に調整することによって、薄板材の組織を微細再結晶
化し、集合組織に立方体方位を導入し、滑りのランダム
化をもたらす結果、伸び値を向上し、かつ靭性の異方性
を無くし等方性に優れたAl−Li系薄板材を確実、か
つ安定して製造することができる。As described in detail above, according to the present invention, a specific amount of Li, Cu, Mg, Zr is an essential component and the balance is A
In the production of a sheet material of an Al-Li alloy comprising l and impurities, intermediate annealing under specific conditions is performed between hot rolling and cold rolling, and the rolling reduction of cold rolling is adjusted to a specific value or more. By doing so, the microstructure of the sheet material is finely recrystallized, the cubic orientation is introduced into the texture, and the slip is randomized.As a result, the elongation value is improved, and the anisotropy of the toughness is eliminated. An Al-Li-based thin plate material can be manufactured reliably and stably.
【0031】これによって、従来比強度、比弾性率に優
れるため航空機、車輌等の軽量化構造材として有用であ
るAl−Li系合金の課題であった靭性の異方性が解決
し、等方性に優れた靭性と共に伸び値を向上したAl−
Li系合金薄板材を製造できるようになるため、この分
野への用途拡大が期待され、本発明の産業上の貢献は大
きい。As a result, the anisotropy of toughness, which has been a problem of Al-Li alloys which are conventionally used as lightweight structural materials for aircraft and vehicles due to their excellent specific strength and specific elastic modulus, is solved. Al- with improved elongation along with excellent toughness
Since it becomes possible to manufacture a Li-based alloy sheet material, application expansion to this field is expected, and the industrial contribution of the present invention is great.
Claims (1)
0%、Cu1.0〜3.0%、Mg0.5〜2.0%、
Zr0.04〜0.10%を含み、残部Alと不可避的
不純物からなるAl−Li系合金鋳塊を、均質化熱処理
及び熱間圧延の後、温度380〜420℃で2〜10時
間の中間焼鈍処理を行い、ついで加工率60%以上の冷
間圧延を施すことを特徴とする靭性の等方性に優れたA
l−Li系合金薄板材の製造方法。1. Li 1.0 to 3% by weight (the same applies hereinafter).
0%, Cu 1.0 to 3.0%, Mg 0.5 to 2.0%,
An Al-Li alloy ingot containing 0.04 to 0.10% of Zr, the balance being Al and inevitable impurities, is subjected to an intermediate treatment at a temperature of 380 to 420 ° C for 2 to 10 hours after a homogenizing heat treatment and hot rolling. A having excellent isotropy of toughness characterized by performing an annealing treatment and then performing cold rolling at a working ratio of 60% or more.
A method for producing an l-Li-based alloy sheet material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24570696A JPH1068053A (en) | 1996-08-28 | 1996-08-28 | Production of aluminum-lithium base alloy thin sheet material excellent in isotropy of toughness |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24570696A JPH1068053A (en) | 1996-08-28 | 1996-08-28 | Production of aluminum-lithium base alloy thin sheet material excellent in isotropy of toughness |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1068053A true JPH1068053A (en) | 1998-03-10 |
Family
ID=17137602
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24570696A Pending JPH1068053A (en) | 1996-08-28 | 1996-08-28 | Production of aluminum-lithium base alloy thin sheet material excellent in isotropy of toughness |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1068053A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013537936A (en) * | 2010-09-08 | 2013-10-07 | アルコア インコーポレイテッド | Improved aluminum-lithium alloy and method for producing the same |
CN108531782A (en) * | 2018-04-11 | 2018-09-14 | 上海交通大学 | One kind Casting Al-Li Alloy containing magnesium and preparation method thereof |
-
1996
- 1996-08-28 JP JP24570696A patent/JPH1068053A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013537936A (en) * | 2010-09-08 | 2013-10-07 | アルコア インコーポレイテッド | Improved aluminum-lithium alloy and method for producing the same |
CN108531782A (en) * | 2018-04-11 | 2018-09-14 | 上海交通大学 | One kind Casting Al-Li Alloy containing magnesium and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4901757B2 (en) | Aluminum alloy plate and manufacturing method thereof | |
JP3194742B2 (en) | Improved lithium aluminum alloy system | |
JP4577218B2 (en) | Method for producing Al-Mg-Si alloy sheet excellent in bake hardness and hemmability | |
JP5918158B2 (en) | Aluminum alloy sheet with excellent properties after aging at room temperature | |
WO2016190409A1 (en) | High-strength aluminum alloy plate | |
EP0480402A1 (en) | Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability | |
JP3022922B2 (en) | Method for producing plate or strip material with improved cold rolling characteristics | |
JP2008190022A (en) | Al-Mg-Si-BASED ALLOY HOT ROLLED SHEET, AND METHOD FOR PRODUCING THE SAME | |
JP4229307B2 (en) | Aluminum alloy plate for aircraft stringers having excellent stress corrosion cracking resistance and method for producing the same | |
JPS6050864B2 (en) | Aluminum alloy material for forming with excellent bending workability and its manufacturing method | |
JPH06340940A (en) | Aluminum alloy sheet excellent in press formability and baking hardenability and its production | |
JP2019183264A (en) | High strength aluminum alloy, aluminum alloy sheet and aluminum alloy member using the aluminum alloy | |
JPH0447019B2 (en) | ||
JPH11350058A (en) | Aluminum alloy sheet excellent in formability and baking hardenability and its production | |
JP2001262265A (en) | Hot rolling stock of high formability aluminum alloy sheet | |
JPH10259464A (en) | Production of aluminum alloy sheet for forming | |
JPH07116567B2 (en) | Method for producing A1-Cu-Li-Zr superplastic plate | |
WO2019189521A1 (en) | High-strength aluminum alloy, and aluminum alloy sheet and aluminum alloy member using said aluminum alloy | |
JPH1068053A (en) | Production of aluminum-lithium base alloy thin sheet material excellent in isotropy of toughness | |
JPH08269608A (en) | High strength aluminum alloy excellent in formability and corrosion resistance | |
JP2011144410A (en) | METHOD FOR MANUFACTURING HIGHLY FORMABLE Al-Mg-Si-BASED ALLOY SHEET | |
JP2007239005A (en) | Method for producing 6000 series aluminum alloy sheet having excellent room temperature non-aging property, formability and coating/baking hardenability | |
JPH0718389A (en) | Production of al-mg series alloy sheet for forming | |
JPH0480979B2 (en) | ||
JPH0860283A (en) | Aluminum alloy sheet for di can body and its production |