JPH1068037A - Aluminum-lithium alloy excellent in extrudability and hardenability - Google Patents
Aluminum-lithium alloy excellent in extrudability and hardenabilityInfo
- Publication number
- JPH1068037A JPH1068037A JP24571096A JP24571096A JPH1068037A JP H1068037 A JPH1068037 A JP H1068037A JP 24571096 A JP24571096 A JP 24571096A JP 24571096 A JP24571096 A JP 24571096A JP H1068037 A JPH1068037 A JP H1068037A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- ingot
- strength
- hardenability
- composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Extrusion Of Metal (AREA)
- Body Structure For Vehicles (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、Al−Li系合金に係
わり、特に優れた押出し性、焼入れ性および高い比強度
を有するAl−Li系合金に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an Al--Li alloy, and more particularly to an Al--Li alloy having excellent extrudability, hardenability and high specific strength.
【0002】[0002]
【従来の技術】Al合金は、Fe,Cu等の合金に比し
て押出し加工性がきわめて優れているため、従来より構
造用押出し材として広く使われている。特に押出し性お
よび焼入れ性を向上させたJIS6N01合金(Al−
Mg−Si系)は中強度合金として、またJIS7N0
1合金(Al−Zn−Mg系)は、高強度溶接構造用合
金として、鉄道車輌構体への適用に実績を重ねてきてい
る。2. Description of the Related Art Al alloys have been widely used as structural extruded materials because of their excellent extrudability compared to alloys such as Fe and Cu. In particular, JIS6N01 alloy (Al-
Mg-Si) is a medium-strength alloy.
One alloy (Al-Zn-Mg based) has been applied to railway vehicle structures as a high-strength welding structural alloy.
【0003】しかし、近年鉄道車輌の更に一層の高速
化、そのための軽量化が要求され、この種の低密度、高
強度構造材の研究開発が急がれている。一方、従来の汎
用Al合金より低密度であるために、航空宇宙用構造材
料として活発に研究開発が進められてきているAl−L
i系合金があるが,鉄道車輌構体を対象とする実用化の
検討はまだ遅れている。[0003] In recent years, however, there has been a demand for further increasing the speed of railway vehicles and, for that purpose, reducing the weight thereof. On the other hand, Al-L has been actively researched and developed as a structural material for aerospace because of its lower density than conventional general-purpose Al alloys.
Although there is an i-based alloy, the study of its practical application for railway vehicle structures is still behind.
【0004】鉄道車輌構体の軽量化を図るためには、材
料の密度を低下することは勿論重要であるが、使用する
押出し材の単位面積当たりの重量を低減させる、すなわ
ち薄肉化を達成するためには、材料強度を向上させると
同時に、押出し加工性を向上させることが不可欠であ
る。[0004] In order to reduce the weight of a railway vehicle structure, it is of course important to reduce the density of the material, but in order to reduce the weight per unit area of the extruded material used, that is, to achieve a reduction in thickness. It is essential to improve the extrusion processability at the same time as improving the material strength.
【0005】また押出し材は、押出し後の溶体化及び焼
入れ処理を省略するため、プレス焼入れを行い、その後
焼き戻しのみのT5調質処理を行うことにより製造され
る。このため押出し材は、焼入れ性が優れていることが
重要である。しかしながら、前記構体に押出し材でT5
調質用のAl−Li系合金を適用した実績はほとんど無
く、この材料特性に関して、合金組成およびその製造条
件などの影響について報告されたものも少ない。[0005] Further, the extruded material is manufactured by performing press quenching and then performing a T5 tempering treatment only for tempering in order to omit the solution treatment and quenching treatment after extrusion. For this reason, it is important that the extruded material has excellent hardenability. However, extruded T5
Al-Li alloys for tempering have hardly been applied, and there are few reports on the effects of alloy compositions and their manufacturing conditions on the material properties.
【0006】[0006]
【発明が解決しようとする課題】本発明は、上記の現状
にかんがみてなされたもので、鉄道車輌構体等に適する
Al−Li系高比強度押出し用合金を開発することを企
図するものであり、特に優れた押出し性および焼入れ性
を有するAl−Li系合金材を提供することを目的とす
る。SUMMARY OF THE INVENTION The present invention has been made in view of the above situation, and aims to develop an Al-Li high-strength extrusion alloy suitable for a railway vehicle structure and the like. It is an object of the present invention to provide an Al-Li alloy material having particularly excellent extrudability and hardenability.
【0007】[0007]
【課題を解決するための手段】本発明者等は、上記の目
的を達成するため種々実験、検討を重ねた結果、従来の
Al−Li系合金における強度発揮の骨格成分であるC
uを構成から外した新たな成分構成の合金を見出し、こ
の発明をなすに至った。The present inventors have conducted various experiments and studies in order to achieve the above object, and as a result, it has been found that C, which is a skeletal component exhibiting strength in a conventional Al-Li alloy, is used.
The present inventors have found an alloy having a new component constitution excluding u from the constitution, and have accomplished the present invention.
【0008】具体的には、本発明の押出し性及び焼入れ
性に優れたAl−Li系合金は、重量%で(以下、同
じ)、Li1.5〜3.0%、Mg0.3〜1.0%
と、Zr0.05〜0.3%、Cr0.05〜0.3
%、Mn0.05〜1.5%、V0.05〜0.3%、
Ti0.005〜0.1%のうちの1種もしくは2種以
上を含み、残部は不可避的不純物とAlからなることを
特徴とするものである。Specifically, the Al-Li alloy of the present invention having excellent extrudability and hardenability is 1.5 to 3.0% by weight of Li (hereinafter the same), and 0.3 to 1.0 of Mg. 0%
And Zr 0.05-0.3%, Cr 0.05-0.3
%, Mn 0.05-1.5%, V 0.05-0.3%,
It contains one or more of 0.005 to 0.1% of Ti, and the balance is made of unavoidable impurities and Al.
【0009】本発明によるAl−Li系合金の成分元素
の意義と限定理由は次のとおりである。Li:合金の低
密度化、強度の向上のために不可欠な元素である。合金
製造時の最終熱処理時の時効処理過程において、Liは
Alと結合してδ´相(Al3Li)として析出し、強
度向上に貢献する。このLiによる焼入れ性向上の機構
は未だ十分明らかになっていないが、これまでの研究の
知見からは、Liは焼入れ時の凍結原子空孔をトラップ
する作用が大きいため、Liの存在により他の溶質原子
の拡散が妨げられて、焼入れ処理中の析出の進行が抑制
され、焼入れ性の向上に寄与すると考えられる。Liの
含有量が1.5%未満では低密度化、高強度化の効果が
小さく、3.0%を超えると延性および靭性が大きく低
下する。The meanings of the constituent elements of the Al-Li alloy according to the present invention and the reasons for limitation are as follows. Li: an element indispensable for lowering the density and improving the strength of the alloy. In the aging process at the time of the final heat treatment in the production of the alloy, Li combines with Al and precipitates as a δ 'phase (Al3Li), contributing to the improvement in strength. Although the mechanism of the improvement of quenchability by Li has not yet been elucidated sufficiently, from the findings of previous studies, since Li has a large effect of trapping frozen atomic vacancies during quenching, the presence of Li causes other effects. It is considered that diffusion of solute atoms is hindered, progress of precipitation during the quenching treatment is suppressed, and this contributes to improvement of quenchability. If the Li content is less than 1.5%, the effects of lowering the density and increasing the strength are small, and if it exceeds 3.0%, the ductility and toughness are greatly reduced.
【0010】Mg:合金の強度の向上に効果がある元素
である。すなわち、母相内にMg元素が固溶して、いわ
ゆる固溶強化により合金の強度が向上する。またMgは
Liの固溶限を減少させることにより、δ´相の析出を
促進させて、合金の強度を向上する作用もある。Mgの
含有量が0.3%未満の場合は、強度向上及び密度低減
の効果が不十分であり、1.0%を超えると、熱間にお
ける変形抵抗が著しく増大し、押出し加工性が大きく低
下する。[0010] Mg: an element effective in improving the strength of the alloy. That is, the Mg element forms a solid solution in the matrix, and the strength of the alloy is improved by so-called solid solution strengthening. Mg also has the effect of promoting the precipitation of the δ ′ phase by reducing the solid solubility limit of Li, thereby improving the strength of the alloy. When the content of Mg is less than 0.3%, the effect of improving the strength and reducing the density is insufficient. When the content exceeds 1.0%, the deformation resistance during hot work is significantly increased, and the extrudability is large. descend.
【0011】Zr:最終熱処理後のミクロ組織におい
て、再結晶化を抑制する効果を有する。このため、Zr
は合金の強度および延性の向上に寄与する元素である。
その含有量が0.05%未満では再結晶化が生じてミク
ロ組織が大きくなるため、強度の低下はそれほど認めら
れないが、延性が著しく低下する。0.3%を超えると
添加の効果は飽和するとともに、Zrを含む巨大な晶出
物が生じ、強度および靭性の低下をもたらす。Zr: has an effect of suppressing recrystallization in the microstructure after the final heat treatment. Therefore, Zr
Is an element that contributes to the improvement of the strength and ductility of the alloy.
If the content is less than 0.05%, recrystallization occurs and the microstructure becomes large, so that the strength is not so much reduced but the ductility is remarkably reduced. If it exceeds 0.3%, the effect of the addition is saturated, and at the same time, huge crystals containing Zr are generated, resulting in a decrease in strength and toughness.
【0012】Cr、Mn、V:Zrと同様に、最終熱処
理後のミクロ組織において、再結晶化を抑制することに
より、強度および延性の向上に寄与する元素である。C
r、Mn、Vは、それぞれ含有量が0.05%未満の場
合は、再結晶化が起こり、ミクロ組織が大きくなるため
合金の延性が低下する。Crが0.3%、Mnが1.5
%、Vが0.3%を超えて含有されると、その効果は飽
和し、それ以上の添加は無駄になる。Like Cr, Mn, and V: Zr, they are elements that contribute to improving strength and ductility by suppressing recrystallization in the microstructure after the final heat treatment. C
When the content of each of r, Mn, and V is less than 0.05%, recrystallization occurs and the microstructure becomes large, so that the ductility of the alloy is reduced. 0.3% Cr, 1.5% Mn
%, V exceeds 0.3%, the effect is saturated, and further addition is wasted.
【0013】Tiは、合金鋳塊のミクロ組織の微細化に
寄与する元素である。しかしその含有量が0.005%
未満では微細化効果は不十分であり、0.1%を超える
と晶出物が増加して延性および靭性が低下する。[0013] Ti is an element that contributes to refinement of the microstructure of the alloy ingot. However, its content is 0.005%
If it is less than 0.1%, the refining effect is insufficient, and if it exceeds 0.1%, crystallized substances increase and ductility and toughness decrease.
【0014】鋳塊中に通常不純物として含有されるF
e、Siは、その量が各0.25%を超えると、Al−
Fe−Si系晶出物が増加し、最終製品の延性および靭
性が低下する。従ってFe、Siの含有量は各0.25
%以下に規制することが必要である。F which is usually contained as an impurity in the ingot
e, Si, when the amount exceeds 0.25%, Al-
Fe-Si based crystallization increases, and the ductility and toughness of the final product decrease. Therefore, the contents of Fe and Si are 0.25 each.
It is necessary to regulate to less than%.
【0015】次に合金材の製造方法について説明する。
上述の成分の合金を常法によりAr気圏中で溶製し、直
冷半連続鋳造法により結晶粒の微細な鋳塊を得る。この
鋳塊中の結晶粒径は3mm以上になると、粒界に存在す
る晶出物のサイズおよび分布が粗大不均一となるため、
最終製品の延性および靭性が低下する。Next, a method of manufacturing an alloy material will be described.
An alloy of the above-described components is melted in an Ar atmosphere by a conventional method, and a fine ingot of crystal grains is obtained by a direct cooling semi-continuous casting method. When the crystal grain size in the ingot is 3 mm or more, the size and distribution of the crystallized substances present at the grain boundaries become coarse and non-uniform,
The ductility and toughness of the final product decrease.
【0016】上記鋳塊は、400〜550℃において均
熱化処理する。この処理により、Li、Mg等の元素を
十分に固溶させることができると共に晶出物を部分的に
固溶させて小さくすることができる。次いで鋳塊を35
0〜500℃の温度で押出し加工する。鋳塊の凝固組織
を壊して均一なものとするには押出し比は10以上とす
ることが望ましい。The ingot is soaked at 400 to 550 ° C. By this treatment, elements such as Li and Mg can be sufficiently dissolved in a solid solution, and the crystallized material can be partially dissolved to reduce the size. Then the ingot is 35
Extrude at a temperature of 0-500 ° C. The extrusion ratio is desirably 10 or more in order to break the solidified structure of the ingot to make it uniform.
【0017】最後に所定の製品特性を付与するために調
質処理を行う。本発明の合金は、焼入れ性が優れている
ため、押出し時の空冷過程でも焼きが入る。その後、必
要に応じて、冷間加工を実施し、人工時効処理を行う。
なお、時効処理に先立って、溶体化および焼入れ処理を
別工程で行うことにより、更に高強度の型材製品を得る
ことができる。Finally, a refining process is performed to give predetermined product characteristics. Since the alloy of the present invention has excellent hardenability, it hardens even in the air cooling process during extrusion. Thereafter, if necessary, cold working is performed, and an artificial aging treatment is performed.
Note that, by performing the solution treatment and the quenching treatment in separate steps prior to the aging treatment, it is possible to obtain a mold material having a higher strength.
【0018】[0018]
【実施例】表1(本発明合金)および表2(比較例合
金)に示す成分の合金を常法により溶製し、半連続鋳造
法により直径150mmの押出し用ビレットに鋳造し
た。鋳塊の均熱処理は450℃、ついで520℃の2段
階で行った。こののち、鋳塊を420℃に加熱し、ラム
速度4インチ/分で熱間押出しを行い、厚さが4.0m
mの押出材試片を製造した。押出し時の冷却は、ファン
空冷として焼入れを伴うものとした。EXAMPLES Alloys having the components shown in Tables 1 (inventive alloys) and 2 (comparative alloys) were melted by a conventional method and cast into a 150 mm-diameter extruded billet by a semi-continuous casting method. The ingot was soaked at 450 ° C. and then at 520 ° C. in two stages. Thereafter, the ingot was heated to 420 ° C., hot extruded at a ram speed of 4 inches / minute, and had a thickness of 4.0 m.
m of extruded specimens were produced. The cooling at the time of extrusion was accompanied by quenching as cooling with a fan.
【0019】[0019]
【表1】 [Table 1]
【0020】[0020]
【表2】 [Table 2]
【0021】上記の押出し材を520℃のAr気圏炉中
で30分溶体化加熱を行った後、2種類の冷却条件すな
わち(1)水冷(約1000℃/秒)、(2)空冷(約
2℃/秒)により焼入れを行った。最後にピーク時効条
件で人工時効処理を施した。押出し加工性の判定は、測
定した押出し圧力を指標として行った。また、引張試験
により強度ならびに延性を評価した。The extruded material is subjected to solution heating in an Ar gasoline furnace at 520 ° C. for 30 minutes, and then subjected to two kinds of cooling conditions, ie, (1) water cooling (about 1000 ° C./sec), and (2) air cooling (about (2 ° C./sec). Finally, artificial aging treatment was performed under peak aging conditions. Extrusion processability was determined using the measured extrusion pressure as an index. Further, strength and ductility were evaluated by a tensile test.
【0022】表3(本発明合金)および表4(比較例合
金)に各合金の押出し圧力(GPa)、引張り強さ(σ
B;MPa)、伸び(%)および密度(g/cm3)を
示す。表2の結果から明らかなように、本発明の実施例
の合金No.1〜10では、押出し圧力が100GPa
以下になり、比較例のJIS7N01合金より優れた押
出し性が認められ、水冷焼入れ材において引張り強さが
380MPa以上の高強度が得られ、密度も2.56g
/cm3以下と小さいためきわめて高い比強度を有する
ことが認められた。Table 3 (alloy of the present invention) and Table 4 (comparative alloy) show the extrusion pressure (GPa) and tensile strength (σ) of each alloy.
B; MPa), elongation (%) and density (g / cm3). As is clear from the results in Table 2, the alloy No. of the example of the present invention. In 1 to 10, the extrusion pressure is 100 GPa
The extrudability was superior to that of the JIS7N01 alloy of the comparative example, and a high strength with a tensile strength of 380 MPa or more was obtained in the water-cooled quenched material, and the density was 2.56 g.
/ Cm3 or less, it was recognized that the material had an extremely high specific strength.
【0023】これに対して、表4の比較例の合金No.
11は、Li含有量が少ないため密度が大きく、かつ焼
入れ性も劣る。またNo.13は、Mg量が少ないため
強度が十分でない。No.14は、Mg量が多いため押
出し性が著しく低下し、No.15では、巨大晶出物が
生成し、強度が不十分である。On the other hand, in the alloy No.
No. 11 has a low density of Li and a low hardenability due to a low Li content. No. No. 13 has insufficient strength because of a small amount of Mg. No. In No. 14, the extrudability was significantly reduced due to the large amount of Mg. In No. 15, giant crystals are formed, and the strength is insufficient.
【0024】[0024]
【表3】 [Table 3]
【0025】[0025]
【表4】 [Table 4]
【0026】[0026]
【発明の効果】この発明のAl−Li系合金によれば、
押出し性ならびに焼入れ性に優れるため、溶体化後の焼
入れが空冷程度の緩冷却でも時効処理後高強度が得ら
れ、高比強度の押出し材が容易に製造できる。従って、
例えば鉄道車輌等の軽量化用構造材料等に求められてい
る特性を具備した押出し材であり、この分野への貢献は
大きい。According to the Al-Li alloy of the present invention,
Because of its excellent extrudability and hardenability, high strength can be obtained after aging even if the quenching after solution heat is slow cooling such as air cooling, and an extruded material with high specific strength can be easily produced. Therefore,
For example, it is an extruded material having characteristics required for a lightweight structural material of a railway vehicle or the like, and greatly contributes to this field.
Claims (1)
3.0%、Mg0.3〜1.0%と、Zr0.05〜
0.3%、Cr0.05〜0.3%、Mn0.05〜
1.5%、V0.05〜0.3%、Ti0.005〜
0.1%のうちの1種もしくは2種以上を含み、残部は
不可避的不純物とAlからなることを特徴とする押出し
性および焼入れ性に優れたAl−Li系合金。1. The method according to claim 1, wherein the content of Li1.5 to
3.0%, Mg 0.3-1.0%, Zr 0.05-
0.3%, Cr 0.05-0.3%, Mn 0.05-
1.5%, V0.05-0.3%, Ti0.005-
An Al-Li alloy having excellent extrudability and hardenability, characterized in that it contains one or more of 0.1%, and the balance consists of unavoidable impurities and Al.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24571096A JPH1068037A (en) | 1996-08-28 | 1996-08-28 | Aluminum-lithium alloy excellent in extrudability and hardenability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24571096A JPH1068037A (en) | 1996-08-28 | 1996-08-28 | Aluminum-lithium alloy excellent in extrudability and hardenability |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1068037A true JPH1068037A (en) | 1998-03-10 |
Family
ID=17137661
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24571096A Pending JPH1068037A (en) | 1996-08-28 | 1996-08-28 | Aluminum-lithium alloy excellent in extrudability and hardenability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1068037A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2889541A1 (en) * | 2005-08-04 | 2007-02-09 | Pechiney Rhenalu Sa | METHOD FOR RECYCLING SCRAP OF ALUMINUM-LITHIUM TYPE ALLOYS |
CN103168110A (en) * | 2010-09-08 | 2013-06-19 | 美铝公司 | Improved aluminum-lithium alloys, and methods for producing the same |
CN114480922A (en) * | 2022-01-25 | 2022-05-13 | 郑州轻研合金科技有限公司 | Ultra-light aluminum-lithium alloy and preparation method and application thereof |
-
1996
- 1996-08-28 JP JP24571096A patent/JPH1068037A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2889541A1 (en) * | 2005-08-04 | 2007-02-09 | Pechiney Rhenalu Sa | METHOD FOR RECYCLING SCRAP OF ALUMINUM-LITHIUM TYPE ALLOYS |
WO2007015013A3 (en) * | 2005-08-04 | 2007-03-15 | Alcan Rhenalu | Method for recycling scrap containing aluminium-lithium-type alloys |
US7550028B2 (en) * | 2005-08-04 | 2009-06-23 | Alcan Rhenalu | Method for recycling aluminum-lithium-type alloy scrap |
CN103168110A (en) * | 2010-09-08 | 2013-06-19 | 美铝公司 | Improved aluminum-lithium alloys, and methods for producing the same |
CN114480922A (en) * | 2022-01-25 | 2022-05-13 | 郑州轻研合金科技有限公司 | Ultra-light aluminum-lithium alloy and preparation method and application thereof |
CN114480922B (en) * | 2022-01-25 | 2023-04-07 | 郑州轻研合金科技有限公司 | Ultra-light aluminum-lithium alloy and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110669964B (en) | High-performance rare earth Al-Mg-Si aluminum alloy extrusion material and preparation method thereof | |
JP3194742B2 (en) | Improved lithium aluminum alloy system | |
JPH07145441A (en) | Superplastic aluminum alloy and its production | |
JP7318274B2 (en) | Al-Mg-Si-based aluminum alloy cold-rolled sheet and its manufacturing method, and Al-Mg-Si-based aluminum alloy cold-rolled sheet for forming and its manufacturing method | |
KR100540234B1 (en) | Aluminium based alloy and method for subjecting it to heat treatment | |
JP3101280B2 (en) | Manufacturing method of Al-based alloy and Al-based alloy product | |
CN115011846B (en) | High-strength and high-stability Al-Mg-Si-Cu-Sc aluminum alloy and preparation method thereof | |
JPH027386B2 (en) | ||
JP5004032B2 (en) | Aluminum-based alloy having excellent high-temperature strength and low thermal expansibility and method for producing the same | |
JPH04341546A (en) | Production of high strength aluminum alloy-extruded shape material | |
JPS6050864B2 (en) | Aluminum alloy material for forming with excellent bending workability and its manufacturing method | |
WO2022181306A1 (en) | Method for manufacturing aluminum alloy extruded material having high strength and excellent scc resistance and quenchability | |
JPH08232035A (en) | High strength aluminum alloy material for bumper, excellent in bendability, and its production | |
JPS61259828A (en) | Production of high-strength aluminum alloy extrudate | |
JPH1068037A (en) | Aluminum-lithium alloy excellent in extrudability and hardenability | |
JPH0447019B2 (en) | ||
JPS61166938A (en) | Al-li alloy for expansion and its production | |
JPH04353A (en) | Heat treatment for al-cu aluminum alloy ingot for working and production of extruded material using same | |
JPS61227157A (en) | Manufacture of al-li alloy for elongation working | |
JPH03249148A (en) | Low thermal expansion aluminum alloy excellent in strength and ductility | |
JPH0366387B2 (en) | ||
JP3983454B2 (en) | Method for producing high-strength, high-formability aluminum alloy plate and aluminum alloy plate obtained by the production method | |
JPH0418019B2 (en) | ||
JPH0259859B2 (en) | ||
JP3481064B2 (en) | Slow acting aluminum alloy extruded material for bending |