JPH1065417A - Core member for antenna - Google Patents

Core member for antenna

Info

Publication number
JPH1065417A
JPH1065417A JP24131796A JP24131796A JPH1065417A JP H1065417 A JPH1065417 A JP H1065417A JP 24131796 A JP24131796 A JP 24131796A JP 24131796 A JP24131796 A JP 24131796A JP H1065417 A JPH1065417 A JP H1065417A
Authority
JP
Japan
Prior art keywords
antenna
shape memory
memory alloy
core material
core member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24131796A
Other languages
Japanese (ja)
Inventor
Hiroyuki Yoshida
弘幸 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP24131796A priority Critical patent/JPH1065417A/en
Publication of JPH1065417A publication Critical patent/JPH1065417A/en
Pending legal-status Critical Current

Links

Landscapes

  • Details Of Aerials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an antenna core member which enables press pressing without softening processing and indicating a superelasticity at room temperature by adopting a shape memory alloy having a specific composition for the core member. SOLUTION: A plug 3 is fitted to an end of an antenna use core member 2 by applying press processing to the end. The core member 1 indicates a superelasticity at normal use temperature (environment temperature of the antenna in use, nearly -10 to 40 deg.C), the composition is indicated as Ti50 Ni50-x Fex and is made of a shape memory alloy with X=0.2-2.0. The wire member of the shape memory alloy is preferably hot-processed at a temperature of 350-550 deg.C after cold strip of 30 to 60% of final processing rate. Furthermore, press processing is preferably applied to one point of the core member 1 or over. Moreover, the wire material of the shape memory alloy is formed into a line or a coil shape and the outside if preferably coated by a resin.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、携帯電話機等の無
線機に使用されるアンテナの曲がりや、切損を防止した
アンテナ用芯材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a core material for an antenna used in a wireless device such as a portable telephone, in which the antenna is prevented from being bent or cut.

【0002】[0002]

【従来の技術】形状記憶合金(TiNi合金、CuZn
Al合金・・・)は、マルテンサイト変態の逆変態に付
随して顕著な形状記憶効果を示すことがよく知られてい
る。また、逆変態の母相状態では、良好な超弾性を示す
こともよく知られている。超弾性を示す形状記憶合金
(超弾性合金)のばねは、8%の伸び歪に対しても変形
の開放と同時にその歪は解消するため、ステンレス線、
ピアノ線等と異なり、コイル状にしなくとも、ばねとし
て使用できる利点を持っている。
2. Description of the Related Art Shape memory alloys (TiNi alloy, CuZn
It is well known that Al alloys have a remarkable shape memory effect accompanying the reverse transformation of martensitic transformation. It is also well known that in the matrix state of the reverse transformation, good superelasticity is exhibited. A spring made of shape memory alloy (superelastic alloy) showing superelasticity releases the deformation at the same time as 8% elongation strain is released.
Unlike a piano wire or the like, it has the advantage that it can be used as a spring without having to be coiled.

【0003】従来、携帯電話のアンテナ芯材は、従来ピ
アノ線などの鋼線が用いられていたが、曲がり易い、折
れ易いなどの難点があった。また、これらの問題を解決
するために、超弾性合金を芯材として使用することは、
実開昭63−68207号、特開平3−16402号な
どに提案され、実用的にも超弾性合金をアンテナの芯材
とすることが主流となっている。しかし、特許の提案お
よび実用上のいずれも用いる超弾性合金は、Ti一Ni
合金、或はTi−Ni−X合金(X=Cr,V,Co)
であった。
[0003] Conventionally, a steel wire such as a piano wire has been used as an antenna core material of a mobile phone. However, there are disadvantages such as easy bending and breaking. In addition, in order to solve these problems, using a superelastic alloy as a core material,
Japanese Utility Model Application Laid-Open No. 63-68207 and Japanese Patent Application Laid-Open No. Hei 3-16402 propose a superelastic alloy as the core material of the antenna in practical use. However, the superelastic alloy used for both the patent proposal and practical use is Ti-Ni
Alloy or Ti-Ni-X alloy (X = Cr, V, Co)
Met.

【0004】図1に、携帯電話用アンテナの外観図を示
す。アンテナは、携帯電話機と接栓等を介して取り付け
られている。アンテナ用芯材と接栓の取り付けは、図2
に示すように、一般に引き抜け防止のため、芯材の端部
をプレス加工して取り付けている。図2において、
(a)図の4はアンテナ用芯材のプレス加工部の正面図
を示し、(b)図の5はプレス加工部の側面図である。
FIG. 1 shows an external view of a mobile phone antenna. The antenna is attached to the mobile phone via a plug or the like. Figure 2 shows the installation of the antenna core and the plug.
As shown in (1), in order to prevent pull-out, the ends of the core material are generally pressed and attached. In FIG.
4A is a front view of a pressed portion of the antenna core material, and FIG. 5B is a side view of the pressed portion.

【0005】[0005]

【発明が解決しようとする課題】ところで、従来の超弾
性合金を用いたアンテナ用芯材では、一般に、プレス加
工する際には、芯材に軟化処理を施す必要があり、コス
ト高の一因となっている。
By the way, in the case of a conventional antenna core material using a superelastic alloy, it is generally necessary to apply a softening treatment to the core material during press working, which is one of the causes of high cost. It has become.

【0006】本発明は、アンテナ用芯材に軟化処理を施
すことなくプレス加工が可能で、かつ常用温度で超弾性
を示すアンテナ芯材を供するものである。
The present invention provides an antenna core material which can be pressed without subjecting the antenna core material to a softening treatment and which exhibits superelasticity at a normal temperature.

【0007】[0007]

【課題を解決するための手段】本発明のアンテナ用芯材
は、該芯材を常用温度(アンテナの使用環境温度を示
し、範囲はおおよそ−10〜40℃)で超弾性を示し、
組成がTi50Ni50-xFexで示され、X=0.5〜2.
0である形状記憶合金で構成したことを特徴とする。
又、前記の形状記憶合金の線材を最終加工率30〜60
%冷間加工後、350〜550℃の熱処理をしたことを
特徴とし、前記の形状記憶合金からなる芯材に1箇所以
上プレス加工したことを特徴とし、更に、前記の形状記
憶合金の線材を直線状あるいはコイル状に形成し、その
外側を樹脂で被覆したことを特徴とする。
The antenna core material according to the present invention is characterized in that the core material exhibits superelasticity at a normal temperature (indicating the use environment temperature of the antenna, the range is approximately -10 to 40 ° C),
The composition is indicated by Ti 50 Ni 50-x F x , where X = 0.5-2.5.
0.
In addition, the wire rod of the shape memory alloy is used in a final processing rate of 30 to 60.
% Cold working, followed by heat treatment at 350 to 550 ° C., characterized in that the core material made of the shape memory alloy is pressed at one or more locations, and further, the shape memory alloy wire is It is characterized in that it is formed in a linear or coil shape, and its outside is covered with a resin.

【0008】アンテナ用芯材として、Ti50Ni50-x
x合金(ただし、0.5≦X≦2.0)を使用すること
により、軟化処理をすることなしにプレス加工が可能と
なり、かつ常用温度で超弾性特性に優れている。また、
超弾性合金材の外側を樹脂で被服したものは、良好な曲
げ耐久性が得られる。
As a core material for an antenna, Ti 50 Ni 50-x F
e x alloy (wherein, 0.5 ≦ X ≦ 2.0) by the use of, and excellent superelastic properties without the softening treatment enables pressing, and at customary temperatures. Also,
When the outer surface of the superelastic alloy material is covered with a resin, good bending durability can be obtained.

【0009】[0009]

【発明の実施の形態】以下に本発明の具体的な実施の形
態を説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, specific embodiments of the present invention will be described.

【0010】表1に示す組成の合金を高周波真空溶解法
によって得た。
An alloy having a composition shown in Table 1 was obtained by a high-frequency vacuum melting method.

【0011】 *は比較例 プレス加工性 ○:加工可能、△:加工難、×:割れ発生 超弾性特性残留歪 ○:<1.5mm、△:<2mm、×:>2mm[0011] *: Comparative example Press workability ○: Processable, △: Difficult to process, ×: Crack generation Super elastic characteristic residual strain ○: <1.5 mm, Δ: <2 mm, ×:> 2 mm

【0012】得られた合金のビレットを熱間加工した
後、焼鈍と冷間加工を繰り返し、最終加工率40%で線
径1mmの線材を作製した。得られた線材を450℃で
熱処理を行い、直線ばね材を作製し、三点曲げ試験を行
った。支持点長さは25mmで、そのセンターを最大6
mm押し込み、荷重の負荷・除荷を−10℃、および4
0℃で行い、残留歪を測定した。また、油圧プレス機に
より、厚さ0.5mmにプレス加工を行った。更に、最
終加工率、熱処理条件を変えた実験も行った。その結果
も表1に示している。なお、残留歪は図3に定義してい
る。
After hot-working the obtained alloy billet, annealing and cold-working were repeated to produce a wire having a final working rate of 40% and a wire diameter of 1 mm. The obtained wire was heat-treated at 450 ° C. to produce a linear spring material and subjected to a three-point bending test. The support point length is 25mm and its center is up to 6
mm, push and unload the load at -10 ° C and 4
The measurement was performed at 0 ° C. and the residual strain was measured. Pressing was performed to a thickness of 0.5 mm using a hydraulic press. Further, experiments were performed in which the final processing rate and the heat treatment conditions were changed. The results are also shown in Table 1. The residual strain is defined in FIG.

【0013】表1から明らかなように、Ti50Ni50-x
Fex合金で、Xが0.5以上2.0以下の組成範囲外、
及び最終加工率が30〜60%、及び熱処理温度が35
0〜550℃の範囲外では、プレス加工性、超弾性特性
のいずれか、または共に劣っていることが分かる。
As is apparent from Table 1, Ti 50 Ni 50-x
In a Fe x alloy, X is out of the composition range of 0.5 or more and 2.0 or less,
And the final processing rate is 30-60%, and the heat treatment temperature is 35
When the temperature is outside the range of 0 to 550 ° C., one of the press workability and the superelastic property, or both, are inferior.

【0014】[0014]

【発明の効果】以上に説明したように、本発明によれ
ば、常用温度域で超弾性を示し、軟化処理なしでプレス
加工が可能なアンテナ用芯材が得られた。更に、軟化処
理工程を省くことにより、製造コストも低減できる。
As described above, according to the present invention, an antenna core material which exhibits superelasticity in a normal temperature range and can be pressed without softening is obtained. Further, the manufacturing cost can be reduced by omitting the softening step.

【図面の簡単な説明】[Brief description of the drawings]

【図1】アンテナ外観図。FIG. 1 is an external view of an antenna.

【図2】アンテナ用芯材のプレス加工部を示す図。図2
(a)はプレス加工部の正面図。図2(b)はプレス加
工部の側面図。
FIG. 2 is a diagram showing a pressed portion of a core material for an antenna. FIG.
(A) is a front view of a press working part. FIG. 2B is a side view of the press working unit.

【図3】超弾性合金の荷重−変位曲線図。FIG. 3 is a load-displacement curve diagram of a superelastic alloy.

【符号の説明】[Explanation of symbols]

1 キャップ 2 アンテナ芯材 3 接栓 4 アンテナ芯材のプレス加工部正面 5 アンテナ芯材のプレス加工部側面 DESCRIPTION OF SYMBOLS 1 Cap 2 Antenna core material 3 Plug 4 Front view of pressed part of antenna core material 5 Side view of pressed part of antenna core material

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 常用温度で超弾性特性を示し、組成が、
原子%表示でTi50Ni50-xFex(ただし、0.5≦X
≦2.0)で示される形状記憶合金からなることを特徴
とするアンテナ用芯材。
1. The composition exhibits superelastic properties at a normal temperature, and has a composition
Ti 50 Ni 50-x F x in atomic% (where 0.5 ≦ X
≦ 2.0) A core material for an antenna, comprising a shape memory alloy represented by the following formula:
【請求項2】 請求項1記載の形状記憶合金を加工率3
0〜60%の冷間加工後、350〜550℃で熱処理を
したことを特徴とするアンテナ用芯材。
2. The processing rate of the shape memory alloy according to claim 1 is 3
A core material for an antenna, wherein the core material is subjected to a heat treatment at 350 to 550 ° C. after a cold working of 0 to 60%.
【請求項3】 請求項2記載の冷間加工後、熱処理を施
した形状記憶合金の1箇所以上にプレス加工したことを
特徴とするアンテナ用芯材。
3. A core material for an antenna, wherein at least one part of the shape memory alloy which has been subjected to a heat treatment after the cold working according to claim 2 is pressed.
【請求項4】 請求項2または3記載の形状記憶合金か
らなる線材を直線状あるいはコイル状に形成し、その外
側を樹脂で被覆したことを特徴とするアンテナ用芯材。
4. A core material for an antenna, wherein the wire made of the shape memory alloy according to claim 2 or 3 is formed in a linear shape or a coil shape, and the outside thereof is covered with a resin.
JP24131796A 1996-08-23 1996-08-23 Core member for antenna Pending JPH1065417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24131796A JPH1065417A (en) 1996-08-23 1996-08-23 Core member for antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24131796A JPH1065417A (en) 1996-08-23 1996-08-23 Core member for antenna

Publications (1)

Publication Number Publication Date
JPH1065417A true JPH1065417A (en) 1998-03-06

Family

ID=17072500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24131796A Pending JPH1065417A (en) 1996-08-23 1996-08-23 Core member for antenna

Country Status (1)

Country Link
JP (1) JPH1065417A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020062675A (en) * 2001-08-23 2002-07-29 김진대 Punch appearance of punch appearance of n.t wire the road antenna
KR20020062788A (en) * 2001-08-23 2002-07-31 김진대 Punch appearance of punch appearance of n.t wire the road antenna

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020062675A (en) * 2001-08-23 2002-07-29 김진대 Punch appearance of punch appearance of n.t wire the road antenna
KR20020062788A (en) * 2001-08-23 2002-07-31 김진대 Punch appearance of punch appearance of n.t wire the road antenna

Similar Documents

Publication Publication Date Title
US5951793A (en) Ni-Ti-Pd superelastic alloy material, its manufacturing method, and orthodontic archwire made of this alloy material
EP0709482B1 (en) Method of manufacturing high-temperature shape memory alloys
JP2001020026A (en) Copper-based alloy having shape memory property and superelasticity, member consisting of the alloy, and their manufacture
JPWO2007055155A1 (en) Iron-based alloy having shape memory and superelasticity and method for producing the same
JP4415992B2 (en) Deformed nail corrector and method for manufacturing the same
JP3041585B2 (en) Mainspring manufacturing method
JP2002256395A (en) High strength and low thermal expansion alloy having excellent twisting and alloy wire thereof
JP3560907B2 (en) NiTi-based alloy wire, method for producing the same, and guide wire for catheter using the NiTi-based alloy wire
JPH1065417A (en) Core member for antenna
JP5107661B2 (en) Ti-based alloy
JP4460037B2 (en) Method of heat treatment of copper alloy for electrical connection member and copper alloy for electrical connection member
JP3085099B2 (en) NiTi-based alloy eyeglass member and method of manufacturing the same
JP3452335B2 (en) NiTi-based alloy
JP3379767B2 (en) Method for producing NiTi-based superelastic material
JPS6152224B2 (en)
JP3141328B2 (en) Manufacturing method of super elastic spring alloy
JPH11269585A (en) Titanium-vanadium-aluminum superelastic alloy and its production
JP3595095B2 (en) Antenna material and manufacturing method
JP4028008B2 (en) NiTiPd-based superelastic alloy material, manufacturing method thereof, and orthodontic wire using the alloy material
JP3915543B2 (en) Partly superelastic parts and method of manufacturing the same
JPH0128252B2 (en)
JP2851160B2 (en) Method of manufacturing superelastic alloy wire
JP3190443B2 (en) Glasses material
JPH101763A (en) Production of nickel-titanium alloy material
JP2724815B2 (en) Shape memory alloy coil spring and method of manufacturing the same