JPH1064061A - Production of magnetic recording medium - Google Patents
Production of magnetic recording mediumInfo
- Publication number
- JPH1064061A JPH1064061A JP22250396A JP22250396A JPH1064061A JP H1064061 A JPH1064061 A JP H1064061A JP 22250396 A JP22250396 A JP 22250396A JP 22250396 A JP22250396 A JP 22250396A JP H1064061 A JPH1064061 A JP H1064061A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic recording
- magnetic
- recording medium
- metal
- thin film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Thin Magnetic Films (AREA)
- Physical Vapour Deposition (AREA)
- Manufacturing Of Magnetic Record Carriers (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は非磁性支持体上に金
属系磁性薄膜が形成された磁気記録媒体の製造方法に関
し、さらに詳しくは、静磁気特性および短波長での電磁
変換特性が改善された薄膜型磁気記録媒体の製造方法に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a magnetic recording medium in which a metal-based magnetic thin film is formed on a non-magnetic support, and more particularly, to improved magnetostatic properties and electromagnetic conversion properties at short wavelengths. And a method of manufacturing a thin-film magnetic recording medium.
【0002】[0002]
【従来の技術】磁気記録による情報記録の分野において
は、記録する情報量の増大や、磁気記録装置の小型化、
あるいは磁気記録媒体/磁気ヘッド間の相対速度の低減
等の動向から、高密度記録化が要望されている。これに
伴い、磁気記録媒体においても磁性粒子を有機バインダ
中に分散させた塗布型磁気記録媒体に替わり、金属系磁
性薄膜をめっきや真空薄膜形成技術、すなわち真空蒸
着、スパッタリングあるいはイオンプレーティング等に
より成膜する薄膜型磁気記録媒体が主流となりつつあ
る。なかでも金属系磁性薄膜を採用する薄膜型磁気記録
媒体は、保磁力、角形比あるいは残留磁束密度等の各種
静磁気特性に優れていることが知られている。また塗布
型磁気記録媒体のように磁性層中に非磁性の有機バイン
ダを混入する必要がないので、必要とする磁束量を得る
ための磁性層厚を薄くすることが可能であり、記録減磁
が小さいので、この面からも短波長領域における電磁変
換特性に優れた性質を有する。2. Description of the Related Art In the field of information recording by magnetic recording, the amount of information to be recorded is increased, the size of a magnetic recording device is reduced,
Alternatively, high-density recording has been demanded in view of trends such as a reduction in the relative speed between the magnetic recording medium and the magnetic head. Along with this, instead of a coating type magnetic recording medium in which magnetic particles are dispersed in an organic binder also in a magnetic recording medium, a metal-based magnetic thin film is formed by plating or a vacuum thin film forming technique, that is, vacuum evaporation, sputtering or ion plating. Thin-film magnetic recording media for film formation are becoming mainstream. Among them, a thin-film magnetic recording medium employing a metal-based magnetic thin film is known to be excellent in various magnetostatic characteristics such as coercive force, squareness ratio, and residual magnetic flux density. Further, since it is not necessary to mix a non-magnetic organic binder in the magnetic layer as in the case of the coating type magnetic recording medium, it is possible to reduce the thickness of the magnetic layer for obtaining the required amount of magnetic flux. Is small, so that it also has excellent electromagnetic conversion characteristics in the short wavelength region from this aspect.
【0003】ヘリカルスキャン方式のビデオテープレコ
ーダ(VTR)やディジタルオーディオテープレコーダ
(DAT)等に用いる薄膜型磁気記録媒体においては、
テープ長手方向の磁気異方性を高め、より短波長での高
出力化を図るため、斜方蒸着による薄膜型磁気記録媒体
が提案され実用に供されている。この斜方蒸着は、移動
走行するポリエステル等の高分子材料からなる非磁性支
持体上に、走行方向に対し斜め方向からの電子ビーム蒸
着等により磁性層を形成するものである。斜方蒸着によ
り形成された薄膜型磁気記録媒体は、その微細構造にお
いて磁性粒子が非磁性支持体の表面に対して斜めに配向
している。したがって、磁性粒子を非磁性支持体の面内
長手方向に一軸配向した従来の磁気テープに比べ、高密
度記録が可能である。現在実用化されている斜方蒸着に
よる薄膜型磁気記録媒体の磁化容易軸は、非磁性支持体
表面に対し、およそ20°傾斜しているものが一般的で
ある。In a thin-film magnetic recording medium used for a helical scan video tape recorder (VTR), a digital audio tape recorder (DAT), or the like,
In order to increase the magnetic anisotropy in the longitudinal direction of the tape and achieve higher output at shorter wavelengths, a thin film type magnetic recording medium by oblique deposition has been proposed and put to practical use. In the oblique deposition, a magnetic layer is formed on a non-magnetic support made of a polymer material such as polyester that moves and travels by electron beam deposition or the like oblique to the traveling direction. In a thin film type magnetic recording medium formed by oblique evaporation, magnetic particles are obliquely oriented with respect to the surface of the nonmagnetic support in the fine structure. Therefore, high-density recording is possible as compared with a conventional magnetic tape in which magnetic particles are uniaxially oriented in the longitudinal direction of the plane of the nonmagnetic support. The axis of easy magnetization of a thin-film magnetic recording medium formed by oblique vapor deposition that is currently in practical use is generally inclined at about 20 ° with respect to the surface of the nonmagnetic support.
【0004】斜方蒸着による薄膜型磁気記録媒体におい
ては、金属系磁性薄膜材料として、一般にCoやCo−
Ni合金系が採用される。これらの金属系磁性薄膜を非
磁性支持体上に形成するには、CoやCo−Ni合金を
蒸発源とし、蒸着装置内に少量かつ一定量の酸素ガスを
導入しながら、移動する非磁性支持体上に斜方蒸着する
製造法が通常である。この斜方蒸着工程により、金属系
磁性薄膜は、α−Co(またはCo−Ni)の磁性粒子
と、主としてその粒界に存在するCo−O(またはCo
−Ni−O)とが混在する構造となる。酸素を金属系磁
性薄膜中に導入する理由は、磁性粒子サイズを微細化し
て媒体ノイズを低減するとともに、金属系磁性薄膜を柱
状構造とすることで、斜め方向の形状異方性を増大させ
るためである。また斜方蒸着の他に、CoやCo−Ni
合金をターゲットとしたスパッタリング法により金属系
磁性薄膜を形成する方法がある。In a thin film type magnetic recording medium formed by oblique evaporation, Co or Co- is generally used as a metal-based magnetic thin film material.
Ni alloy system is adopted. To form these metal-based magnetic thin films on a non-magnetic support, a moving non-magnetic support is used while introducing a small and fixed amount of oxygen gas into a vapor deposition apparatus using Co or a Co-Ni alloy as an evaporation source. A manufacturing method in which oblique deposition is performed on a body is common. By this oblique deposition process, the metal-based magnetic thin film is formed by combining α-Co (or Co-Ni) magnetic particles with Co-O (or Co-
-Ni-O). The reason for introducing oxygen into the metal-based magnetic thin film is to reduce the medium noise by reducing the size of the magnetic particles, and to increase the oblique shape anisotropy by forming the metal-based magnetic thin film into a columnar structure. It is. In addition to the oblique deposition, Co or Co-Ni
There is a method of forming a metal-based magnetic thin film by a sputtering method using an alloy as a target.
【0005】[0005]
【発明が解決しようとする課題】ところで、このような
斜方蒸着等による金属系磁性薄膜を磁気記録媒体として
用いるVTR等の分野では、ハイバンド記録やディジタ
ル記録の要望が強く、更なる高密度記録を目指して、磁
気記録媒体の大容量化とともに、一層の小型軽量化が望
まれている。このためには、現行の最短記録波長よりも
更に短波長の記録を可能とした磁気記録媒体の開発が必
要である。しかしながら、記録波長が短波長化するほ
ど、記録された磁化パターンは自己減磁しやすく、見掛
け上の残留磁化が小さくなり、この結果満足な再生出力
が得られない。In the field of VTRs and the like, in which a metal-based magnetic thin film formed by oblique deposition or the like is used as a magnetic recording medium, there is a strong demand for high-band recording and digital recording, and higher density recording is required. For the purpose of recording, it is desired to further reduce the size and weight of the magnetic recording medium while increasing the capacity of the magnetic recording medium. For this purpose, it is necessary to develop a magnetic recording medium capable of recording at a shorter wavelength than the current shortest recording wavelength. However, as the recording wavelength becomes shorter, the recorded magnetization pattern is more likely to self-demagnetize, and the apparent residual magnetization becomes smaller. As a result, a satisfactory reproduction output cannot be obtained.
【0006】短波長における再生出力を増加する手段の
一つとして、磁気記録媒体の保磁力Hcと飽和磁化Φr
の積であらわされるエネルギ積を高くすることが有効で
ある。高エネルギ積化により、自己減磁界に対抗しうる
磁化パターンを磁気記録層内に形成することができる。
しかしながら、従来の酸素ガス導入による真空薄膜形成
技術においては、エネルギ積の向上は十分に検討し尽く
された感があり、さらなる記録密度の向上のためのエネ
ルギ積の飛躍的な向上は望めない。したがって本発明の
課題は、磁気記録層のエネルギ積を高め、短波長での再
生出力を向上し、更なる高密度記録が可能な薄膜型磁気
記録媒体の新規製造方法を提供することである。As one of means for increasing the reproduction output at a short wavelength, the coercive force Hc of the magnetic recording medium and the saturation magnetization Φr
It is effective to increase the energy product represented by the product of By increasing the energy product, a magnetization pattern that can oppose the self-demagnetizing field can be formed in the magnetic recording layer.
However, in the conventional vacuum thin film forming technology by introducing oxygen gas, there is a feeling that the improvement of the energy product has been thoroughly studied, and a dramatic improvement of the energy product for further improvement of the recording density cannot be expected. Therefore, an object of the present invention is to provide a new method of manufacturing a thin-film magnetic recording medium capable of increasing the energy product of a magnetic recording layer, improving the reproduction output at a short wavelength, and enabling higher density recording.
【0007】[0007]
【課題を解決するための手段】本発明の磁気記録媒体の
製造方法は、上述した課題を達成するために提案するも
のであり、非磁性支持体上に、真空蒸着法により形成さ
れた金属系磁性薄膜を有する磁気記録媒体の製造方法に
おいて、この真空蒸着雰囲気中に水蒸気を導入し、金属
蒸気と水蒸気を反応させつつ、金属系磁性薄膜を形成す
ることを特徴とする。SUMMARY OF THE INVENTION A method for manufacturing a magnetic recording medium according to the present invention is proposed to achieve the above-mentioned object, and comprises a metal-based material formed on a non-magnetic support by a vacuum deposition method. A method of manufacturing a magnetic recording medium having a magnetic thin film is characterized in that a metal-based magnetic thin film is formed by introducing water vapor into the vacuum deposition atmosphere and reacting the metal vapor with the water vapor.
【0008】また本発明の別の磁気記録媒体の製造方法
は、非磁性支持体上に、スパッタリング法により形成さ
れた金属系磁性薄膜を有する磁気記録媒体の製造方法に
おいて、このスパッタリング雰囲気中に水蒸気を導入
し、スパッタリングされた金属粒子と水蒸気を反応させ
つつ、金属系磁性薄膜を形成することを特徴とする。Another method of manufacturing a magnetic recording medium according to the present invention is a method of manufacturing a magnetic recording medium having a metal-based magnetic thin film formed on a non-magnetic support by a sputtering method. And reacting the sputtered metal particles with water vapor to form a metal-based magnetic thin film.
【0009】いずれの磁気記録媒体に製造方法において
も、水蒸気の導入は、他のキャリアガスや酸素ガス等と
の混合ガスとしてではなく、水蒸気単独で導入すること
が好ましい。In any of the methods for manufacturing a magnetic recording medium, it is preferable to introduce water vapor alone, not as a mixed gas with another carrier gas or oxygen gas.
【0010】またいずれの磁気記録媒体の製造方法にお
いても、金属系磁性薄膜は、コバルト(Co)を主体と
した磁性薄膜であることが望ましい。すなわち、Co単
体金属、Co−Ni系合金、Co−Ni Pt系合金、
Co−Cr系合金、Co−Cr−Ta系合金、Co−C
r−Pt系合金等のCo系合金が好ましく例示される。In any of the methods for manufacturing a magnetic recording medium, the metal-based magnetic thin film is preferably a magnetic thin film mainly composed of cobalt (Co). That is, Co simple metal, Co-Ni-based alloy, Co-Ni Pt-based alloy,
Co-Cr alloy, Co-Cr-Ta alloy, Co-C
Co-based alloys such as r-Pt-based alloys are preferably exemplified.
【0011】本発明で採用する非磁性支持体としては、
PET(Polyethyleneterephthalate) 等のポリエステル
樹脂をはじめとして、ポリオレフィン樹脂、ビニル樹
脂、ポリイミド樹脂、ポリアミド樹脂あるいはポリカー
ボネート樹脂等の有機高分子類や、アルミニウム系金属
やガラス類あるいはセラミックス類を用いることができ
る。The non-magnetic support employed in the present invention includes:
In addition to polyester resins such as PET (Polyethyleneterephthalate), organic polymers such as polyolefin resins, vinyl resins, polyimide resins, polyamide resins and polycarbonate resins, aluminum-based metals, glasses and ceramics can be used.
【0012】なお本発明に類似の先願として、水蒸気と
酸素との混合ガス中で金属系磁性薄膜を真空蒸着する方
法が特開平1−294222号公報に、また水蒸気と希
ガスとの混合ガス中で金属系磁性薄膜をスパッタリング
する方法が特開平3−8120号公報に開示されてい
る。しかしながら、これらはいずれもエネルギ積の向上
を課題とするものではない。As a prior application similar to the present invention, a method of vacuum-depositing a metal-based magnetic thin film in a mixed gas of water vapor and oxygen is disclosed in JP-A-1-294222, and a mixed gas of water vapor and a rare gas is disclosed. A method of sputtering a metal-based magnetic thin film therein is disclosed in JP-A-3-8120. However, none of these aims to improve the energy product.
【0013】[0013]
【発明の実施の形態】以下、本発明の具体的実施例につ
き図面を参照しながら説明する。始めに本発明の磁気記
録媒体の製造方法で採用した真空蒸着装置の一例を、図
1に示す概略断面図を参照して説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, specific embodiments of the present invention will be described with reference to the drawings. First, an example of a vacuum deposition apparatus employed in the method for manufacturing a magnetic recording medium of the present invention will be described with reference to a schematic sectional view shown in FIG.
【0014】図1に示した真空蒸着装置は、リール・ツ
ー・リール方式の真空蒸着装置である。すなわち、不図
示の真空ポンプにより内部を真空引きされる真空チャン
バ9内には、PETフィルム等の非磁性支持体を供給す
るサプライロール1、非磁性支持体の走行と同期して回
転する冷却キャン2、金属系磁性薄膜が蒸着された非磁
性支持体を巻き取るテイクアップロール3が配設されて
いる。一方、真空蒸着手段は、電子銃4により発生した
電子ビーム5をマグネット6により偏向およびスキャン
し、この電子ビームをハース7内のCo等の強磁性金属
に照射し、これを溶解・蒸発させるものである。斜方蒸
着角度を規制するために、冷却キャン2に近接して遮蔽
板8等が配設される。なおこのハース7内に、Co等の
強磁性金属のペレットやワイアを供給する自動供給装置
(不図示)を有し、蒸発に伴う溶融金属の液面を一定レ
ベルに保つことができる。The vacuum deposition apparatus shown in FIG. 1 is a reel-to-reel type vacuum deposition apparatus. That is, a supply roll 1 for supplying a non-magnetic support such as a PET film, and a cooling can which rotates in synchronization with the running of the non-magnetic support are provided in a vacuum chamber 9 whose inside is evacuated by a vacuum pump (not shown). 2. A take-up roll 3 for winding a non-magnetic support on which a metal-based magnetic thin film is deposited is provided. On the other hand, the vacuum evaporation means deflects and scans the electron beam 5 generated by the electron gun 4 by a magnet 6, irradiates the electron beam to a ferromagnetic metal such as Co in a hearth 7, and dissolves and evaporates this. It is. In order to regulate the oblique evaporation angle, a shielding plate 8 and the like are provided near the cooling can 2. An automatic supply device (not shown) for supplying pellets and wires of ferromagnetic metal such as Co is provided in the hearth 7, and the liquid level of the molten metal accompanying evaporation can be kept at a constant level.
【0015】図1に示した真空蒸着装置の特徴部分は、
真空チャンバ9内にH2 O(水蒸気)を供給するH2 O
ノズル10である。図1の例では、H2 Oノズル10の
開口は遮蔽板8近傍、すなわち非磁性支持体上への強磁
性金属薄膜の蒸着が終了する位置近傍に位置している。
この位置はH2 Oノズル10の好ましい開口位置である
が、この例以外にも真空チャンバ9内の何れの位置に設
けてもよい。H2 Oノズル10には、H2 Oバルブ11
を介してH2 O配管12が接続されている。このH2 O
バルブ11の一例の拡大断面図を図2に示す。The features of the vacuum deposition apparatus shown in FIG.
H 2 O for supplying H 2 O (water vapor) into the vacuum chamber 9
The nozzle 10. In the example of FIG. 1, the opening of the H 2 O nozzle 10 is located near the shielding plate 8, that is, near the position where the deposition of the ferromagnetic metal thin film on the nonmagnetic support is completed.
This position is a preferable opening position of the H 2 O nozzle 10, but may be provided at any position in the vacuum chamber 9 other than this example. The H 2 O nozzle 10 has an H 2 O valve 11
The H 2 O pipe 12 is connected via the. This H 2 O
FIG. 2 shows an enlarged sectional view of an example of the valve 11.
【0016】図2に示したH2 Oバルブ11は、ニード
ルバルブによるものであり、例えば内径3.0mmのス
テンレス等の金属からなるH2 O配管12により供給さ
れる蒸留水や純水の流量を、任意に制御するものであ
る。H2 O配管12には、例えば2kg/cm2 の圧力
で蒸留水や純水が供給される。これらH2 O配管12お
よびH2 Oバルブ11は、蒸留水や純水の気化潜熱に伴
う露結や氷結を防止するために、不図示のコイルヒータ
やリボンヒータ等による加熱機構を有する。H2 O(水
蒸気)の供給手段は、この例に限らず、一般的な加熱バ
ブリング法やスチーム配管により直接供給する方法等、
任意の方法を選択してよい。The H 2 O valve 11 shown in FIG. 2 is a needle valve. For example, the flow rate of distilled water or pure water supplied through an H 2 O pipe 12 made of a metal such as stainless steel having an inner diameter of 3.0 mm. Is arbitrarily controlled. Distilled water or pure water is supplied to the H 2 O pipe 12 at a pressure of, for example, 2 kg / cm 2 . The H 2 O pipe 12 and the H 2 O valve 11 have a heating mechanism such as a coil heater or a ribbon heater (not shown) in order to prevent dew condensation or icing due to latent heat of vaporization of distilled water or pure water. The means for supplying H 2 O (steam) is not limited to this example, but may be a general heating bubbling method, a method of directly supplying by steam piping, or the like.
Any method may be selected.
【0017】以下、図1に示した真空蒸着装置による本
発明の磁気記録媒体の好ましい製造例につき説明する。実施例1 本実施例は、H2 Oを毎分10g導入する条件により磁
気記録媒体を製造した例である。ハース7内の蒸着源に
はピュアなCo金属を採用し、蒸着時の真空度は10-3
Pa台とし、冷却キャンの温度を−20℃に保った。サ
プライロール1からの例えば30cm幅のPETフィル
ムからなる非磁性支持体の送り出し速度を25m/分と
し、斜方蒸着角度が非磁性支持体の長手方向に対し90
°〜45°の範囲となるように遮蔽板8の位置および角
度を設定した。このとき、金属系磁性薄膜の厚さが20
0nmとなるように電子銃4の出力を制御した。Hereinafter, a preferred example of manufacturing the magnetic recording medium of the present invention using the vacuum deposition apparatus shown in FIG. 1 will be described. Example 1 In this example, a magnetic recording medium was manufactured under the condition that H 2 O was introduced at a rate of 10 g per minute. Pure Co metal is used for the evaporation source in the hearth 7, and the degree of vacuum at the time of evaporation is 10 -3.
The temperature was maintained at −20 ° C. on the Pa basis. The feed speed of the non-magnetic support made of, for example, a 30 cm wide PET film from the supply roll 1 is 25 m / min, and the oblique deposition angle is 90 to the longitudinal direction of the non-magnetic support.
The position and angle of the shielding plate 8 were set so as to be in the range of 45 ° to 45 °. At this time, the thickness of the metal-based magnetic thin film is 20
The output of the electron gun 4 was controlled to be 0 nm.
【0018】金属系磁性薄膜の蒸着終了後、真空チャン
バ9からテイクアップロール3に巻き取られた蒸着済の
非磁性支持体を取り出し、公知の帯電防止剤と結合剤等
からなるバックコート層を金属系磁性薄膜形成面の反対
側に塗布する。次にこれも公知の防錆処理および潤滑剤
塗布を施し、例えば8mm幅にスリットした後、カセッ
トに組み込んで実施例1の磁気記録媒体を完成する。こ
の一連のフローを図3に示す。After the deposition of the metal-based magnetic thin film is completed, the deposited non-magnetic support wound around the take-up roll 3 is taken out of the vacuum chamber 9 and a back coat layer comprising a known antistatic agent and a binder is removed. It is applied to the opposite side of the metal-based magnetic thin film formation surface. Next, this is also subjected to a known rust prevention treatment and lubricant application, slit into, for example, 8 mm width, and then assembled into a cassette to complete the magnetic recording medium of Example 1. FIG. 3 shows this series of flows.
【0019】実施例2〜実施例5 前実施例1は、H2 Oを毎分10g導入する条件により
磁気記録媒体を製造した例であるが、このH2 O導入量
を毎分20g、40g、60gおよび80gとした他
は、実施例1と同様の蒸着条件により実施例2〜実施例
5の磁気記録媒体を製造した。[0019] Examples 2 to 5 the previous Example 1 is an example of producing a magnetic recording medium according to the conditions every minute 10g introducing H 2 O, the H 2 O introduced amount per minute 20 g, 40 g , 60 g and 80 g, and the magnetic recording media of Examples 2 to 5 were manufactured under the same deposition conditions as in Example 1.
【0020】以上のように製造した各実施例の磁気記録
媒体につき、磁気特性および電磁変換特性を測定した。
磁気特性は、試料振動型磁束計を用い、磁気記録媒体の
面内長手方向の磁気特性のうちから保磁力Hc、残留磁
束Φrを測定し、エネルギ積Hc×Φrを求めた。電磁
変換特性は、ソニー製ハイバンド8mmVTR(EV−
S900)を改造した測定用VTRを用い、磁気記録媒
体/磁気ヘッドの相対速度を3.8m/secとし、記
録周波数7.0MHzの正弦波を記録し、その再生出力
を測定した。記録電流は各磁気記録媒体について、最も
高い再生出力が得られる値に設定した。The magnetic characteristics and electromagnetic conversion characteristics of the magnetic recording media of the examples manufactured as described above were measured.
The magnetic properties were determined by measuring the coercive force Hc and the residual magnetic flux Φr from the magnetic properties in the longitudinal direction of the surface of the magnetic recording medium using a sample vibration type magnetometer, and calculating the energy product Hc × Φr. The electromagnetic conversion characteristics are based on Sony high-band 8mm VTR (EV-
Using a modified measurement VTR (S900), a sine wave having a recording frequency of 7.0 MHz was recorded at a relative speed of 3.8 m / sec between the magnetic recording medium and the magnetic head, and the reproduction output was measured. The recording current was set to a value at which the highest reproduction output was obtained for each magnetic recording medium.
【0021】実施例1〜実施例5の各磁気記録媒体の測
定結果を、〔表1〕にまとめて示す。The measurement results of the magnetic recording media of Examples 1 to 5 are summarized in Table 1 below.
【0022】[0022]
【表1】 [Table 1]
【0023】また実施例1〜実施例5の各磁気記録媒体
のH2 O導入量とエネルギ積との関係を図4のグラフに
示す。〔表1〕および図4から、H2 O導入量が40g
/分の時にエネルギ積は最大値7.3kA/m・nWb
を示し、再生出力もまた最大値を示すことが判る。FIG. 4 is a graph showing the relationship between the amount of H 2 O introduced and the energy product of each of the magnetic recording media of Examples 1 to 5. From Table 1 and FIG. 4, the amount of H 2 O introduced was 40 g.
/ Min maximum energy product at 7.3 kA / m · nWb
It can be seen that the reproduction output also shows the maximum value.
【0024】比較例1〜比較例5 水蒸気の導入に換えて、酸素を導入した他は前実施例1
と同様にして比較例1〜比較例5の磁気記録媒体を製造
した。酸素の導入量は、各比較例毎に0.4l/分から
0.8l/分迄とした。比較例1〜比較例5の磁気記録
媒体につき、前実施例と同じ条件で磁気特性および電磁
変換特性を測定した。測定結果を〔表2〕にまとめて示
す。 Comparative Examples 1 to 5 The same as in Example 1 except that oxygen was introduced instead of steam.
In the same manner as in the above, magnetic recording media of Comparative Examples 1 to 5 were manufactured. The amount of oxygen introduced was from 0.4 l / min to 0.8 l / min for each comparative example. The magnetic characteristics and the electromagnetic conversion characteristics of the magnetic recording media of Comparative Examples 1 to 5 were measured under the same conditions as in the previous example. The measurement results are shown in [Table 2].
【0025】[0025]
【表2】 [Table 2]
【0026】また比較例1〜比較例5の磁気記録媒体の
酸素導入量とエネルギ積の関係を図5のグラフに示す。
〔表2〕および図5から、酸素導入量が0.6l/分の
時にエネルギ積は6.1kA/m・nWbを示し、再生
出力もまた最大値を示すことが判る。しかしながらこれ
ら最大値は、いずれも実施例の最大値には遠く及ばない
ことは明らかである。実施例1〜5および比較例1〜5
の各磁気記録媒体のエネルギ積と、再生出力の関係を図
6に示す。図6からは、エネルギ積と再生出力はほぼリ
ニアな相関を有すること、および水蒸気を導入した実施
例の磁気記録媒体は、比較例の酸素を導入した磁気記録
媒体よりも大きなエネルギ積および再生出力を得ること
が可能であることを示している。FIG. 5 is a graph showing the relationship between the amount of oxygen introduced and the energy product of the magnetic recording media of Comparative Examples 1 to 5.
From Table 2 and FIG. 5, it can be seen that the energy product shows 6.1 kA / m · nWb when the oxygen introduction rate is 0.6 l / min, and the reproduction output also shows the maximum value. However, it is clear that none of these maximums is far below the maximum in the example. Examples 1 to 5 and Comparative Examples 1 to 5
FIG. 6 shows the relationship between the energy product of each magnetic recording medium and the reproduction output. FIG. 6 shows that the energy product and the reproduction output have a substantially linear correlation, and that the magnetic recording medium of the embodiment into which water vapor is introduced has a larger energy product and reproduction output than the magnetic recording medium into which oxygen of the comparative example is introduced. It is shown that it is possible to obtain.
【0027】比較例6〜比較例10 水蒸気を単独で導入した方法に換えて、水蒸気と酸素の
混合ガスを導入した他は前実施例1と同様にして比較例
6〜比較例10の磁気記録媒体を製造した。各比較例に
ついて、水蒸気の導入量は5g/分〜40g/分、酸素
の導入量は0.2l/分から0.4l/分迄とした。比
較例6〜比較例10の磁気記録媒体につき、前実施例と
同じ条件で磁気特性および電磁変換特性を測定した。測
定結果を〔表3〕にまとめて示す。[0027] Comparative Example 6 in place of the method introduced alone Comparative Example 10 water vapor, magnetic recording before except that introducing a mixed gas of water vapor and oxygen Example 1 compared in the same manner as in Example 6 to Comparative Example 10 The media was manufactured. In each comparative example, the amount of introduced steam was 5 g / min to 40 g / min, and the amount of introduced oxygen was 0.2 l / min to 0.4 l / min. The magnetic characteristics and the electromagnetic conversion characteristics of the magnetic recording media of Comparative Examples 6 to 10 were measured under the same conditions as in the previous example. The measurement results are shown in [Table 3].
【0028】[0028]
【表3】 [Table 3]
【0029】〔表3〕の結果から、水蒸気導入量が20
g/分、酸素導入量が0.3l/分の混合ガスを導入し
た時にエネルギ積は6.7kA/m・nwbを示し、再
生出力もまた最大値を示すことが判る。しかしながら、
これらの最大値はいずれも実施例の最大値には及ばない
ことは明らかである。From the results shown in Table 3, the amount of introduced steam was 20%.
It can be seen that the energy product is 6.7 kA / m · nwb when a mixed gas of g / min and an oxygen introduction amount of 0.3 l / min is introduced, and the reproduction output also shows the maximum value. However,
Obviously, none of these maximum values fall below the maximum value of the embodiment.
【0030】以上、本発明の磁気記録媒体につき5例の
実施例および10例の比較例により詳細な説明を加えた
が、本発明はこれら実施例以外にも種々の実施態様が可
能である。例えば、金属系磁性薄膜としてピュアなCo
金属を蒸着してなるものを示したが、先述したように各
種Co合金系やその他の強磁性金属を用いても同様の好
結果を納めることが可能である。またCo−Cr合金の
ごとく垂直磁気異方性を利用する垂直磁気記録媒体に本
発明を採用する場合にも好結果を得ることができる。As described above, the magnetic recording medium of the present invention has been described in detail with reference to five examples and ten comparative examples. However, the present invention can have various embodiments other than these examples. For example, pure Co as a metallic magnetic thin film
Although the case where a metal is vapor-deposited is shown, similar good results can be obtained by using various Co alloys or other ferromagnetic metals as described above. Good results can also be obtained when the present invention is applied to a perpendicular magnetic recording medium utilizing perpendicular magnetic anisotropy such as a Co-Cr alloy.
【0031】また実施例では蒸着による磁気記録媒体の
製造方法を例示したが、スパッタリング法やイオンプレ
ーティング法を用いてもよい。また非磁性支持体とし
て、例えばAl系金属等を採用して、ハードディスク型
の高密度磁気記録媒体を製造する際にも本発明を好適に
実施することが可能である。In the embodiment, a method for manufacturing a magnetic recording medium by vapor deposition has been exemplified, but a sputtering method or an ion plating method may be used. The present invention can also be suitably implemented when a hard disk type high-density magnetic recording medium is manufactured using, for example, an Al-based metal or the like as the nonmagnetic support.
【0032】[0032]
【発明の効果】以上の説明から明らかなように、本発明
の磁気記録媒体の製造方法の採用により、従来の製造方
法による磁気記録媒体よりも磁気記録層のエネルギ積を
高めることができる。これにより、短波長領域での再生
出力を向上することができ、サブミクロンの記録波長を
指向する次世代の高密度磁気記録媒体を、安定に提供す
ることが可能となる。As is apparent from the above description, by employing the method for manufacturing a magnetic recording medium of the present invention, the energy product of the magnetic recording layer can be increased as compared with the magnetic recording medium manufactured by the conventional manufacturing method. As a result, the reproduction output in the short wavelength region can be improved, and it is possible to stably provide a next-generation high-density magnetic recording medium directed to a submicron recording wavelength.
【図1】本発明の磁気記録媒体の製造方法で採用する真
空蒸着装置の概略断面図である。FIG. 1 is a schematic cross-sectional view of a vacuum evaporation apparatus employed in a method for manufacturing a magnetic recording medium according to the present invention.
【図2】H2 Oバルブの一例の拡大断面図である。FIG. 2 is an enlarged sectional view of an example of an H 2 O valve.
【図3】磁気記録媒体の製造方法のフローを示す図であ
る。FIG. 3 is a diagram showing a flow of a method for manufacturing a magnetic recording medium.
【図4】H2 O導入量とエネルギ積の関係を示すグラフ
である。FIG. 4 is a graph showing the relationship between the amount of H 2 O introduced and the energy product.
【図5】酸素導入量とエネルギ積の関係を示すグラフで
ある。FIG. 5 is a graph showing a relationship between an oxygen introduction amount and an energy product.
【図6】エネルギ積と再生出力の関係を示すグラフであ
る。FIG. 6 is a graph showing a relationship between an energy product and a reproduction output.
1…サプライロール、2…冷却キャン、3…テイクアッ
プロール、4…電子銃、5…電子ビーム、6…マグネッ
ト、7…ハース、8…遮蔽板、9…真空チャンバ、10
…H2 Oノズル、11…H2 Oバルブ、12…H2 O配
管DESCRIPTION OF SYMBOLS 1 ... Supply roll, 2 ... Cooling can, 3 ... Take-up roll, 4 ... Electron gun, 5 ... Electron beam, 6 ... Magnet, 7 ... Hearth, 8 ... Shielding plate, 9 ... Vacuum chamber, 10
... H 2 O nozzle, 11 ... H 2 O valve, 12 ... H 2 O piping
Claims (4)
成された金属系磁性薄膜を有する磁気記録媒体の製造方
法において、 前記真空蒸着雰囲気中に水蒸気を導入し、金属蒸気と水
蒸気を反応させつつ、前記金属系磁性薄膜を形成するこ
とを特徴とする磁気記録媒体の製造方法。1. A method for producing a magnetic recording medium having a metal-based magnetic thin film formed on a non-magnetic support by a vacuum deposition method, wherein steam is introduced into the vacuum deposition atmosphere, and the metal vapor reacts with the steam. A method of manufacturing a magnetic recording medium, the method comprising forming the metal-based magnetic thin film while forming the magnetic recording medium.
より形成された金属系磁性薄膜を有する磁気記録媒体の
製造方法において、 前記スパッタリング雰囲気中に水蒸気を導入し、スパッ
タリングされた金属粒子と水蒸気を反応させつつ、前記
金属系磁性薄膜を形成することを特徴とする磁気記録媒
体の製造方法。2. A method for manufacturing a magnetic recording medium having a metal-based magnetic thin film formed on a non-magnetic support by a sputtering method, wherein steam is introduced into the sputtering atmosphere, and the sputtered metal particles and steam are removed. A method for manufacturing a magnetic recording medium, wherein the metal-based magnetic thin film is formed while reacting.
することを特徴とする請求項1または2記載の磁気記録
媒体の製造方法。3. The method for manufacturing a magnetic recording medium according to claim 1, wherein the introduction of the water vapor is performed by introducing the water vapor alone.
とした磁性薄膜であることを特徴とする請求項1または
2記載の磁気記録媒体の製造方法。4. The method according to claim 1, wherein the metal-based magnetic thin film is a magnetic thin film mainly composed of cobalt.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22250396A JPH1064061A (en) | 1996-08-23 | 1996-08-23 | Production of magnetic recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22250396A JPH1064061A (en) | 1996-08-23 | 1996-08-23 | Production of magnetic recording medium |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1064061A true JPH1064061A (en) | 1998-03-06 |
Family
ID=16783456
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22250396A Pending JPH1064061A (en) | 1996-08-23 | 1996-08-23 | Production of magnetic recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1064061A (en) |
-
1996
- 1996-08-23 JP JP22250396A patent/JPH1064061A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4557944A (en) | Process of manufacturing a magnetic recording medium | |
JPH06150289A (en) | Magnetic recording medium and its manufacture | |
JPH0546013B2 (en) | ||
EP0617414B1 (en) | Method and apparatus for producing magnetic recording medium | |
JP3323660B2 (en) | Magnetic recording medium and thin film manufacturing method and thin film manufacturing apparatus | |
JPH1064061A (en) | Production of magnetic recording medium | |
JPH103638A (en) | Magnetic recording medium | |
JPH0685216B2 (en) | Method of manufacturing magnetic recording medium | |
JPH0479065B2 (en) | ||
JP2946748B2 (en) | Manufacturing method of magnetic recording medium | |
JPH1064035A (en) | Magnetic recording medium and its production | |
JP2006048840A (en) | Magnetic recording medium, its manufacturing method and recording and reproducing method of magnetic recording medium | |
JPS6194239A (en) | Preparation of magnetic recording medium | |
JPH0341899B2 (en) | ||
JPH1079120A (en) | Manufacturing method of magnetic recording medium | |
JPH09128751A (en) | Production of magnetic recording medium | |
JPS5966106A (en) | Magnetic recording medium | |
JPH01303623A (en) | Magnetic recording medium | |
JPH10228619A (en) | Magnetic recording medium and magnetic recording method | |
JP2002373410A (en) | Magnetic recording medium, recording and reproducing method of the same and manufacturing method therefor | |
JPS63152018A (en) | Magnetic recording medium | |
JPH09128752A (en) | Apparatus for producing magnetic recording medium and production of magnetic recording medium | |
JPH0963053A (en) | Production of magnetic recording medium | |
JPH103639A (en) | Magnetic recording medium | |
JPH0729143A (en) | Magnetic recording medium and its manufacture |