JPH105597A - 触媒の高効率化方法 - Google Patents

触媒の高効率化方法

Info

Publication number
JPH105597A
JPH105597A JP8165559A JP16555996A JPH105597A JP H105597 A JPH105597 A JP H105597A JP 8165559 A JP8165559 A JP 8165559A JP 16555996 A JP16555996 A JP 16555996A JP H105597 A JPH105597 A JP H105597A
Authority
JP
Japan
Prior art keywords
catalyst
prism
spp
electric field
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8165559A
Other languages
English (en)
Inventor
Masashi Kuwabara
正史 桑原
Kojiro Okude
幸二郎 奥出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8165559A priority Critical patent/JPH105597A/ja
Publication of JPH105597A publication Critical patent/JPH105597A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Abstract

(57)【要約】 【課題】触媒とその触媒表面に強い電界を生み出すSP
P励起のために必要なプリズムを用い、触媒とプリズム
界面にSPPを励起し、SPPの強い電界を触媒表面に
発生させ触媒反応の高効率化のためのSPP励起による
触媒性能の高効率化を図る。 【解決手段】表面プラズモンポラリトンを利用し、強い
電界を触媒表面に発生させ触媒反応を高効率で行うこと
を特徴とする触媒の高効率化方法。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は触媒の高効率化方法
に関する。
【0002】
【従来の技術】触媒は化学工業,環境にとって重要な材
料である。有機材料の生産や排気ガスの清浄などに広く
用いられている。触媒として様々な材料が用いられてお
り、その多くは五,六種類の元素より構成される化合物
であり、それら元素が目的に応じて様々な比率で化合さ
れている。新触媒開発は、これらの元素の種類,量をか
え作成するところから始まる。この作成の段階で、それ
までの経験はいかされるものの、目的とあった性能を持
つ触媒かどうかは実際に反応を行わせてみなければなら
ず、元素の種類と量とを考えあわせると莫大な時間と労
力が必要である。このことは触媒反応を元素の種類と量
だけに依存しているからである。このことを避けるた
め、デバイス型触媒という概念が提出されている。これ
は、外部からの制御により触媒反応を制御しようとする
ものである(参考文献 触媒,Vol.34,No.1,p1
8〜P22,1994)。実際、交流電圧を強誘電体表
面に印加したときに発生する表面弾性波を用い、触媒反
応の高効率化が実現されている。高効率化の原因は、表
面弾性波による触媒表面原子のずれとそのずれのために
触媒表面に生じる強い電界である。
【0003】
【発明が解決しようとする課題】触媒開発は、多くの時
間と労力を必要とする。これは外部から制御できること
が、触媒を構成する元素の種類や量を変えることだけに
限定されるからである。更に直接触媒反応に寄与するの
は触媒表面の電界などであり、元素の種類や量を変える
ことは、間接的にこれらを変えることであり効率が落ち
る。触媒反応を生み出す電界などを直接制御できるなら
ば、このような時間と労力は不必要となる。このような
考えのもと、表面弾性波を利用したデバイス型触媒が開
発された。しかし、表面弾性波を用いたデバイス型触媒
は、以下の問題点がある。
【0004】(1)くし型電極などの複雑な構造を必要
とし、また、表面弾性波を生じさせる強誘電体が必要で
あるため、高価である。
【0005】(2)表面弾性波を生じさせる強誘電体は
焼結体であるため、液中では使用できない。
【0006】(3)光触媒や半導体触媒などの電子と正
孔を利用した触媒では、電子と正孔を生成するためのエ
ネルギを触媒に加えなければならないが、表面弾性波で
はそのようなエネルギを供給することは不可能である。
【0007】
【課題を解決するための手段】表面プラズモンポラリト
ン(以下SPP)は、自由電子を持つ物質の表面に誘起
される表面プラズモンと物質に照射された光がカップリ
ングした素励起の一種である。SPPが励起されたとき
の物質表面の電界の強さは照射光の電界の強さの100
倍に達する。従って、触媒反応にこの強い電界を利用で
きれば触媒反応の高効率化が望める。更に光によってS
PPを励起することは、触媒に光を照射することになる
ので、表面弾性波では不可能であった、光触媒と半導体
触媒の触媒反応に重要な電子,正孔を容易に生成させる
ことができる。
【0008】本発明の目的は、触媒とその触媒表面に強
い電界を生み出すSPP励起のために必要なプリズムを
用い、触媒とプリズム界面にSPPを励起し、SPPの
強い電界を触媒表面に発生させ触媒反応の高効率化のた
めのSPP励起による触媒性能の高効率化を図ることに
ある。
【0009】また本発明の第二の目的は、触媒と、プリ
ズムと、多層の金属膜において、触媒とプリズムの間に
多層の金属をはさみ、各界面にSPPを励起させること
により触媒反応の高効率化を特徴としたSPP励起によ
る触媒反応の高効率化を図ることにある。
【0010】また、本発明の第三目的は最も触媒表面で
電界が強くなるSPPを励起するために、触媒の種類や
入射光の波長の変化に対し、多層金属膜の種類や多層金
属膜の各膜厚,プリズムの形状やその材質を最適にする
ことを特徴としたSPP励起による触媒反応の高効率化
の方法の提供にある。
【0011】また、本発明の第四目的は触媒の種類によ
り、照射する光の波長を変えること、2種類以上の波長
を持つ光を同時に照射すること、最適な光の照射角度を
選ぶことを特徴としたSPP励起による触媒反応の高効
率化の方法の提供にある。
【0012】また、本発明の第五目的は表面弾性波を用
いた触媒反応を高効率で行う方法と異なり、構造的に簡
単であり安価な触媒反応を高効率で行う方法であり、ま
た、液中でも使用可能な高効率な触媒を提供することに
ある。
【0013】また、本発明の第六目的は光により励起さ
れたSPPを触媒作用に用いるため、液中特に水中で効
率良く水中の汚染物質を分解する、水質浄化方法および
その装置を提供することにある。
【0014】従来は、高効率な触媒を開発する場合、触
媒を構成する元素の種類,量を変える方法であった。こ
の方法だと、作成された触媒が目的とあっている性能を
持っているかどうかは実際に実験しなくてはならず、多
くの時間と労力を必要とする。しかし、元素の種類や量
が直接触媒反応に寄与するのではなく、それらを変えた
時に生じる電界の強弱が触媒反応に寄与するといわれて
いる。従って、電界を触媒表面に誘起できれば高効率で
触媒反応が行えることになる。
【0015】SPPは、自由電子を持つ物質の表面に誘
起される表面プラズモンと物質に照射された光がカップ
リングした素励起の一種である。SPPが励起されたと
きの、物質表面の電界の強さは照射光の電界の強さの1
00倍に達する。従って、触媒反応にこの強い電界を利
用できれば触媒反応の高効率化が望める。更に光によっ
てSPPを励起することは、触媒に光を照射することに
なるので、表面弾性波では不可能であった、光触媒と半
導体触媒の触媒反応に重要な電子,正孔を容易に生成さ
せることができる。SPPを励起するために必要なもの
は、金属触媒の場合、プリズムだけであるので非常に構
造が簡単であり、安価である。また、プリズムの形状に
ついては三角型,半球型,多角形型が利用できる。材質
であるが、照射する光の波長により変える必要がある。
例えば、可視領域の波長を持つ光を照射する場合、通常
カメラレンズなどに用いられている光学ガラスでよい
が、紫外領域の光を照射する場合は、石英ガラスを用い
なければならない。つまり、照射する光の波長に対し、
透明である材質を用いなければならない。
【0016】SPPを励起するためには、プリズムなど
のカップラが必要である。運動量とエネルギの関係(こ
れを以下、分散と呼ぶ。)を、SPPと空気中の光につ
いて調べると、同じ運動量と同じエネルギをもつSPP
と空気中の光が存在しないことがわかる(このことは、
SPPの分散と光の分散は交わることができないことを
示している。)。空気中の光では運動量保存則とエネル
ギ保存則を満足しないため、SPPを励起出来ないので
ある。従って、単に空気中の光を照射しただけではSP
Pは励起されない。そこで二つの分散が交わるようにす
るため、プリズムを用いる。これはプリズム中の光の分
散が空気中と異なることを利用したものである。触媒が
金属,半導体などの自由電子を持つ物質の場合、SPP
をプリズムを用いて触媒自体に励起することができる。
この場合の構造は触媒とプリズムの2層構造であるた
め、非常に簡単に作成が可能である。例えば、プリズム
に触媒を蒸着するだけで良い。
【0017】触媒が絶縁物質の場合には、SPPは励起
されない。この場合には、多層金属膜をプリズムと絶縁
体触媒の間に挟んだ構造をとることにより、SPPを多
層金属膜界面に励起し絶縁体触媒表面に強い電界を生み
出すことが可能である。
【0018】SPPを励起するためには、最適な光の照
射角度が存在する。最適な照射角度を選ぶことにより最
も効率よくSPPを励起することができる。例えば、可
視領域の波長を持った光を照射する場合、実施例1に示
すように触媒の法線方向に対しほぼ45度の角度からの
光の照射が、最もSPPを励起しやすい。
【0019】
【発明の実施の形態】
(実施例1)図1は本発明によるSPP励起による触媒
反応の高効率化の方法である。1は半球プリズム、2は
光源、3は触媒である。図は可視領域の光を照射する場
合を例にとってある。可視光を用いた場合、最も効率よ
くSPPを励起する光源の配置が、触媒の法線方向に対
し、45度の角度になる。しかし、プリズムの材質,触
媒の種類,照射する光の波長により、この角度は多少異
なってくる。また、プリズムの材質はカメラレンズなど
に用いられている光学ガラスを用いる。プリズムの形状
が平板状のときは、SPPは励起されない。なぜなら、
45度の角度で触媒表面に光を照射するためには、ガラ
スの屈折率が1.414 以下でないとならないが、光学
ガラスはそれ以上の屈折率であるため、45度の角度で
光を照射することはできないからである。
【0020】図2は45度で光を照射したときの光のプ
リズム中での分散とSPPの分散との関係である。4は
プリズム中での光の分散、5はSPPの分散を表してい
る。縦軸はエネルギ、横軸は波数である。図中に示して
あるように二つの分散は交わることができるためプリズ
ム中の光はSPPを励起できる。
【0021】図3はSPP励起によって触媒表面に誘起
された電界の様子を示した断面図である。6は誘起され
た電界の触媒法線方向(Z軸)の成分の強度、7は触媒
により反応させる液体や気体である。誘起された電界の
強度はZ方向に対し減衰(減衰距離は数百nm)する
が、触媒表面での触媒反応は表面より数nm以内で起こ
るため、電界強度の減衰はほとんど問題とならない。
【0022】SPP励起による触媒の高効率化を実証す
るためにエチレンの水素化の実験を行った。図4にその
実験配置を示す。8は光源として用いたヘリウム−ネオ
ンレーザ、9は触媒となるパラジウム蒸着膜(厚さ20
0nm)、10はエチレンと水素が密封された循環容
器、11は生成されるエタンの量を計測する計測器、1
2は密封容器内の気体を循環させるための循環器であ
る。パラジウム膜は気体に触れるようになっている。図
中の破線矢印はレーザ光の光路を、実線矢印は気体の循
環方向を示している。触媒としてパラジウム(厚さ20
0nm)を半球プリズムの底面に蒸着したものを用い
た。パラジウムは水素化触媒としてしられている金属で
ある。光源としてヘリウム−ネオンレーザの632.8
nmの波長の光を用いた。図5にSPP励起による触媒
の高効率化の結果を示す。横軸は時間、縦軸はエタンの
生成量である。白丸が光を照射しない場合、黒丸が光を
照射した場合である。光を照射した場合、その効率は照
射しない場合に比べ10倍にもなることがわかる。
【0023】(実施例2)図6は触媒,多層金属膜,プ
リズムの構造を持つSPP励起による触媒反応の高効率
化方法において、最も簡単な構造を持つ触媒と一層の金
属膜とプリズムの三層構造の場合について示したもので
ある。13は金属膜である。また、触媒表面での電界の
様子も示してある。SPPは金属膜とプリズムとの界
面,触媒と金属膜との界面および触媒表面に励起される
ので、触媒表面に誘起される電界はこの三つのSPPが
作り出す電界の足算になるため、触媒とプリズムの二層
構造の場合に比べ、触媒表面に更に強い電界を誘起させ
ることができる。また、触媒が絶縁物質である場合に
は、触媒表面にはSPPが励起されないため、図で示し
たような金属膜が必要となってくる。触媒と金属膜の界
面及び金属膜とプリズムの界面に励起されたSPPの電
界を触媒表面にしみ出させるのである。なお、SPPによ
り誘起された電界の減衰距離は数百nmであるため、金
属膜と触媒の膜の厚さは数百nm以下である必要があ
る。
【0024】この証明として、絶縁物触媒としてチタニ
ア、金属膜として銀薄膜を使い、水浄化の実験を行っ
た。使用した装置は、実施例1と同じである。水内に
は、汚れのモデルとしてアンモニアを溶かしこんだ。そ
の結果、約1時間でアンモニアは水内より消失し、分解
できることを確認できた。このことより本発明が水質浄
化の方法および装置として十分に使えることがわかっ
た。
【0025】(実施例3)図7は実施例1を応用した大
きな面積を必要とする場合の例である。14はプリズム
と同じ材質の光学ガラスである。小さなプリズム1を敷
き詰め、それらの下に光学ガラス板14があり、その下
に触媒3がある構造となっている。
【0026】(実施例4)図8はプリズムを用いないで
SPPを励起させる例である。15は数百nmの周期を
持つグレーティングである。プリズムの代りに表面の周
期的な凹凸を使用し、表面プラズモンと光とをカップリ
ングしSPPを励起する方法である。光は触媒側より照
射される。
【0027】
【発明の効果】本発明によれば、SPPを励起すること
により触媒反応の高効率化が可能である。
【図面の簡単な説明】
【図1】本発明の第1の実施例のSPPを利用した触媒
の高効率化の方法におけるSPPを触媒表面に励起させる
ための触媒とプリズムと光源の説明図。
【図2】図1で示した触媒とプリズムと光源の配置図に
おける光によるSPP励起の説明図。
【図3】本発明によるSPPを利用した触媒の高効率化
の方法においてSPP励起時の電界を表した説明図。
【図4】エチレンの水素化実験の配置図。
【図5】SPP励起による触媒の高効率化の結果を示す
説明図。
【図6】第2実施例のSPPを利用した触媒の高効率化
の方法で、触媒とプリズムの間に金属膜をはさみ触媒表
面及び触媒と金属膜界面にSPPを励起し、触媒表面の
電界強度を強める方法の説明図。
【図7】第3実施例のSPPを利用した触媒の高効率化
の方法で、大きな面積が必要となる触媒に対する触媒と
プリズムの形状と配置を示した説明図。
【図8】第4実施例のSPPを利用した触媒の高効率化
の方法で、プリズムを用いないでSPPを励起するため
の触媒形状を示した説明図。
【符号の説明】
1…プリズム、2…光源、3…触媒、4…プリズム中の
光の分散、5…SPPの分散、6…SPPが誘起する電
界のZ方向の強度分布、7…触媒により反応させる液体
や気体、8…ヘリウム−ネオンレーザ、9…パラジウム
膜、10…密閉容器、11…気体量計測器、12…循環
器、13…金属膜、14…プリズムと同じ材質の光学ガ
ラス、15…グレーティング。

Claims (6)

    【特許請求の範囲】
  1. 【請求項1】表面プラズモンポラリトンを利用し、強い
    電界を触媒表面に発生させ触媒反応を高効率で行うこと
    を特徴とする触媒の高効率化方法。
  2. 【請求項2】請求項1において、触媒の表面にプリズム
    を有する触媒表面に表面プラズモンポラリトンを励起す
    ることにより触媒表面に強い電界を誘起し触媒表面での
    触媒反応を高効率で行う触媒の高効率化方法。
  3. 【請求項3】プリズム,触媒の構造において光をプリズ
    ム側より照射し、触媒表面に表面プラズモンポラリトン
    を励起することにより触媒表面に強い電界を誘起し触媒
    表面での触媒反応を高効率で行うことを特徴とする触媒
    の高効率化方法。
  4. 【請求項4】請求項1において、プリズムと触媒の間に
    金属膜または多層金属膜をはさみ、上記金属,上記プリ
    ズムの界面と金属,触媒の界面または多層金属膜の界面
    に表面プラズモンポラリトンを励起し、その強い電界を
    触媒表面にしみ出させることにより触媒表面での触媒反
    応を高効率で行う触媒の高効率化方法。
  5. 【請求項5】請求項1において、上記触媒の表面に強い
    電場を誘起するために照射する光の波長により金属膜ま
    たは多層金属膜の種類や厚さ,プリズムの材質を最適な
    ものを選ぶ触媒反応を高効率で行う触媒の高効率化方
    法。
  6. 【請求項6】プリズムを使わず表面及び界面の凹凸を利
    用し表面プラズモンポラリトンを励起させて、触媒表面
    に強い電界を誘起し触媒反応を高効率で行う触媒の高効
    率化方法。
JP8165559A 1996-06-26 1996-06-26 触媒の高効率化方法 Pending JPH105597A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8165559A JPH105597A (ja) 1996-06-26 1996-06-26 触媒の高効率化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8165559A JPH105597A (ja) 1996-06-26 1996-06-26 触媒の高効率化方法

Publications (1)

Publication Number Publication Date
JPH105597A true JPH105597A (ja) 1998-01-13

Family

ID=15814669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8165559A Pending JPH105597A (ja) 1996-06-26 1996-06-26 触媒の高効率化方法

Country Status (1)

Country Link
JP (1) JPH105597A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009045516A (ja) * 2007-08-14 2009-03-05 Stanley Electric Co Ltd 光触媒素子
JP2009045514A (ja) * 2007-08-14 2009-03-05 Stanley Electric Co Ltd 光触媒素子
JP2009045515A (ja) * 2007-08-14 2009-03-05 Stanley Electric Co Ltd 光触媒素子
JP2010184194A (ja) * 2009-02-12 2010-08-26 Stanley Electric Co Ltd 光触媒素子
JP2010184195A (ja) * 2009-02-12 2010-08-26 Stanley Electric Co Ltd 二酸化炭素還元装置
JP2010264437A (ja) * 2009-05-14 2010-11-25 Skypebble Associates Llc 回折格子支援自浄性材料
JP2012115834A (ja) * 2012-01-18 2012-06-21 Stanley Electric Co Ltd 光触媒素子

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009045516A (ja) * 2007-08-14 2009-03-05 Stanley Electric Co Ltd 光触媒素子
JP2009045514A (ja) * 2007-08-14 2009-03-05 Stanley Electric Co Ltd 光触媒素子
JP2009045515A (ja) * 2007-08-14 2009-03-05 Stanley Electric Co Ltd 光触媒素子
JP2010184194A (ja) * 2009-02-12 2010-08-26 Stanley Electric Co Ltd 光触媒素子
JP2010184195A (ja) * 2009-02-12 2010-08-26 Stanley Electric Co Ltd 二酸化炭素還元装置
JP2010264437A (ja) * 2009-05-14 2010-11-25 Skypebble Associates Llc 回折格子支援自浄性材料
JP2012115834A (ja) * 2012-01-18 2012-06-21 Stanley Electric Co Ltd 光触媒素子

Similar Documents

Publication Publication Date Title
Hosseinpour et al. Chemisorbed and physisorbed water at the TiO2/water interface
Wu et al. TiO2 metasurfaces: From visible planar photonics to photochemistry
Wilson et al. X-ray spectroscopy of liquid water microjets
Nelson et al. Near-infrared surface plasmon resonance measurements of ultrathin films. 1. Angle shift and SPR imaging experiments
JP4684507B2 (ja) センサープラットホームを使用する方法
Daly et al. Coverage-dependent orientation of lysozyme adsorbed on silica
Adato et al. Engineered absorption enhancement and induced transparency in coupled molecular and plasmonic resonator systems
Chen et al. Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy
US9023658B2 (en) Acoustic concentration method and device and a reaction method
Petek et al. Ultrafast interfacial proton-coupled electron transfer
Nakamura et al. In situ observation of the photoenhanced adsorption of water on TiO2 films by surface-enhanced IR absorption spectroscopy
Steinberg et al. Phase-space beam summation for time-harmonic radiation from large apertures
Isobe et al. Background-free deep imaging by spatial overlap modulation nonlinear optical microscopy
JPH105597A (ja) 触媒の高効率化方法
Bosomtwi et al. Lattice effect for enhanced hot-electron generation in nanoelectrodes
CN104023755B (zh) 光催化净化介质
Bradshaw et al. Broadband coupling into a single-mode, electroactive integrated optical waveguide for spectroelectrochemical analysis of surface-confined redox couples
Cai et al. Theoretical and experimental study of a highly sensitive SPR biosensor based on Au grating and Au film coupling structure
JP2010184195A (ja) 二酸化炭素還元装置
Chowdhury et al. Large-area microfluidic sensors based on flat-optics Au nanostripe metasurfaces
Shi et al. Progressive self-boosting anapole-enhanced deep-ultraviolet third harmonic during few-cycle laser radiation
JP2014235115A (ja) マイクロチップおよびマイクロチップにおける金属薄膜の成膜方法
Abdelraouf et al. Modal phase-matched bound states in the continuum for enhancing third harmonic generation of deep ultraviolet emission
Rupper et al. Investigation of ethyl peroxy radical conformers via cavity ringdown spectroscopy of the Ã-X̃ electronic transition
Koner et al. A path towards single molecule vibrational strong coupling in a Fabry–Pérot microcavity