JPH1053834A - Steel for high strength bolt and high strength bolt - Google Patents

Steel for high strength bolt and high strength bolt

Info

Publication number
JPH1053834A
JPH1053834A JP20741596A JP20741596A JPH1053834A JP H1053834 A JPH1053834 A JP H1053834A JP 20741596 A JP20741596 A JP 20741596A JP 20741596 A JP20741596 A JP 20741596A JP H1053834 A JPH1053834 A JP H1053834A
Authority
JP
Japan
Prior art keywords
steel
excluding
less
quenching
grain size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20741596A
Other languages
Japanese (ja)
Other versions
JP3507626B2 (en
Inventor
Shiyuugorou Adachi
周悟郎 足立
Yoshinori Yamamoto
義則 山本
Koji Kaneko
晃司 金子
Yuuichi Namimura
裕一 並村
Toyofumi Hasegawa
豊文 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP20741596A priority Critical patent/JP3507626B2/en
Publication of JPH1053834A publication Critical patent/JPH1053834A/en
Application granted granted Critical
Publication of JP3507626B2 publication Critical patent/JP3507626B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a steel for a bolt useful for producing a high strength bolt contg. fine crystal grains in which the austenite grain size number is regulated to >=5 and having >785N/mm<2> tensile strength. SOLUTION: This steel has chemical components contg., by mass, 0.008 to 0.004% B, <=0.4% (not including 0%) C, 0.025 to 0.06% Ti, <=0.006% (not including 0%) N, and the balance Fe with inevitable impurities and also satisfying the inequality of [the content of Ti compounds other than TiN/FGc<1/2> ]×1,000>=3 (in the inequality, FGc denotes the ferrite grain size in the case the steel is subjected to hot rolling).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車や各種産業
機械等に用いられるボルト用鋼および該ボルト用鋼を用
いて得られるボルトに関する。詳細には、引張強度が7
85N/mm2 を超えると共に、オーステナイト結晶粒
度番号が5以上であるボルトを製造するのに有用な高強
度ボルト用鋼に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to steel for bolts used in automobiles and various industrial machines, and to a bolt obtained by using the steel for bolts. Specifically, the tensile strength is 7
The present invention relates to a high-strength bolt steel that is useful for producing a bolt having an austenite crystal grain size number of 5 or more while having a strength exceeding 85 N / mm 2 .

【0002】[0002]

【従来の技術】従来、引張強度が785〜1175N/
mm2 の高強度ボルトを製造するには、SCM435に
代表される低合金鋼が使用されていたが、近年における
コスト低減化の要請に伴い、B添加による焼入性向上効
果を利用したB添加鋼が用いられつつある。しかしなが
らB添加鋼は、焼入れ加熱時にオーステナイトの結晶粒
度が粗大化しやすいという問題がある。特に、冷間加工
を施した材料については、焼入れ・焼鈍時にオーステナ
イト結晶粒度が粗大化しやすくなる。そこで、オーステ
ナイト結晶粒の粗大化を抑制することを目的として、特
に焼入れ加熱時、或いは焼入れ加熱前における加熱速度
を制御した種々の方法が提案されている。
2. Description of the Related Art Conventionally, a tensile strength of 785 to 1175 N /
In order to manufacture high-strength bolts of mm 2 , low alloy steels represented by SCM435 have been used. However, with the recent demand for cost reduction, B-addition utilizing the hardenability improvement effect of B-addition has been used. Steel is being used. However, the B-added steel has a problem that the grain size of austenite tends to become coarse during quenching and heating. In particular, for a material that has been subjected to cold working, the austenite crystal grain size tends to become coarse during quenching and annealing. For the purpose of suppressing coarsening of austenite crystal grains, various methods have been proposed in which the heating rate is controlled particularly during quenching heating or before quenching heating.

【0003】例えば特開平57−79116号は焼入れ
時の加熱速度を3〜50℃/secに制御する方法であ
るが、通常のボルト焼入れ時の加熱速度(0.1〜0.
8℃/sec)とは異なり急速加熱処理を施す必要があ
り、適用範囲が限定されてしまうという問題がある。
For example, Japanese Patent Application Laid-Open No. 57-79116 discloses a method of controlling the heating rate at the time of quenching to 3 to 50 ° C./sec.
(8 ° C./sec), it is necessary to perform a rapid heating treatment, and there is a problem that the applicable range is limited.

【0004】また特公昭56−13768号では、焼入
れ時の加熱速度を3℃/min以下と、通常の焼入加熱
速度に比べて非常に遅くする方法であるが、加熱手段は
誘導加熱法を前提としており、通常のボルト焼入れ・焼
鈍処理で繁用される電気炉加熱は利用しにくいという不
都合がある。更にこの方法によれば、オーステナイトの
結晶粒度を調整するために、鋼の焼入れ処理前に熱間加
工または950℃以上1000℃以下の加熱処理を行う
ことが前提となっており、工程が煩雑となりコストの上
昇を招く等の問題も伴っている。
Japanese Patent Publication No. 56-13768 discloses a method in which the heating rate during quenching is set to 3 ° C./min or less, which is much lower than the normal quenching heating rate. As a premise, there is an inconvenience that electric furnace heating often used in ordinary bolt quenching and annealing treatment is difficult to use. Furthermore, according to this method, in order to adjust the grain size of austenite, it is premised that hot working or heat treatment at 950 ° C. or more and 1000 ° C. or less is performed before quenching the steel, which makes the process complicated. There are also problems such as an increase in cost.

【0005】更に、特開平3−47918号には、Ti
Nを微細析出させることによって焼入れ時のオーステナ
イト結晶粒の粗大化を防止する方法が開示されている。
即ち、連続鋳造時にTiNを微細析出させると共に、そ
の後の圧延工程においても、TiNの凝集を阻止すると
いう観点から従来の加熱温度(1000〜1250℃)
よりも低い加熱温度(800〜950℃)で加熱処理す
る方法である。しかしながら、この方法では鋳造時の凝
固速度を速くする必要があり、従って、ブルーム連続鋳
造や造塊鋳造等の如く凝固速度の遅い鋳造方法を採用し
た場合には、オーステナイト結晶粒度の粗大化を防止す
ることはできない。
Further, Japanese Patent Application Laid-Open No. 3-47918 discloses that Ti
A method for preventing coarsening of austenite crystal grains during quenching by precipitating N finely is disclosed.
That is, the conventional heating temperature (1000 to 1250 ° C.) is used from the viewpoint of precipitating TiN finely during continuous casting and also preventing aggregation of TiN in the subsequent rolling step.
This is a method of performing heat treatment at a lower heating temperature (800 to 950 ° C.). However, in this method, it is necessary to increase the solidification rate during casting, and therefore, when a casting method having a low solidification rate such as bloom continuous casting or ingot casting is employed, coarsening of the austenite grain size is prevented. I can't.

【0006】[0006]

【発明が解決しようとする課題】本発明はこうした事情
に着目してなされたものであって、その目的は、焼入れ
加熱前における加熱速度や加熱温度等を制御しなくと
も、オーステナイト結晶粒度番号が5以上の微細結晶粒
を含有し且つ引張強度が785N/mm2を超える高強
度ボルトを製造するのに有用な高強度ボルト用鋼を提供
することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and an object of the present invention is to control the austenite grain size number without controlling the heating rate and heating temperature before quenching heating. An object of the present invention is to provide a high-strength bolt steel containing five or more fine crystal grains and having a tensile strength exceeding 785 N / mm 2 and useful for producing a high-strength bolt.

【0007】[0007]

【課題を解決するための手段】上記目的を達成し得た本
発明の高強度ボルト用鋼とは、鋼の化学成分がB:0.00
08〜0.004%(質量%の意味、以下同じ),C:0.4%以
下(0%を含まない),Ti:0.025 〜0.06%,N:0.
006 %以下(0%を含まない),残部:Feおよび不可
避不純物であると共に、[TiNを除くTi化合物の合
計量/FGc1/2]×1000で規定されるG値(FGcは
鋼を熱間圧延したときのフェライト結晶粒度を意味す
る。以下、単にG値と呼ぶ場合がある)が下式(1)ま
たは(2)を満足するところに要旨を有するものであ
る。
The steel for high-strength bolts of the present invention, which has achieved the above object, has a chemical composition of B: 0.00
08 to 0.004% (meaning by mass%, the same applies hereinafter), C: 0.4% or less (excluding 0%), Ti: 0.025 to 0.06%, N: 0.
006% or less (excluding 0%), balance: Fe and unavoidable impurities, and a G value defined by [total amount of Ti compounds excluding TiN / FGc 1/2 ] × 1000 (FGc is heat (Hereinafter, simply referred to as a G value) when satisfying the following expression (1) or (2).

【0008】 G値≧(Y−775)/70 … (1) {式中、Y:焼入温度(℃)を意味する} G値≧3 … (2) 上記鋼において、更にSi:0.35 %以下(0%を含ま
ない),Mn:2%以下(0%を含まない),Al:0.1
%以下(0%を含まない)の少なくとも一種を含有す
るものは本発明の好ましい実施態様である。
G value ≧ (Y−775) / 70 (1) {where, Y: quenching temperature (° C.)} G value ≧ 3 (2) In the above steel, Si: 0.35% Or less (excluding 0%), Mn: 2% or less (excluding 0%), Al: 0.1
% Or less (not including 0%) is a preferred embodiment of the present invention.

【0009】また、上記ボルト用鋼を用いて得られる高
強度ボルトも本発明の範囲内に包含される。
[0009] High-strength bolts obtained using the above-mentioned bolt steel are also included in the scope of the present invention.

【0010】[0010]

【発明の実施の形態】本発明者らは、高強度ボルト用鋼
として有用なB添加鋼における上述した問題点、即ち焼
入れ時におけるオーステナイト結晶粒の粗大化を防止す
ることを目的として鋭意検討を行った。その結果、オ
ーステナイト結晶粒の粗大化を防止するには、TiNを
除くTi化合物を微細析出させることが有効であるこ
と、及びオーステナイト結晶粒の粗大化は鋼材のフェ
ライト結晶粒にも依存することが分かった。従って、鋼
材のフェライト結晶粒度および焼入温度に見合った量
の、TiNを除くTi化合物を微細析出させることがで
きれば上記課題を解決し得ることを見出し、本発明を完
成したのである。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have conducted intensive studies for the purpose of preventing the above-mentioned problems in the B-added steel useful as high-strength steel for bolts, that is, to prevent austenite crystal grains from becoming coarse during quenching. went. As a result, in order to prevent austenite crystal grains from coarsening, it is effective to finely precipitate Ti compounds other than TiN, and that austenite crystal grains are also dependent on ferrite crystal grains of steel. Do you get it. Therefore, the present inventors have found that the above-mentioned problems can be solved if a Ti compound other than TiN can be finely precipitated in an amount corresponding to the ferrite crystal grain size and the quenching temperature of the steel material, and the present invention has been completed.

【0011】以下、本発明を特徴付ける各要件について
説明する。
Hereinafter, each requirement that characterizes the present invention will be described.

【0012】C:0.4%以下(0%を含まない) Cは鋼の焼入性と強度確保のために有用な元素である
が、過剰に添加すると;焼入れ後の靭性が低下すると共
に、割れが発生する等の問題を招くので、その上限を0.
4%とした。好ましい上限値は0.35%である。また、上
記作用を有効に発揮させるには、0.15%以上の添加が好
ましい。
C: 0.4% or less (excluding 0%) C is an element useful for securing the hardenability and strength of steel, but if added excessively; the toughness after quenching is reduced and cracking occurs. Cause an issue such as the occurrence of
4%. A preferred upper limit is 0.35%. In order to effectively exert the above-mentioned effects, it is preferable to add 0.15% or more.

【0013】Ti:0.025 〜0.06% Tiは鋼中のNをTiNの形で固定し、B添加による焼
入効果を発揮させるのに非常に有用である。特に、Ti
化合物の形成は焼入れ後のオーステナイト結晶粒の粗大
化防止に非常に有用である。この様な作用を有効に発揮
させるには0.025%以上の添加が必要である。好ましい
下限値は0.030%であり、より好ましいのは0.040%であ
る。しかしながら、0.06%以上添加してもその効果は飽
和するので、その上限を0.06%とした。
Ti: 0.025-0.06% Ti is very useful for fixing N in steel in the form of TiN and exerting a quenching effect by adding B. In particular, Ti
The formation of the compound is very useful for preventing coarsening of austenite crystal grains after quenching. To exert such an effect effectively, it is necessary to add 0.025% or more. A preferred lower limit is 0.030%, more preferably 0.040%. However, the effect is saturated even if 0.06% or more is added, so the upper limit is set to 0.06%.

【0014】N:0.006 %以下(0%を含まない) Nは、AlNやTiNの形成によって焼入れ後のオース
テナイト結晶粒の粗大か防止に寄与する元素である。し
かしながら、過剰に添加するとAlやTiの添加によっ
ても全てを捕捉することはできず、余剰のNがBNを形
成するため、Bによる焼入性を確保できないと共に、焼
入れ後のオーステナイト結晶粒の粗大化防止に大きく寄
与するTiNを除くTi化合物の析出量が少なくなるた
め、その上限値を0.006%にした。好ましい上限値は0.0
050%であり、より好ましいのは0.0040%である。
N: 0.006% or less (excluding 0%) N is an element contributing to the prevention of austenite crystal grains after quenching due to the formation of AlN or TiN. However, if added excessively, not all can be trapped even by the addition of Al or Ti, and since excess N forms BN, hardenability by B cannot be ensured and coarse austenite crystal grains after quenching. Since the amount of precipitation of Ti compounds other than TiN, which greatly contributes to prevention of oxidization, is reduced, the upper limit is set to 0.006%. The preferred upper limit is 0.0
050%, more preferably 0.0040%.

【0015】B:0.0008〜0.004% Bは粒界に偏析することにより鋼の焼入性を向上させる
元素である。その効果を有効に発揮させるためには0.00
08%以上の添加が必要である。好ましい下限値は0.0010
%であり、より好ましいのは0.0015%である。しかしな
がら過剰に添加すると、かえって延性を阻害するので、
その上限を0.004%とした。好ましい上限値は0.0035%
であり、より好ましいのは0.0030%である。
B: 0.0008 to 0.004% B is an element that segregates at the grain boundaries to improve the hardenability of steel. 0.00 for effective use
08% or more must be added. The preferred lower limit is 0.0010
%, More preferably 0.0015%. However, if added in excess, it will rather inhibit ductility,
The upper limit was made 0.004%. Preferred upper limit is 0.0035%
And more preferably 0.0030%.

【0016】本発明の鋼は、上記元素を必須成分とし、
残部:Feおよび不可避不純物からなるが、その他に、
以下の選択的許容成分を少なくとも1種積極的に添加す
ることができる。
The steel of the present invention contains the above elements as essential components,
The balance is composed of Fe and unavoidable impurities.
At least one of the following optional components can be positively added.

【0017】Si:0.35 %以下(0%を含まない) Siは脱酸剤として有用な元素であり、好ましい下限値
は0.035%である。しかしながら、その添加量が増大す
るにつれて冷間鍛造性が低下するので、その上限を0.35
%以下とした。好ましい上限値は0.030%であり、より
好ましいのは0.025%である。
Si: 0.35% or less (excluding 0%) Si is an element useful as a deoxidizing agent, and a preferable lower limit is 0.035%. However, as the addition amount increases, the cold forgeability decreases, so the upper limit is 0.35.
% Or less. A preferred upper limit is 0.030%, more preferably 0.025%.

【0018】Mn:2 %以下(0%を含まない) Mnは焼入性向上元素として使用され、高強度を付与す
るのに有用である。しかしながら、Mnの添加量が多す
ぎると、圧延後に過冷組織が生成し、冷間鍛造性が低下
する他、ボルトの寿命低下をもたらす。好ましい上限値
は1.5%であり、より好ましいのは1.2%である。
Mn: 2% or less (excluding 0%) Mn is used as a hardenability improving element and is useful for imparting high strength. However, if the added amount of Mn is too large, a supercooled structure is generated after rolling, and the cold forgeability is reduced, and the life of the bolt is reduced. A preferred upper limit is 1.5%, more preferably 1.2%.

【0019】Al:0.1 %以下(0%を含まない) Alは脱酸剤として使用され、鋼中のNを固定してAl
Nを形成して結晶粒を微細化することによって頭飛び特
性の向上に寄与する元素である。この様な作用を有効に
発揮させるには0.005%以上の添加が好ましい。より好
ましい下限値は0.010%であり、更により好ましいのは
0.020%である。しかしながら多過ぎると酸化物系介在
物が生成することによって冷間鍛造性が低下するので、
その上限を0.1%とした。好ましい上限値は0.08%であ
り、より好ましいのは0.06%である。
Al: 0.1% or less (excluding 0%) Al is used as a deoxidizing agent and fixes N in steel to fix Al.
It is an element that contributes to the improvement of head jump characteristics by forming N to refine crystal grains. In order to effectively exhibit such an effect, it is preferable to add 0.005% or more. A more preferred lower limit is 0.010%, and an even more preferred lower limit is
0.020%. However, when the content is too large, the cold forgeability decreases due to generation of oxide-based inclusions.
The upper limit was set to 0.1%. A preferred upper limit is 0.08%, more preferably 0.06%.

【0020】その他、必要に応じてCr:2.0%以下お
よび/またはMo:1.0 %以下(これらの元素は全て0
%を含まない)を添加することは、焼入性を改善して強
度を高めるという観点から非常に有用である。
In addition, if necessary, Cr: 2.0% or less and / or Mo: 1.0% or less (all of these elements are 0% or less).
%) Is very useful from the viewpoint of improving hardenability and increasing strength.

【0021】更に、本発明の高強度ボルト用鋼は、本発
明で規定する前記G値について、上記式(1)または
(2)を満足しなければならない。
Further, the steel for high-strength bolts of the present invention must satisfy the above formula (1) or (2) for the G value specified in the present invention.

【0022】上述した様に、焼入れ後のオーステナイト
結晶粒の粗大化はTiNを除くTi化合物量および鋼材
のフェライト結晶粒度に依存し、焼入れ後のオーステナ
イト結晶粒の粗大化を防止するには、上記G値が式
(1)または(2)の関係を満足することが必要であ
る。尚、本発明において「TiNを除くTi化合物」と
は、例えばTiC、Ti422、TiS等のTi化合
物を意味する。
As described above, the coarsening of the austenite crystal grains after quenching depends on the amount of the Ti compound excluding TiN and the ferrite crystal grain size of the steel material. It is necessary that the G value satisfies the relationship of equation (1) or (2). In the present invention, the “Ti compound excluding TiN” means a Ti compound such as TiC, Ti 4 C 2 S 2 , and TiS.

【0023】このうち式(1)は、G値を焼入温度
(Y)との関係で規定したものである。図1に、後記す
る実施例において、G値や焼入温度(Y)を種々変化さ
せた場合におけるM10ボルトのオーステナイト結晶粒
粗大化の有無をグラフ化したものを示す。図中、GGと
はオーステナイト結晶粒の粗大化を示す。同図から明ら
かな様に、式(1)の関係を満たすものは、焼入温度
(Y)を変化させてもオーステナイト結晶粒の粗大化は
全く生じないことが分かる。好ましい焼入温度は800
〜1000℃であり、より好ましくは850〜940℃
である。
Equation (1) defines the G value in relation to the quenching temperature (Y). FIG. 1 is a graph showing the presence or absence of austenite crystal grain coarsening of M10 volts when the G value and the quenching temperature (Y) are variously changed in Examples described later. In the figure, GG indicates coarsening of austenite crystal grains. As is clear from the figure, in the case of the one satisfying the relationship of the formula (1), even if the quenching temperature (Y) is changed, the austenite crystal grains are not coarsened at all. The preferred quenching temperature is 800
~ 1000 ° C, more preferably 850-940 ° C
It is.

【0024】一方、式(2)は、焼入温度(Y)とは関
係なくG値のみによって規定されるものである。即ち、
G値が3以上である鋼を用いれば、その後の製造条件に
拘わらず、焼入れ加熱前における加熱速度や加熱温度等
を制御しなくとも、オーステナイト結晶粒の粗大化は生
じないのである。G値の好ましい下限値は4である。
On the other hand, the expression (2) is defined only by the G value regardless of the quenching temperature (Y). That is,
If steel having a G value of 3 or more is used, coarsening of austenite crystal grains does not occur without controlling the heating speed, heating temperature, and the like before quenching heating, regardless of the subsequent manufacturing conditions. A preferred lower limit of the G value is 4.

【0025】尚、その上限値は特に規定されないが、T
i化合物が多量に生成すると鋼の清浄化が低下する等の
点を考慮すれば、6以下が好ましい。
Although the upper limit is not specified, T
Considering, for example, that if a large amount of the i-compound is produced, the cleaning of the steel is reduced, it is preferably 6 or less.

【0026】本発明のボルト用鋼は、この様に鋼の化学
組成およびG値を制御した点に特徴があり、この様な鋼
を用いれば、オーステナイト結晶粒度番号が5以上の高
強度ボルトを効率よく製造することができる。従って、
本発明鋼を用いてボルトを製造するに当たっては、鋼片
の加熱温度や加熱処理後の焼入れ・焼鈍条件、ボルト製
造時における冷間加工条件、溶製条件等については特に
制御されず、本発明の作用を損なわない範囲で、適宜好
ましい条件を選択することができる。
The steel for bolts according to the present invention is characterized in that the chemical composition and the G value of the steel are controlled as described above. If such steel is used, a high-strength bolt having an austenite grain size number of 5 or more can be obtained. It can be manufactured efficiently. Therefore,
In producing a bolt using the steel of the present invention, the heating temperature of the steel slab, the quenching and annealing conditions after the heat treatment, the cold working conditions during the production of the bolt, the melting conditions, etc. are not particularly controlled. Preferred conditions can be appropriately selected within a range that does not impair the effect of the above.

【0027】以下実施例を挙げて本発明をさらに詳細に
説明するが、下記実施例は本発明を制限するものではな
く、前・後記の趣旨を逸脱しない範囲で変更実施するこ
とは全て本発明の技術的範囲に包含される。
Hereinafter, the present invention will be described in more detail with reference to examples. However, the following examples do not limit the present invention, and all changes and implementations without departing from the spirit of the present invention will be described. Within the technical scope of

【0028】[0028]

【実施例】【Example】

実施例1 表1に示す化学成分を有する各種鋼を連続鋳造法(30
0×430mmブルーム連鋳機)または造塊法にて溶製
した後、圧延加熱温度および圧延仕上温度を変化させる
ことにより10.3mmφの線材に熱間圧延した。後記
する表2中、圧延加熱条件における低温加熱とは約85
0℃の加熱を、高温加熱とは約1050℃の加熱を夫々
意味し、一方、圧延仕上温度条件における低温仕上とは
約750℃の仕上温度を、高温仕上とは約900℃の仕
上温度で処理することを夫々意味する。
Example 1 Various steels having the chemical components shown in Table 1 were continuously cast (30
(0 × 430 mm bloom continuous caster) or ingot casting method, and then hot-rolled into a 10.3 mmφ wire rod by changing the rolling heating temperature and the rolling finishing temperature. In Table 2 described below, low-temperature heating under rolling heating conditions is about 85
The heating at 0 ° C. and the high-temperature heating mean heating at about 1050 ° C., respectively, while the low-temperature finishing under the rolling finishing temperature condition has a finishing temperature of about 750 ° C. and the high-temperature finishing has a finishing temperature of about 900 ° C. Means to process.

【0029】この線材のフェライト結晶粒度およびTi
Nを除くTi化合物の合計量を測定した後、9.0mm
φに冷間伸線し、冷間加工を施すことによりM10ボル
トを作製した。このM10ボルトを更に850〜940
℃で加熱した後、焼入処理を施し、オーステナイト結晶
粒の粗大化の有無を調べた。
The ferrite grain size and Ti
After measuring the total amount of Ti compounds excluding N, 9.0 mm
An M10 bolt was prepared by cold drawing to φ and performing cold working. This M10 bolt is further increased to 850 to 940
After heating at ℃, quenching treatment was performed, and the presence or absence of coarsening of austenite crystal grains was examined.

【0030】尚、10.3mmφ線材のフェライト結晶
粒度およびTiNを除くTi化合物量、並びにM10ボ
ルトのオーステナイト結晶粒度は、夫々、下記の方法で
測定した。
The ferrite grain size and the amount of the Ti compound excluding TiN of the 10.3 mmφ wire and the austenite grain size of M10 volts were measured by the following methods, respectively.

【0031】[フェライト結晶粒度]JIS G 05
52に準拠して測定した。
[Ferrite grain size] JIS G05
52.

【0032】[TiNを除くTi化合物量]ドリル
(5.0mmφ)を用い、10.3mmφの線材から切
粉を採取し、以下の手順によりTi化合物を組成別に分
離して分析した。
[Amount of Ti Compound Excluding TiN] Using a drill (5.0 mmφ), a chip was collected from a 10.3 mmφ wire, and the Ti compound was separated according to composition according to the following procedure and analyzed.

【0033】上記切粉を10%AA系電解法および4
%MS系電解法にて溶解し、0.1μmのフィルターを
用いて残渣を抽出した(1次分離)。
The above-mentioned chips were subjected to a 10% AA electrolysis method and
% MS-based electrolysis, and the residue was extracted using a 0.1 μm filter (primary separation).

【0034】1次分離で得られた残渣をHCl(HC
l:H2O=1:1)で溶解した後、超音波処理を行
い、0.1μmのフィルターを用いて残渣を抽出した
(2次分離)。
The residue obtained in the first separation is separated from HCl (HC
1: H 2 O = 1: 1), followed by sonication, and the residue was extracted using a 0.1 μm filter (secondary separation).

【0035】2次分離で得られた残渣を、5%Br2
−メタノールと14%I2−メタノールの混液中に加
え、60℃×5minの条件で溶解した後、超音波処理
を行い、0.1μmのフィルターを用いて残渣を抽出し
た(3次分離)。
The residue obtained in the second separation is separated from 5% Br 2
-Methanol and 14% I 2 -Methanol were added, and dissolved under the conditions of 60 ° C. × 5 min, followed by ultrasonic treatment, and the residue was extracted using a 0.1 μm filter (third separation).

【0036】3次分離で得られた溶液を蒸発乾固させ
た後、HCl(HCl:H2O=1:1)とH22の混
液で溶解してからICP法でTiSを定量した。……
(1) また、溶液については灼熱・灰化した後、Na23及び
Na247で融解し、更にHCl,H22及びH2Oの
混液で溶解してから、ICP分析法で[Ti+Ti42
2+TiC]を分析した。……(2) 上記(1)+(2)を、TiNを除くTi化合物量とし
て算出した。
After evaporating the solution obtained by the tertiary separation to dryness, it was dissolved in a mixed solution of HCl (HCl: H 2 O = 1: 1) and H 2 O 2 , and TiS was quantified by the ICP method. . ......
(1) Further, after the solution was scorched and incinerated, it was melted with Na 2 O 3 and Na 2 B 4 O 7 , further dissolved with a mixed solution of HCl, H 2 O 2 and H 2 O, and then subjected to ICP. [Ti + Ti 4 C 2
[S 2 + TiC] was analyzed. (2) The above (1) + (2) was calculated as the amount of Ti compound excluding TiN.

【0037】[オーステナイト結晶粒度]JIS G
0551に準拠して測定し、オーステナイト結晶粒度N
o.が5番未満か、或いはオーステナイト結晶粒度が3番
以上離れたものをオーステナイト結晶粒の粗大化発生有
りと判定した。
[Austenite grain size] JIS G
Austenitic grain size N
When o. was less than 5 or the austenite grain size was 3 or more away, it was judged that the austenite grains were coarsened.

【0038】各鋼種の圧延加熱条件・圧延仕上条件、1
0.3mmφ線材のフェライト結晶粒度、TiNを除く
Ti化合物量およびG値を表2に併記する。更に、図1
には、G値や焼入温度を種々変化させた場合におけるM
10ボルトのオーステナイト結晶粒の粗大化状況をグラ
フ化して表す。
Rolling heating conditions and rolling finishing conditions for each steel type, 1
Table 2 also shows the ferrite crystal grain size, the amount of Ti compound excluding TiN, and the G value of the 0.3 mmφ wire. Further, FIG.
In the case where G value and quenching temperature are variously changed, M
The graph shows the state of coarsening of austenite crystal grains of 10 volts.

【0039】[0039]

【表1】 [Table 1]

【0040】[0040]

【表2】 [Table 2]

【0041】表および図の結果より次の様に考察するこ
とができる。
The following can be considered from the results of the tables and figures.

【0042】No.1〜8,11,12,17,18…本
発明で規定する化学組成およびG値を満足する鋼を用い
た例であり、連続鋳造法、造塊法のいずれの溶製法を採
用しようとも、焼入加熱温度(圧延加熱条件、圧延仕上
条件)に関係なく、オーステナイト結晶粒の粗大化は見
られなかった。
Nos. 1 to 8, 11, 12, 17, 18 ... These are examples using steel satisfying the chemical composition and G value specified in the present invention. No austenitic crystal grains were coarsened regardless of the quenching heating temperature (rolling heating conditions and rolling finishing conditions).

【0043】No.9,10,15,16…化学組成は本
発明の要件を満足しており、式(1)を満足する範囲内
ではオーステナイト結晶粒の粗大化は認められなかっ
た。
No. 9, 10, 15, 16 ... The chemical composition satisfies the requirements of the present invention, and no coarsening of austenite crystal grains was observed within the range satisfying the formula (1).

【0044】No.13,14…Ti量が少なく且つG値
が規定外の鋼を用いた例であり、焼入加熱温度を種々変
えてもオーステナイト結晶粒の粗大化が見られた。
No. 13, 14,... This is an example of using a steel with a small Ti content and a G value outside the specified range, and coarsening of austenite crystal grains was observed even when the quenching heating temperature was variously changed.

【0045】No.17,18…Ti量の多い鋼を用いた
例であり、オーステナイト結晶粒の粗大化効果が飽和し
ている。
Nos. 17, 18,... Are examples using steel with a large amount of Ti, and the effect of coarsening austenite crystal grains is saturated.

【0046】[0046]

【発明の効果】本発明鋼は上記の様に構成されているの
で、焼入れ加熱前における加熱速度や加熱温度等を制御
しなくとも、オーステナイト結晶粒度番号が5以上の微
細結晶粒を含有し、且つ引張強度が785N/mm2
超える高強度ボルトを効率よく製造することができる。
Since the steel of the present invention is constituted as described above, even if the heating rate and the heating temperature before quenching and heating are not controlled, the steel contains fine crystal grains having an austenite grain size number of 5 or more, In addition, a high-strength bolt having a tensile strength exceeding 785 N / mm 2 can be efficiently manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】G値と焼入温度を種々変化させた場合における
ボルトのオーステナイト結晶粒の粗大化状況を示すグラ
フ。
FIG. 1 is a graph showing a state of coarsening of austenite crystal grains of a bolt when G value and quenching temperature are variously changed.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 並村 裕一 神戸市灘区灘浜東町2番地 株式会社神戸 製鋼所神戸製鉄所内 (72)発明者 長谷川 豊文 神戸市灘区灘浜東町2番地 株式会社神戸 製鋼所神戸製鉄所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yuichi Namimura 2nd Nadahama Higashicho, Nada-ku, Kobe Kobe Steel Works, Ltd. Inside Kobe Works (72) Inventor Toyofumi Hasegawa 2nd Nadahama-Higashicho, Nada-ku, Kobe Kobe Steel, Ltd. In Kobe Works

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 鋼の化学成分が B :0.0008〜0.004%(質量%の意味、以下同じ), C :0.4%以下(0%を含まない), Ti:0.025 〜0.06%, N :0.006 %以下(0%を含まない), 残部:Feおよび不可避不純物 であると共に、下式(1)を満足することを特徴とする
高強度ボルト用鋼。 [TiNを除くTi化合物の合計量/FGc1/2]×1000 ≧(Y−775)/70 …… (1) (式中、FGc:鋼を熱間圧延したときのフェライト結
晶粒度,Y:焼入温度(℃)を夫々意味する)
1. The chemical composition of steel is B: 0.0008 to 0.004% (meaning by mass%, the same applies hereinafter), C: 0.4% or less (excluding 0%), Ti: 0.025 to 0.06%, N: 0.006% The following (excluding 0%), balance: Fe and inevitable impurities, and satisfy the following formula (1). [Total amount of Ti compounds excluding TiN / FGc 1/2 ] × 1000 ≧ (Y−775) / 70 (1) (wherein, FGc: ferrite grain size when steel is hot-rolled, Y: Quenching temperature (℃) means each)
【請求項2】 鋼の化学成分が B :0.0008〜0.004%, C :0.4%以下(0%を含まない), Ti:0.025 〜0.06%, N :0.006 %以下(0%を含まない), 残部:Feおよび不可避不純物 であると共に、下式(2)を満足することを特徴とする
高強度ボルト用鋼。 [TiNを除くTi化合物の合計量/FGc1/2]×1000 ≧3 …… (2) (式中、FGcは前と同じ意味)
2. The chemical composition of steel is B: 0.0008 to 0.004%, C: 0.4% or less (excluding 0%), Ti: 0.025 to 0.06%, N: 0.006% or less (excluding 0%), The balance: Fe and unavoidable impurities, and a high-strength bolt steel satisfying the following expression (2). [Total amount of Ti compounds excluding TiN / FGc 1/2 ] × 1000 ≧ 3 (2) (in the formula, FGc has the same meaning as before)
【請求項3】 前記鋼が、更に Si:0.35 %以下(0%を含まない), Mn:2 %以下(0%を含まない), Al:0.1 %以下(0%を含まない) の少なくとも一種を含有するものである請求項1または
2に記載の高強度ボルト用鋼。
3. The steel further comprises at least: Si: 0.35% or less (excluding 0%), Mn: 2% or less (excluding 0%), Al: 0.1% or less (excluding 0%). The high-strength steel for bolts according to claim 1, wherein the steel contains one kind.
【請求項4】 請求項1〜3のいずれかに記載のボルト
用鋼を用いて得られる高強度ボルト。
4. A high-strength bolt obtained by using the steel for bolts according to claim 1.
JP20741596A 1996-08-06 1996-08-06 Steel for high strength bolts and high strength bolts Expired - Lifetime JP3507626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20741596A JP3507626B2 (en) 1996-08-06 1996-08-06 Steel for high strength bolts and high strength bolts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20741596A JP3507626B2 (en) 1996-08-06 1996-08-06 Steel for high strength bolts and high strength bolts

Publications (2)

Publication Number Publication Date
JPH1053834A true JPH1053834A (en) 1998-02-24
JP3507626B2 JP3507626B2 (en) 2004-03-15

Family

ID=16539379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20741596A Expired - Lifetime JP3507626B2 (en) 1996-08-06 1996-08-06 Steel for high strength bolts and high strength bolts

Country Status (1)

Country Link
JP (1) JP3507626B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004360022A (en) * 2003-06-05 2004-12-24 Nippon Steel Corp HIGH-STRENGTH Al-PLATED WIRE OR BOLT EXCELLENT IN DELAYED FRACTURE RESISTANCE AND METHOD FOR PRODUCING THE SAME
WO2015083599A1 (en) 2013-12-02 2015-06-11 株式会社神戸製鋼所 Steel wire for bolt, bolt, and production method therefor
WO2017094487A1 (en) 2015-12-04 2017-06-08 新日鐵住金株式会社 High-strength bolt
US10669604B2 (en) 2015-06-29 2020-06-02 Nippon Steel Corporation Bolt

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004360022A (en) * 2003-06-05 2004-12-24 Nippon Steel Corp HIGH-STRENGTH Al-PLATED WIRE OR BOLT EXCELLENT IN DELAYED FRACTURE RESISTANCE AND METHOD FOR PRODUCING THE SAME
WO2015083599A1 (en) 2013-12-02 2015-06-11 株式会社神戸製鋼所 Steel wire for bolt, bolt, and production method therefor
KR20160088372A (en) 2013-12-02 2016-07-25 가부시키가이샤 고베 세이코쇼 Steel wire for bolt, bolt, and production method therefor
US10669604B2 (en) 2015-06-29 2020-06-02 Nippon Steel Corporation Bolt
WO2017094487A1 (en) 2015-12-04 2017-06-08 新日鐵住金株式会社 High-strength bolt
KR20180082543A (en) 2015-12-04 2018-07-18 신닛테츠스미킨 카부시키카이샤 High strength bolt
US10487372B2 (en) 2015-12-04 2019-11-26 Nippon Steel Corporation High-strength bolt

Also Published As

Publication number Publication date
JP3507626B2 (en) 2004-03-15

Similar Documents

Publication Publication Date Title
JP3959667B2 (en) Manufacturing method of high strength steel pipe
JP2006291237A (en) Steel superior in cold-forgeability and machinability for machine structural use
JPH10306316A (en) Production of low yield ratio high tensile-strength steel excellent in low temperature toughness
JP3633515B2 (en) Hot-rolled steel sheet having excellent resistance to hydrogen-induced cracking and method for producing the same
JPH1053834A (en) Steel for high strength bolt and high strength bolt
JP2756534B2 (en) Manufacturing method for high ductility steel bars
JPH1171615A (en) Production of thick steel plate excellent in low temperature toughness
JP4223442B2 (en) Steel for plastic molds with excellent texture and machinability
JP2953919B2 (en) Slab for high toughness and high strength steel and method for producing rolled section steel using the slab
JPH11117020A (en) Production of heat resistant parts
JP4012497B2 (en) High strength steel with excellent weld heat affected zone toughness and method for producing the same
JPH11117019A (en) Production of heat resistant parts
JPH08325673A (en) Composite roll for rolling excellent in wear resistance, surface roughening resistance and the like
JPH075968B2 (en) Method for producing steel sheet excellent in hydrogen-induced cracking resistance, sulfide stress corrosion cracking resistance and low temperature toughness
JP2004315902A (en) High strength hot rolled steel sheet excellent in fatigue property of blanking edge face and stretch-flanging property, and its production method
JP3806958B2 (en) Manufacturing method of high-tensile hot-rolled steel sheet
JP3947353B2 (en) High-strength hot-rolled steel sheet excellent in hole expansibility and ductility and manufacturing method thereof
JP4264179B2 (en) Low carbon steel continuous cast slab with small austenite grains during heating
JP3507339B2 (en) Steel plate with excellent toughness in weld heat affected zone
JP2004018879A (en) Steel for cold forging superior in swarf treatment property
JP4357080B2 (en) Solidified grain refined steel and solidified grain refined austenitic stainless steel and their welded joints
JP2000054065A (en) High tensile strength steel material for welding, excellent in toughness in weld heat-affected zone, and its production
JP4564189B2 (en) High toughness non-tempered steel for hot forging
JPH05271770A (en) Manufacture of fine-grained thick steel plate
JP3948825B2 (en) Method for producing austenitic stainless steel sheet free from wrinkles during hot rolling

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081226

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091226

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091226

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101226

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101226

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131226

Year of fee payment: 10

EXPY Cancellation because of completion of term