JPH1053802A - High carbon iron-base alloy powder - Google Patents

High carbon iron-base alloy powder

Info

Publication number
JPH1053802A
JPH1053802A JP22742896A JP22742896A JPH1053802A JP H1053802 A JPH1053802 A JP H1053802A JP 22742896 A JP22742896 A JP 22742896A JP 22742896 A JP22742896 A JP 22742896A JP H1053802 A JPH1053802 A JP H1053802A
Authority
JP
Japan
Prior art keywords
weight
alloy powder
powder
ratio
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22742896A
Other languages
Japanese (ja)
Inventor
Yukio Okura
幸雄 大倉
Makoto Kawamura
誠 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP22742896A priority Critical patent/JPH1053802A/en
Publication of JPH1053802A publication Critical patent/JPH1053802A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a powder spheroidized so that diffusion and disappearance can be practically prevented at the time of powdering by means of water atomization, by setting ratio of manganese to silicon so that specific apparent density is obtained in a high carbon iron-base alloy powder. SOLUTION: This high carbon iron-base alloy powder is produced by powdering a molten iron-base alloy containing >=0.8wt.% carbon by water atomization. In this case, the ratio of manganese to silicon(Mn/Si) of the molten alloy is set at a value capable of giving >=3.0g/cm<3> apparent density (AD). It is preferable that this alloy powder has a composition cosisting of, by weight, 2.0-4.0% carbon, <=2.0% silicon, 0-25.0% nickel, 20.0-40.0% chromium, 10.0-40.0%, by tungsten equivalent, of molybdenum and tungsten, <=5.0% impurities, and the balance iron. Respective powder grains are spheroidized and minimal in diffusion during sintering and have excellent characteristics required for hard grains.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、粉末金属を所要
形状に圧縮成形した後に焼結して製造される焼結製品の
耐摩耗性等を向上させるために混合される硬質粒子に適
した高カーボン鉄合金粉末に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-quality powder suitable for hard particles mixed in order to improve the abrasion resistance and the like of a sintered product produced by compression-molding a powdered metal into a required shape. It relates to carbon iron alloy powder.

【0002】[0002]

【従来の技術】例えば自動車のバルブシートは、一般鋼
粉等の粉末金属を容器に充填した状態で圧縮成形した後
に焼結して製造されるが、その焼結時に内部に気孔を生
じて圧縮に対して変形し易く、また耐摩耗性が低いた
め、これを補うために硬質粒子として高カーボン鉄合金
粉末を所要の割合で混合することが行なわれている。
2. Description of the Related Art For example, a valve seat of an automobile is manufactured by compressing and molding powder metal such as general steel powder in a container and then sintering. In order to compensate for this, high-carbon iron alloy powder is mixed as a hard particle at a required ratio to compensate for the low wear resistance.

【0003】前記高カーボン鉄合金粉末は、溶融金属を
噴霧することにより微細な粉体となしたものであって、
例えば、水の圧力流体を噴射して逆円錘状に集中させた
焦点位置に、重力で落下する一条の溶融金属を通過させ
て、該溶融金属を微細に粉末化することにより、前記の
高カーボン鉄合金粉末が製造される。
[0003] The high carbon iron alloy powder is made into fine powder by spraying molten metal,
For example, by passing a stream of molten metal that falls by gravity to a focal position where water pressure fluid is injected and concentrated in an inverted cone shape, and finely pulverizing the molten metal, Carbon iron alloy powder is produced.

【0004】[0004]

【発明が解決しようとする課題】前記高カーボン鉄合金
粉末では、水噴霧法(水アトマイズ法)により粉末化され
た場合、図4(a),(b)の顕微鏡写真に示すように、各
粉末粒子にヒゲ状の突起が形成されたり、扁平形状が形
成される。このため、焼結中に硬質粒子が、混合された
一般鋼材粉へ拡散し易くなり、この結果、硬質粒子が消
滅したり変成したりして、硬質粒子としての機能を失っ
てしまうという問題があった。しかも、カーボン(C)の
高い粉末ほどこの傾向が大きくなっていた。
When the high carbon iron alloy powder is pulverized by a water atomization method (water atomization method), as shown in the micrographs of FIGS. A whisker-like projection or a flat shape is formed on the powder particles. For this reason, during sintering, the hard particles tend to diffuse into the mixed general steel powder, and as a result, the hard particles disappear or are altered, and the function as the hard particles is lost. there were. In addition, this tendency increased as the powder of carbon (C) became higher.

【0005】[0005]

【発明の目的】この発明は、従来の技術に内在している
前記欠点に鑑み、これを好適に解決するべく提案された
ものであって、水噴霧法による粉末化において拡散消滅
し難いより球状化した形状の高カーボン鉄合金粉末を提
供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned drawbacks inherent in the prior art, and has been proposed to solve the problem in a favorable manner. It is an object of the present invention to provide a high carbon iron alloy powder having a simplified shape.

【0006】[0006]

【課題を解決するための手段】前記課題を克服し、所期
の目的を達成するため、本発明に係る高カーボン鉄合金
粉末は、0.8重量%以上のカーボン(C)を含み、見かけ
密度(AD)が3.0g/cm3以上となるようマンガン−シリ
コン比(Mn/Si比)が設定されていることを特徴とする。
In order to overcome the above-mentioned problems and achieve the intended object, the high carbon iron alloy powder according to the present invention contains at least 0.8% by weight of carbon (C), The manganese-silicon ratio (Mn / Si ratio) is set so that the density (AD) is 3.0 g / cm 3 or more.

【0007】また前記目的を達成するため、本願の別の
発明に係る高カーボン鉄合金粉末は、カーボン(C)2.0
〜4.0重量%、シリコン(Si)2.0重量%以下、ニッケ
ル(Ni)0〜25.0重量%、クロム(Cr)20.0〜40.
0重量%、モリブデン(Mo)とタングステン(W)はタング
ステン当量で10.0〜40.0重量%以下、5.0重量
%以下の不純物を有し残部鉄の、見かけ密度(AD)が3.
0g/cm3以上となるようマンガン−シリコン比(Mn/Si
比)が設定されていることを特徴とする。
[0007] In order to achieve the above object, a high carbon iron alloy powder according to another invention of the present application comprises carbon (C) 2.0
4.0% by weight, 2.0% by weight or less of silicon (Si), 0 to 25.0% by weight of nickel (Ni), 20.0 to 40.0% of chromium (Cr).
0% by weight, molybdenum (Mo) and tungsten (W) have impurities of 10.0 to 40.0% by weight or less and 5.0% by weight or less in terms of tungsten equivalent, and the apparent density (AD) of iron is 3 .
0 g / cm 3 or more and becomes as manganese - silicon ratio (Mn / Si
Ratio) is set.

【0008】[0008]

【発明の実施の形態】次に、本発明に係る高カーボン鉄
合金粉末につき、好適な実施例を挙げて、添付図面を参
照しながら以下説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Next, a high carbon iron alloy powder according to the present invention will be described below with reference to the accompanying drawings by way of preferred embodiments.

【0009】発明者は、水噴霧法により粉末化される特
にカーボン(C)の配合割合の高い硬質粒子粉末におい
て、形状の球状化に優れた粉末を求めて試行を繰り返し
た結果、見かけ密度(AD)が3.0g/cm3以上となるよう
マンガン−シリコン比(Mn/Si比)を設定することによ
り、先の要請に応えることができるようにしたものであ
る。
The inventor of the present invention has repeatedly conducted trials for a hard particle powder having a high compounding ratio of carbon (C), which is formed into a powder by a water spraying method, in order to obtain a powder having an excellent spherical shape. By setting the manganese-silicon ratio (Mn / Si ratio) so that AD) is 3.0 g / cm 3 or more, the above requirement can be met.

【0010】実施例に係る硬質の高カーボン鉄合金粉末
は、0.8重量%以上のカーボン(C)を含む溶融鉄合金を
水噴霧法により粉末化する。この場合において、該溶融
鉄合金のマンガン−シリコン比(Mn/Si比)を、見かけ密
度(AD)が3.0g/cm3以上となる値に設定する(図3参
照)。これにより水噴霧法により得られた高カーボン鉄
合金粉末は、図1の顕微鏡写真に示すように、各粉末粒
子は丸みをおびて球状化されている。すなわち、従来の
ように粉末粒子にヒゲ状の突起が形成されたり、扁平状
で端部がカールしておらず、これにより焼結中の拡散を
少なくし硬質粒子として優れる特性が得られる。ちなみ
に、図1の顕微鏡写真に示す硬質の高カーボン鉄合金粉
末の見かけ密度(AD)は、3.08g/cm3である。
The hard high-carbon iron alloy powder according to the embodiment is obtained by pulverizing a molten iron alloy containing 0.8% by weight or more of carbon (C) by a water spray method. In this case, the manganese-silicon ratio (Mn / Si ratio) of the molten iron alloy is set to a value at which the apparent density (AD) becomes 3.0 g / cm 3 or more (see FIG. 3). Thus, in the high carbon iron alloy powder obtained by the water spraying method, as shown in the micrograph of FIG. 1, each powder particle is rounded and spherical. That is, as in the related art, a whisker-like projection is not formed on the powder particles, or the powder particles are flat and do not curl at the ends, so that diffusion during sintering is reduced, and characteristics excellent as hard particles are obtained. Incidentally, the apparent density (AD) of the hard high carbon iron alloy powder shown in the micrograph of FIG. 1 is 3.08 g / cm 3 .

【0011】なお、低カーボン鋼では、マンガン−シリ
コン比(Mn/Si比)が高いほど粉末は球状化し、見かけ密
度(AD)が高くなることが知られている。本発明のマンガ
ン−シリコン比(Mn/Si比)の見かけ密度(AD)への効果
は、カーボン(C)が0.8重量%以上で現れ、2.0重量
%以上で顕著である。また過度のカーボン添加は合金の
融点を下げ、上記の効果を損なうので、カーボン(C)を
4.0重量%以下とすることが推奨される。更には、噴
霧中の水による粉末表面の酸素濃度上昇の影響を最小限
とするため、シリコン(Si)を0.5重量%以上とし、シ
リコン(Si)を優先酸化させるのが好ましい。
It is known that, in a low carbon steel, as the manganese-silicon ratio (Mn / Si ratio) increases, the powder becomes spherical and the apparent density (AD) increases. The effect of the manganese-silicon ratio (Mn / Si ratio) on the apparent density (AD) of the present invention appears at 0.8% by weight or more of carbon (C) and is remarkable at 2.0% by weight or more. Also, excessive addition of carbon lowers the melting point of the alloy and impairs the above effects, so it is recommended that carbon (C) be less than 4.0% by weight. Furthermore, in order to minimize the effect of the increase in the oxygen concentration on the powder surface due to the water during spraying, it is preferable to make silicon (Si) 0.5% by weight or more and preferentially oxidize silicon (Si).

【0012】ここで、例えば、カーボン(C)2.0〜4.
0重量%、シリコン(Si)2.0重量%以下、ニッケル(N
i)0〜25.0重量%、クロム(Cr)20.0〜40.0重
量%、モリブデン(Mo)とタングステン(W)はタングステ
ン当量で10.0〜40.0重量%以下、5.0重量%以
下の不純物を有する成分割合の溶融合金を水噴霧法で粉
末化するに際し、見かけ密度(AD)が3.0g/cm3以上と
なるようマンガン−シリコン比(Mn/Si比)を設定するこ
とによっても、各粉末粒子が球状化されて焼結中の拡散
を少なくし硬質粒子として優れる特性が得られるもので
ある。
Here, for example, carbon (C) 2.0 to 4.0.
0 wt%, silicon (Si) 2.0 wt% or less, nickel (N
i) 0 to 25.0% by weight, chromium (Cr) 20.0 to 40.0% by weight, molybdenum (Mo) and tungsten (W) have a tungsten equivalent of 10.0 to 40.0% by weight or less; When powdering a molten alloy having a component ratio of 0% by weight or less by a water spray method, the manganese-silicon ratio (Mn / Si ratio) is adjusted so that the apparent density (AD) becomes 3.0 g / cm 3 or more. Also by setting, each powder particle is made into a spheroid to reduce the diffusion during sintering and to obtain characteristics excellent as hard particles.

【0013】カーボン(C)とクロム(Cr)、モリブデン(M
o)、タングステン(W)、鉄(Fe)、シリコン(Si)との結合
により硬質な炭化物を形成するため、各成分は以下の割
合で添加するのが推奨される。クロム(Cr)については、
20.0〜40.0重量%、好ましくは32.0〜40.0
重量%添加する。タングステン(W)とモリブデン(Mo)に
ついては、タングステン当量で10.0〜40.0重量
%、好ましくはモリブデン(Mo):5.0〜12.0重量
%、タングステン(W):10.0〜16.0重量%添加す
る。(タングステン当量=タングステン重量%+モリブ
デン重量%×2) シリコン(Si)については、2.0重量%以下、好ましく
は0.5〜1.5重量%添加する。なお、ニッケル(Ni)は
本合金の焼結中に、焼結母材基地中に拡散して基地の耐
酸化性・耐熱性を向上させるので、0〜25.0重量
%、好ましくは17.0〜25.0重量%添加する。また
炭化物の強度向上のため、意図的に添加されるバナジウ
ム(V)、チタン(Ti)、ニオブ(Nb)、タンタル(Ta)、ジル
コン(Zr)の炭化物形成元素、およびニッケル(Ni)と同様
に耐熱性を向上させるコバルト(Co)、銅(Cu)のオーステ
ナイト形成元素は、不純物として5.0重量%以下含ん
でも前記のマンガン−シリコン比(Mn/Si比)の見かけ密
度(AD)への効果は損なわれないが、鉄合金の原料および
溶解・噴霧の工程で混入する上記以外の不可避的な不純
物元素および希土類元素等の重金属元素は1.0重量%
以下とするのが好ましい。
Carbon (C) and chromium (Cr), molybdenum (M
o) In order to form a hard carbide by bonding with tungsten (W), iron (Fe), and silicon (Si), it is recommended that each component be added in the following ratio. About chrome (Cr)
20.0-40.0% by weight, preferably 32.0-40.0
% By weight. For tungsten (W) and molybdenum (Mo), the tungsten equivalent is 10.0 to 40.0% by weight, preferably molybdenum (Mo): 5.0 to 12.0% by weight, and tungsten (W): 10.0. ~ 16.0% by weight. (Tungsten equivalent = tungsten weight% + molybdenum weight% × 2) For silicon (Si), 2.0 wt% or less, preferably 0.5-1.5 wt% is added. It should be noted that nickel (Ni) diffuses into the sintering matrix during the sintering of the present alloy and improves the oxidation resistance and heat resistance of the matrix. Therefore, 0 to 25.0% by weight, preferably 17. 0 to 25.0% by weight is added. In addition, the same as vanadium (V), titanium (Ti), niobium (Nb), tantalum (Ta), zircon (Zr) carbide-forming elements, and nickel (Ni) added intentionally to improve the strength of carbides The austenite-forming elements of cobalt (Co) and copper (Cu), which improve heat resistance, even if containing 5.0% by weight or less as impurities, change the apparent density (AD) of the manganese-silicon ratio (Mn / Si ratio). Is not impaired, but the amount of heavy metal elements such as the inevitable impurity elements and rare earth elements other than the above mixed in the raw material of the iron alloy and the melting and spraying process is 1.0% by weight.
It is preferable to set the following.

【0014】[0014]

【実験例について】図2に示す〜の成分割合の溶融
金属を水噴霧法により粉末化し、得られた高カーボン鉄
合金粉末の見かけ密度(AD)を測定した結果を、図3のグ
ラフに示した。また、の成分割合の高カーボン鉄合金
粉末の顕微鏡写真を図1に示し、およびの成分割合
の高カーボン鉄合金粉末の顕微鏡写真を図4に示した。
この顕微鏡写真から、見かけ密度(AD)が3.08g/cm3
の高カーボン鉄合金粉末では各粉末粒子は丸みをおびて
球状化されているのに対し、見かけ密度(AD)が2.04
g/cm3および2.00g/cm3の高カーボン鉄合金粉末
では、各粉末粒子にヒゲ状の突起が形成されていたり、
扁平状で端部がカールしていることが判る。すなわち、
見かけ密度(AD)が3.0g/cm3以上であれば粉末粒子は
球状化されているから、ヒゲ状の突起や扁平化に起因す
る焼結中の必要以上の拡散を防止し得るものである。ま
た図3のグラフから、見かけ密度(AD)を3.0g/cm3
上とするためには、マンガン−シリコン比(Mn/Si比)を
約0.15以下とする必要があることが判明する。この
ように、マンガン−シリコン比(Mn/Si比)を約0.15以
下に設定して見かけ密度(AD)を3.0g/cm3以上とした
高カーボン鉄合金粉末は、各粉末粒子が球状化されて焼
結中の拡散が少なく硬質粒子として優れる特性を得られ
る。
[Experimental Example] FIG. 3 is a graph showing the results of measuring the apparent density (AD) of the high carbon iron alloy powder obtained by pulverizing the molten metal having the component ratios shown in FIG. Was. FIG. 1 shows a micrograph of the high-carbon iron alloy powder having the above component ratio, and FIG. 4 shows a micrograph of the high-carbon iron alloy powder having the above component ratio.
From this micrograph, the apparent density (AD) is 3.08 g / cm 3
In the high carbon iron alloy powder, the powder particles are rounded and spherical, while the apparent density (AD) is 2.04.
g / cm 3 and 2.00 g / cm 3 of high carbon iron alloy powder, each powder particle has a whisker-like projection,
It turns out that it is flat and the end is curled. That is,
If the apparent density (AD) is 3.0 g / cm 3 or more, the powder particles are spherical, so that unnecessary diffusion during sintering due to beard-like projections and flattening can be prevented. is there. From the graph of FIG. 3, it was found that the manganese-silicon ratio (Mn / Si ratio) needs to be about 0.15 or less in order to make the apparent density (AD) 3.0 g / cm 3 or more. I do. As described above, the high carbon iron alloy powder whose manganese-silicon ratio (Mn / Si ratio) is set to about 0.15 or less and whose apparent density (AD) is 3.0 g / cm 3 or more is obtained by the following method. Due to the spheroidization, there is little diffusion during sintering, and excellent characteristics as hard particles can be obtained.

【0015】また、前述した鉄合金粉末〜を夫々分
析したところ、アルミニウム、ボロン、酸素、窒素、燐
等の不可避元素は1.0重量%以下であった。なお、
銅、コバルト、バナジウムも認められたが、不可避元素
と合わせた総量は5.0重量%以下であった。
When the above-mentioned iron alloy powders were analyzed, it was found that unavoidable elements such as aluminum, boron, oxygen, nitrogen and phosphorus were 1.0% by weight or less. In addition,
Although copper, cobalt, and vanadium were also found, the total amount including the unavoidable elements was 5.0% by weight or less.

【0016】[0016]

【発明の効果】以上説明した如く、本発明に係る高カー
ボン鉄合金粉末は、見かけ密度(AD)が3.0g/cm3以上
となっているから各粉末粒子は球状化されており、これ
によって焼結中の拡散が少なく硬質粒子として優れる特
性を有する。すなわち、一般鋼粉等に混合した場合は、
その全体に均一に分散混合することができると共に、容
器に密に充填することができ、所望とする耐圧縮変形性
や耐摩耗性を得ることができる。
As described above, since the high carbon iron alloy powder according to the present invention has an apparent density (AD) of 3.0 g / cm 3 or more, each powder particle is spherical. Due to this, there is little diffusion during sintering and excellent characteristics as hard particles. That is, when mixed with general steel powder, etc.,
In addition to being able to be uniformly dispersed and mixed throughout, the container can be densely filled, and desired compression deformation resistance and abrasion resistance can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の好適な実施例に係る高カーボン鉄合金
粉末の顕微鏡写真である。
FIG. 1 is a photomicrograph of a high carbon iron alloy powder according to a preferred embodiment of the present invention.

【図2】6種類の成分割合の高カーボン鉄合金粉末にお
ける見かけ密度を示す表図である。
FIG. 2 is a table showing apparent densities of high carbon iron alloy powders having six kinds of component ratios.

【図3】図2の結果に基づく見かけ密度(AD)とマンガン
−シリコン比(Mn/Si比)との関係を示すグラフ図であ
る。
FIG. 3 is a graph showing a relationship between an apparent density (AD) and a manganese-silicon ratio (Mn / Si ratio) based on the results of FIG.

【図4】従来の技術に係る高カーボン鉄合金粉末の顕微
鏡写真である。
FIG. 4 is a micrograph of a high carbon iron alloy powder according to a conventional technique.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 0.8重量%以上のカーボン(C)を含み、
見かけ密度(AD)が3.0g/cm3以上となるようマンガン
−シリコン比(Mn/Si比)が設定されていることを特徴と
する高カーボン鉄合金粉末。
Claims 1. The composition contains at least 0.8% by weight of carbon (C),
A high carbon iron alloy powder characterized in that a manganese-silicon ratio (Mn / Si ratio) is set so that an apparent density (AD) is 3.0 g / cm 3 or more.
【請求項2】 カーボン(C)2.0〜4.0重量%、シリ
コン(Si)2.0重量%以下、ニッケル(Ni)0〜25.0重
量%、クロム(Cr)20.0〜40.0重量%、モリブデン
(Mo)とタングステン(W)はタングステン当量で10.0〜
40.0重量%以下、5.0重量%以下の不純物を有し残
部鉄の、見かけ密度(AD)が3.0g/cm3以上となるよう
マンガン−シリコン比(Mn/Si比)が設定されていること
を特徴とする高カーボン鉄合金粉末。
2. Carbon (C) 2.0 to 4.0% by weight, silicon (Si) 2.0% by weight or less, nickel (Ni) 0 to 25.0% by weight, chromium (Cr) 20.0 to 2.0% by weight. 40.0% by weight, molybdenum
(Mo) and tungsten (W) have a tungsten equivalent of 10.0
40.0 wt% or less, the balance being iron having 5.0 wt% or less of impurities, as manganese apparent density (AD) is 3.0 g / cm 3 or more - silicon ratio (Mn / Si ratio) is set High carbon iron alloy powder characterized by being made.
【請求項3】 溶融合金を水噴霧法により粉末化した請
求項1または2記載の高カーボン鉄合金粉末。
3. The high carbon iron alloy powder according to claim 1, wherein the molten alloy is powdered by a water spray method.
JP22742896A 1996-08-09 1996-08-09 High carbon iron-base alloy powder Pending JPH1053802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22742896A JPH1053802A (en) 1996-08-09 1996-08-09 High carbon iron-base alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22742896A JPH1053802A (en) 1996-08-09 1996-08-09 High carbon iron-base alloy powder

Publications (1)

Publication Number Publication Date
JPH1053802A true JPH1053802A (en) 1998-02-24

Family

ID=16860706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22742896A Pending JPH1053802A (en) 1996-08-09 1996-08-09 High carbon iron-base alloy powder

Country Status (1)

Country Link
JP (1) JPH1053802A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016166387A (en) * 2015-03-09 2016-09-15 山陽特殊製鋼株式会社 HARD POWDER FOR Fe-BASED SINTER AND Fe-BASED SINTERED BODY EXCELLENT IN ABRASION RESISTANCE USING THE SAME
JP2021021115A (en) * 2019-07-29 2021-02-18 東洋刃物株式会社 Iron-based alloy member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016166387A (en) * 2015-03-09 2016-09-15 山陽特殊製鋼株式会社 HARD POWDER FOR Fe-BASED SINTER AND Fe-BASED SINTERED BODY EXCELLENT IN ABRASION RESISTANCE USING THE SAME
JP2021021115A (en) * 2019-07-29 2021-02-18 東洋刃物株式会社 Iron-based alloy member

Similar Documents

Publication Publication Date Title
US5656787A (en) Hi-density sintered alloy
CA2104605C (en) Powder metal alloy process
EP0302430B1 (en) Alloyed steel powder for powder metallurgy
US5512236A (en) Sintered coining process
US6022508A (en) Method of powder metallurgical manufacturing of a composite material
JPH10102105A (en) Manufacture of fine metallic powder
US5834640A (en) Powder metal alloy process
JP3446322B2 (en) Alloy steel powder for powder metallurgy
JP4371003B2 (en) Alloy steel powder for powder metallurgy
JPH1053802A (en) High carbon iron-base alloy powder
US4561893A (en) Alloy steel powder for high strength sintered parts
KR960003721B1 (en) Mixed powder for powder metallurgy and the sintered product thereof
JPH0751721B2 (en) Low alloy iron powder for sintering
JPH09195006A (en) Raw material powder for sintering wear resistant material
JPH0213001B2 (en)
JPH0375621B2 (en)
JPS5947358A (en) Steel powder for wear resistant sintered alloy
JPH0159321B2 (en)
JPS6123702A (en) Raw material powder of powder metallurgy for producing ferrous parts
JPS60218459A (en) Ferrous alloy powder having excellent compressibility and sinterability for wear-resistant sintered parts
JPS599151A (en) Wear-resistant sintered alloy
JPH0379744A (en) Sintered alloy steel having high strength, high ductility, and high toughness
KR100222162B1 (en) Iron-based powder composition having good dimensional stability and method for production thereof
JPH01290704A (en) Kneaded matter of magnetic powder for sintering
WO2000007759A1 (en) Alloyed, non-oxidising metal powder