JPH10102105A - Manufacture of fine metallic powder - Google Patents

Manufacture of fine metallic powder

Info

Publication number
JPH10102105A
JPH10102105A JP8253623A JP25362396A JPH10102105A JP H10102105 A JPH10102105 A JP H10102105A JP 8253623 A JP8253623 A JP 8253623A JP 25362396 A JP25362396 A JP 25362396A JP H10102105 A JPH10102105 A JP H10102105A
Authority
JP
Japan
Prior art keywords
less
metal
molten
weight
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8253623A
Other languages
Japanese (ja)
Inventor
Masazumi Hirai
正純 平居
Okie Nakabayashi
興栄 中林
Tatsuhiro Shimura
辰裕 志村
Yoshinori Tanaka
義徳 田中
Kaneyuki Katou
欽之 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pacific Metals Co Ltd
Original Assignee
Pacific Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pacific Metals Co Ltd filed Critical Pacific Metals Co Ltd
Priority to JP8253623A priority Critical patent/JPH10102105A/en
Publication of JPH10102105A publication Critical patent/JPH10102105A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain fine metallic powder not exceeding a specific particle size in an excellent yield through an atomizing method by allowing molten metal to including a specified amount of S and Se and decreasing the surface tension of the molten metal. SOLUTION: When metallic powder is manufactured from molten metal by a water atomizing method or gas atomizing method, one or two kinds of 0.03-0.30wt.% S or Se are added to the molten metal. The obtained metallic powder is, as necessary, further ground, flaked or spheroidized by stamping or milling with ball mill or others. As for the applied molten metal, stainless steel comprising one or two and more kinds of, by weight, <=2.0% C, <=5.0% Si, <=2.0% Mn, 7.5-30.0% Cr, <=40.0% Ni, 0.005-0.10% O, <=0.30% N, and further as necessary, <=5.0% Mo, <=5.0% Cu, <=3.0% Nb, <=2.0% Ti, <=0.5% V, the balance Fe and inevitable impurities, and in addition a high Ni alloy, sendust alloy and other are cited.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は溶融金属から水アト
マイズ法やガスアトマイズ法などの噴霧法によって、金
属微粉末を製造する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing fine metal powder from a molten metal by a spraying method such as a water atomizing method or a gas atomizing method.

【0002】[0002]

【従来の技術】プリペイドカードや粉末冶金応用製品
(以下、最終製品と称する)などの製造原料に使用され
る金属粉末は、最近、該製品の品質・精度や性能向上お
よび製造歩留向上対策として、平均粒径は数ミクロンの
ものが要望されている。
2. Description of the Related Art Metal powders used as raw materials for manufacturing prepaid cards and powder metallurgy applied products (hereinafter referred to as final products) have recently been used as measures to improve the quality, accuracy and performance of the products and to improve the production yield. The average particle size is required to be several microns.

【0003】従来、金属微粉末を製造する方法には、酸
化物還元法、電解法、カルボニル法などが知られてい
る。これらはいずれも単一金属粉末の製造には適してい
るが、合金微粉末の製造には合金組成上の制約が大きい
ため製造しがたく、しかも製造コストが高くなるなどの
欠点がある。
Hitherto, as a method for producing metal fine powder, an oxide reduction method, an electrolytic method, a carbonyl method and the like have been known. All of these are suitable for the production of single metal powders, but the production of fine alloy powders has drawbacks such as difficulty in production due to large restrictions on alloy composition and high production cost.

【0004】一方、合金粉末の製造には水アトマイズ法
またはガスアトマイズ法などの噴霧法(以下、アトマイ
ズ法と総称する)が広く実用され、またさらに、必要に
応じて、アトライターやボールミルなどによるスタンピ
ング (stamping) 、またはミーリング (milling)によっ
て、破砕・フレーク化や球状化されている。しかし、こ
れらの方法では、平均粒径が10μm以下の金属微粉末
の製造は歩留が悪く、またフレーク化などに要する時間
が長く製造コストが高くなり、製造が非常に困難であ
り、かつ量産化に限界があるなどの問題があった。
On the other hand, a spraying method such as a water atomizing method or a gas atomizing method (hereinafter collectively referred to as an atomizing method) is widely used for the production of alloy powder, and further, if necessary, stamping with an attritor or a ball mill. It is crushed, flaked or spheroidized by (stamping) or milling. However, in these methods, the production of fine metal powder having an average particle size of 10 μm or less is poor in yield, the time required for flake formation is long, the production cost is high, the production is extremely difficult, and mass production is difficult. There was a problem that there was a limit to conversion.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記のよう
な問題点を解決し、平均粒径が10μm以下の金属微粉
末を、歩留良く製造することを目的とするものである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above problems and to produce a fine metal powder having an average particle diameter of 10 μm or less with a good yield.

【0006】[0006]

【課題を解決するための手段】本発明者らは、この問題
を解決するために、種々の製造実験を行い、検討を重ね
た結果、溶融金属の表面張力を大きく低下させるS,S
e,Oなどの元素を適当量含有させることによって、最
終製品の特性を低下させることなく、アトマイズ法によ
って、平均粒径10μm以下の金属微粉末の収率を50
%以上と歩留良く安定して製造することができることを
見い出したものである。またさらに、微粉末をスタンピ
ングまたはミーリングによって、破砕・フレーク化や球
状化した場合、含有させたSやSeおよびOが金属粉末
内に微細な介在物を形成し、破砕性を改善するため、容
易に破砕フレーク化または球状化され、優れた形状・粒
度分布の金属微粉末を安定して製造できることを見い出
したものである。
In order to solve this problem, the present inventors have conducted various manufacturing experiments, and as a result of repeated studies, have found that S, S which significantly lowers the surface tension of molten metal.
By containing an appropriate amount of elements such as e and O, the yield of fine metal powder having an average particle size of 10 μm or less can be reduced by the atomizing method without deteriorating the properties of the final product.
% Or more, and it has been found that it can be manufactured stably with good yield. Further, when the fine powder is crushed, flaked, or spheroidized by stamping or milling, the contained S, Se, and O form fine inclusions in the metal powder and improve the friability, so that It has been found that a fine metal powder having excellent shape and particle size distribution, which is crushed and flaked or spheroidized, can be produced stably.

【0007】すなわち、溶融金属から水アトマイズ法や
ガスアトマイズ法などの噴霧法によって製造する方法に
おいて、該溶融金属に重量%(以下同じ)で0.03〜
0.30%のSまたはSeの1種または2種を含有させ
ることを特徴とする金属微粉末の製造方法であり、該金
属微粉末を必要に応じて、ボールミルなどによってスタ
ンピングまたはミーリングによって、さらに、破砕・フ
レーク化または球状化させることを特徴とする。
That is, in a method of producing from a molten metal by a spraying method such as a water atomization method or a gas atomization method, the molten metal is added in an amount of 0.03% by weight (hereinafter the same).
A method for producing a metal fine powder comprising 0.30% of one or two of S or Se, wherein the metal fine powder is stamped or milled by a ball mill or the like, if necessary, and further, Crushing, flake formation or spheroidization.

【0008】該溶融金属は、C:2.0%以下、Si:
5.0%以下、Mn:2.0%以下、Cr:7.5〜3
0.0%、Ni:40.0%以下、O:0.005〜
0.10%、N:0.30%以下を含有し、必要に応じ
て、Mo:5.0%以下、Cu:5.0%以下、Nb:
3.0%以下、Ti:2.0%以下、V:0.5%以下
の1種または2種以上を含有し、残部はFeおよび不可
避不純物成分からなるステンレス溶鋼、およびSi:
2.0%以下、Mn:2.0%以下、Ni:30.0%
以上、O:0.005%〜0.10%を含有し、必要に
応じて、10.0%以下のMo,Cu,Crの1種また
は2種以上を含有し、残部はFeおよび不可避不純物成
分からなる溶融高Ni合金、またSi:3.0〜15.
0%、Al:2.0〜15.0%を含有し、必要に応じ
て、Ca:0.001〜0.010%を添加し、残部は
主としてFeからなる溶融Fe−Si−Al合金(セン
ダスト)、およびAl:1.0〜10.0%を含有し、
必要に応じて、Ca:0.001〜0.010%を添加
し、残部はNiおよび不可避不純物成分からなる溶融N
i−Al合金を特徴とするものである。
[0008] The molten metal is C: 2.0% or less, Si:
5.0% or less, Mn: 2.0% or less, Cr: 7.5 to 3
0.0%, Ni: 40.0% or less, O: 0.005 to
0.10%, N: 0.30% or less, if necessary, Mo: 5.0% or less, Cu: 5.0% or less, Nb:
3.0% or less, Ti: 2.0% or less, V: 0.5% or less, containing one or more kinds, the balance being stainless steel molten steel composed of Fe and inevitable impurity components, and Si:
2.0% or less, Mn: 2.0% or less, Ni: 30.0%
As described above, O: contains 0.005% to 0.10%, and if necessary, contains one or more of Mo, Cu, and Cr of 10.0% or less, and the balance is Fe and inevitable impurities. High Ni alloy consisting of the following components: Si: 3.0 to 15.
0%, Al: 2.0 to 15.0%, and if necessary, 0.001 to 0.010% of Ca, with the balance being a molten Fe—Si—Al alloy ( Sendust), and Al: 1.0 to 10.0%,
If necessary, 0.001 to 0.010% of Ca is added, and the balance is molten N composed of Ni and unavoidable impurity components.
It is characterized by an i-Al alloy.

【0009】[0009]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明は、ステンレス鋼、高Ni合金、センダスト合
金、Ni−Al合金などの金属微粉末を溶融金属からア
トマイズ法によって製造するに当たって、溶融金属に該
溶融金属の表面張力を大きく低下させる元素S,Seの
1種または2種を0.03〜0.30%添加し、更にス
テンレス鋼および高ニッケル合金においてはOを0.0
05〜0.10%含有させ、アトマイズ時の粉末サイズ
の微細化を図るものであり、さらに、添加したSやSe
およびOによって硫化物や酸化物などの微細な介在物が
形成され、該粉末をスタンピング、またはミーリングに
よって、容易に破砕微細化・フレーク化や球状化を図る
ものである。ここで、S,Seは耐食性を低下させるた
め、0.30%以下とし、その効果を発揮するためには
0.03%以上とする。また、Seは食品機器用材料と
して用いる場合には添加しない方が好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
The present invention relates to the production of fine metal powders such as stainless steel, high Ni alloys, sendust alloys, and Ni-Al alloys from a molten metal by an atomizing method, and the element S, which significantly reduces the surface tension of the molten metal, is added to the molten metal. One or two kinds of Se are added in an amount of 0.03 to 0.30%, and O is added to 0.03% in stainless steel and a high nickel alloy.
Of 0.5 to 0.10% to reduce the powder size during atomization.
Fine inclusions such as sulfides and oxides are formed by O and O, and the powder is easily crushed, refined, flaked, or spheroidized by stamping or milling. Here, S and Se are set to 0.30% or less to reduce the corrosion resistance, and are set to 0.03% or more to exhibit the effect. When Se is used as a food equipment material, it is preferable not to add Se.

【0010】また、本発明合金が含有する合金元素の量
の限定理由は以下に説明する。まず、請求項第3項に規
制したステンレス溶鋼については、Cは強力なオーステ
ナイト化元素であるが、耐食性の面から少ない方が良く
2.0%以下とする。Siは脱酸剤として作用する元素
であるほか、耐酸化性を増大するのに有効であるが、多
すぎると靭性、加工性を劣化させるので5.0%以下と
する。
The reasons for limiting the amounts of alloying elements contained in the alloy of the present invention will be described below. First, in the molten stainless steel regulated in claim 3, C is a strong austenitizing element, but from the viewpoint of corrosion resistance, the smaller the better, the better the content is 2.0% or less. Si is an element that acts as a deoxidizing agent, and is effective in increasing oxidation resistance. However, too much Si degrades toughness and workability.

【0011】Mnはオーステナイト化元素であり、Ni
より安価でNiの置換元素として含有させることができ
るが、多すぎるとアトマイズ中に酸化されやすく金属粉
末中の酸素含有量が高くなり、該金属粉末から製造した
最終製品(以下、製品と総称する)の気孔発生、密度低
下の問題が発生するため2.0%以下とする。Crはス
テンレス鋼の基本元素であり、耐食性および耐酸化性向
上のために7.5〜30.0%添加する必要がある。
Mn is an austenitizing element and Ni
Although it is cheaper and can be contained as a substitution element for Ni, if it is too much, it is easily oxidized during atomization and the oxygen content in the metal powder increases, so that the final product manufactured from the metal powder (hereinafter collectively referred to as product) ) Causes the problems of generation of pores and reduction in density, so that the content is 2.0% or less. Cr is a basic element of stainless steel, and needs to be added in an amount of 7.5 to 30.0% to improve corrosion resistance and oxidation resistance.

【0012】Niはオーステナイト系ステンレス鋼にと
って重量な元素で、安定なオーステナイト相を形成し、
耐食性および靭性を向上させるのに有効である。しか
し、高価になるので40.0%以下とする。OはSやS
eと同様に、溶融金属の表面張力を大きく低下させる元
素であり、多い方が好ましいが、多すぎると製品の気孔
発生や密度低下の問題が発生するため0.005〜0.
10%とする。Nは耐力上昇およびオーステナイト安定
化などの効果があるが、製品の気孔防止や密度低下防止
のため0.30%以下とする。
Ni is a heavy element for austenitic stainless steel and forms a stable austenite phase.
It is effective for improving corrosion resistance and toughness. However, since it becomes expensive, it is set to 40.0% or less. O is S or S
Similarly to e, it is an element that greatly lowers the surface tension of the molten metal, and the more it is, the more preferable it is. However, if it is too much, problems such as generation of pores and reduction in density of the product occur.
10%. N has effects such as an increase in proof stress and stabilization of austenite, but is set to 0.30% or less to prevent porosity and decrease in density of the product.

【0013】上記組成を基本化学成分とするステンレス
鋼にはMo,Cu,NbおよびTiの1種または2種以
上を耐食性、耐酸化、強度向上など該ステンレス鋼の特
性向上成分として、必要に応じて添加することができ
る。Moは不動態皮膜を強化して耐食性を向上させる効
果を有するが、多量に添加すると逆に有害となるととも
に高価なため、7.0%以下とする。Cuはオーステナ
イト安定化元素であり、耐食性を改善するが、多すぎる
と有害なため5.0%以下とする。また、Nb,Ti,
Vは適量添加することにより、耐食性および強度などを
改善することができる。添加する場合は特性とコストを
考慮して、Nbは3.0%以下、Tiは2.0%以下、
Vは0.5%以下とする。
In the stainless steel having the above-mentioned composition as a basic chemical component, one or more of Mo, Cu, Nb and Ti may be used as a component for improving the properties of the stainless steel such as corrosion resistance, oxidation resistance and strength, if necessary. Can be added. Mo has the effect of strengthening the passivation film and improving the corrosion resistance. However, if added in a large amount, it is harmful and expensive, so that Mo is set to 7.0% or less. Cu is an austenite stabilizing element and improves the corrosion resistance. However, if it is too much, it is harmful, so the content is made 5.0% or less. Also, Nb, Ti,
By adding an appropriate amount of V, corrosion resistance and strength can be improved. When adding, considering the characteristics and cost, Nb is 3.0% or less, Ti is 2.0% or less,
V is set to 0.5% or less.

【0014】次に、請求項第4項に規制した溶融高Ni
合金はアンバー材、パーマロイなど電子部品材料などに
使用され、低熱膨脹特性や磁気特性が要求されるが、そ
の合金元素の限定理由については、Siは脱酸剤として
不可欠な元素であるが、多すぎると磁気特性を悪化させ
るため2.0%以下とする。Mnは脱酸元素として効果
があるが、多すぎるとアトマイズ中に酸化されやすく金
属粉末中の酸素含有量が高くなり、該金属粉末から製造
した最終製品(以下、製品と総称する)の気孔発生、密
度低下の問題が発生するため2.0%以下とする。
Next, the molten high Ni as defined in claim 4
Alloys are used for electronic component materials such as invar and permalloy and require low thermal expansion properties and magnetic properties. Regarding the reasons for limiting the alloying elements, Si is an indispensable element as a deoxidizing agent. If it is too much, the magnetic properties deteriorate, so the content is made 2.0% or less. Mn is effective as a deoxidizing element, but if it is too much, it is easily oxidized during atomization and the oxygen content in the metal powder becomes high, resulting in the formation of pores in a final product (hereinafter, collectively referred to as product) manufactured from the metal powder , 2.0% or less because a problem of a decrease in density occurs.

【0015】Niは熱膨脹特性や磁気特性を大きく影響
する重要な元素であるが、30.0%未満では高透磁率
磁性合金として所要の磁気特性が得られず30.0%以
上とする。OはSやSeと同様に、溶融金属の表面張力
を大きく低下させる元素であり、多い方が良好である
が、多すぎると製品の気孔発生や密度低下の問題が発生
するため0.005〜0.10%とする。
Ni is an important element that greatly affects the thermal expansion characteristics and magnetic characteristics, but if it is less than 30.0%, the required magnetic characteristics cannot be obtained as a high magnetic permeability magnetic alloy, so it is set to 30.0% or more. O is an element that greatly lowers the surface tension of the molten metal, like S and Se, and the more it is, the better. However, if it is too much, the problem of porosity or density reduction of the product occurs. 0.10%.

【0016】上記化学成分に、Mo,Cu,Crの1種
または2種以上を磁気特性など物理的特性向上成分とし
て、必要に応じて添加することができる。Moは75.
0〜82.0%Ni−Fe合金において、Ni,Fe規
則格子の生成を抑制し、直流透磁率を高める作用があ
る。しかし、多すぎると逆に該特性を低下させ、また高
価なため10.0%以下とする。
One or more of Mo, Cu, and Cr can be added to the above chemical components as a component for improving physical properties such as magnetic properties, if necessary. Mo is 75.
In a 0 to 82.0% Ni-Fe alloy, there is an effect of suppressing generation of a Ni, Fe ordered lattice and increasing DC magnetic permeability. However, if the content is too large, the characteristics are deteriorated, and the cost is high.

【0017】Cuは75.0%〜82.0%Ni−Fe
合金の直流透磁率を低下させることなく、実効透磁率を
高める作用がある。しかし、多すぎると逆に該特性を低
下させるので10.0%以下とする。Crは電子部品用
材として必要な特性であるガラス封着性を改善する元素
として添加することができるが、多すぎると熱膨脹特性
を損なうため10.0%以下とする。
Cu is 75.0% to 82.0% Ni--Fe
It has the effect of increasing the effective magnetic permeability without lowering the DC magnetic permeability of the alloy. However, if the content is too large, on the contrary, the characteristics are deteriorated. Cr can be added as an element for improving the glass sealing property which is a necessary property for a material for electronic parts, but if it is too much, the thermal expansion property is impaired, so Cr is set to 10.0% or less.

【0018】また、請求項第5項のFe−Si−Al合
金(センダスト)は透磁率および磁束密度が高く、耐摩
耗性軟磁性材料として優れた磁気特性を持つ。その合金
成分限定理由としては、Siはその優れた磁気特性は、
含有量9.6%をピークとして、3.0%未満および1
5.0%を超えると著しく低下するとともに、3.0%
未満では耐食性に問題が起こり、15.0%を超えると
非常に脆くなり実用的でなくなるため、3.0%〜1
5.0%とする。Alはその優れた磁気特性は、含有量
6.0%をピークとして、2.0%未満および15.0
%を超えると著しく低下するとともに、2.0%未満で
は耐摩耗性が十分でなく、15.0%を超えると非常に
脆くなり実用的でなくなるため、2.0%〜15.0%
とする。
The Fe-Si-Al alloy (Sendust) according to claim 5 has high magnetic permeability and magnetic flux density, and has excellent magnetic properties as a wear-resistant soft magnetic material. As a reason for limiting the alloy components, Si has its excellent magnetic properties,
Peaking at a content of 9.6%, less than 3.0% and 1%
If it exceeds 5.0%, it will decrease remarkably and 3.0%
If it is less than 15.0%, a problem occurs in the corrosion resistance. If it exceeds 15.0%, it becomes very brittle and impractical, so that it is 3.0% to 1%.
5.0%. Al has excellent magnetic properties with a peak content of 6.0% and less than 2.0% and 15.0%.
%, The wear resistance is insufficient, and if it is less than 2.0%, the abrasion resistance is not sufficient, and if it exceeds 15.0%, it becomes very brittle and impractical, so that 2.0% to 15.0%
And

【0019】残部は主としてFeであるが、必要に応じ
て、耐食性、磁気特性、加工性、その他特性の改善のた
めに、Cr,Nb,Mo,Cuの6%以下の1種または
2種以上、およびMn:1.0%以下を添加することが
できる。また、溶融金属を取鍋から流出させ、アトマイ
ズ法によって金属微粉末を製造する時に、流出ノズルが
溶融金属中に懸濁するアルミナ介在物による閉塞を防止
するためにCaを添加することができるが、Caを0.
001〜0.010%とした理由は0.001%未満で
はその効果がなく、また0.010%を超えると酸化が
激しくCaO系介在物が多く有害となるためである。
The balance is mainly Fe, but if necessary, one or two or less of 6% or less of Cr, Nb, Mo, Cu in order to improve corrosion resistance, magnetic properties, workability and other properties. , And Mn: 1.0% or less. Further, when the molten metal is discharged from the ladle and metal fine powder is produced by the atomization method, Ca can be added to prevent the flow nozzle from being blocked by alumina inclusions suspended in the molten metal. , Ca to 0.
The reason that the content is set to 001 to 0.010% is that if the content is less than 0.001%, the effect is not obtained, and if the content exceeds 0.010%, oxidization is severe and CaO-based inclusions are harmful.

【0020】請求項第6項のNi−Al合金は、次世代
エネルギーの燃料電池材料として注目されている。その
合金成分限定理由については、Niは電池反応の触媒と
して使用されるので、純Niが好ましいが、電極構成体
として、高温での強度も必要なため、Alなどの強化元
素を含有させた合金とする。Alは高温強度を向上させ
る元素であり、十分な強度を得るために1.0%以上必
要である。また、10.0%を超えると、触媒作用が低
下するので10.0%を上限とする。
The Ni-Al alloy according to claim 6 is receiving attention as a fuel cell material for next-generation energy. Regarding the reasons for limiting the alloy components, pure Ni is preferable because Ni is used as a catalyst for battery reactions. However, since an electrode structure also needs high strength at high temperatures, alloys containing reinforcing elements such as Al are included. And Al is an element that improves high-temperature strength, and is required to be 1.0% or more in order to obtain sufficient strength. Further, if it exceeds 10.0%, the catalytic action decreases, so 10.0% is made the upper limit.

【0021】また、アトマイズによる金属粉末の製造時
に、取鍋ノズルの閉塞を防止するためにCaを添加する
ことができるが、Caを0.001〜0.010%とし
た理由は0.001%未満ではその効果がなく、また
0.010%を超えると酸化が激しくCaO系介在物が
多く有害となるためである。かくして上記問題点が解決
され、平均粒径10μm以下の製造歩留が50%以上と
良好な優れた金属微粉末を安定して製造することが可能
になった。
In the production of metal powder by atomization, Ca can be added to prevent clogging of the ladle nozzle, but the reason for setting Ca to 0.001 to 0.010% is 0.001%. If it is less than 0.010%, the effect will be severe, and if it exceeds 0.010%, the oxidation will be severe and many CaO-based inclusions will be harmful. Thus, the above problems were solved, and it became possible to stably produce excellent fine metal powder having an average particle diameter of 10 μm or less and a production yield of 50% or more.

【0022】[0022]

【実施例】次に本発明の実施例について説明する。表1
に高周波大気溶解炉または30ton AOD炉を用いて溶
製した取鍋下成分を示し、表2に1000kg/cm2 高圧
水を用いた水アトマイズ法によって、該金属の液相線温
度からの加熱度が50〜150℃の溶湯温度から製造し
た金属粉末をエアーセパレーターによって分級し得られ
た平均粒径10μm以下の収率を示す。また表3はアト
マイズ法によってできた該微粉末を、さらにアトライタ
ーボールミル粉砕装置によって燐片状にフレーク化した
結果を示す。表1において、実施例1〜11は本発明例
であり、実施例1〜3は請求項3、実施例4〜6は請求
項4、実施例9は請求項5、実施例8は請求項6、実施
例10は請求項7、実施例11は請求項9を示す。また
比較例1,2は実施例1,2に対応、比較例3は実施例
4に対応、比較例4は実施例5に対応、比較例5,6は
実施例7,8に対応、比較例7は実施例9に対応、比較
例8は実施例10に対応、比較例9は実施例11に対応
する。
Next, an embodiment of the present invention will be described. Table 1
Table 2 shows the components under the ladle melted using a high-frequency atmospheric melting furnace or a 30-ton AOD furnace. Table 2 shows the degree of heating from the liquidus temperature of the metal by the water atomization method using 1000 kg / cm 2 high-pressure water. Shows a yield of an average particle diameter of 10 μm or less obtained by classifying metal powder produced from a molten metal temperature of 50 to 150 ° C. by an air separator. Table 3 shows the results obtained by further flake-forming the fine powder produced by the atomizing method using an attritor ball mill pulverizer. In Table 1, Examples 1 to 11 are examples of the present invention, Examples 1 to 3 are Claim 3, Examples 4 to 6 are Claim 4, Example 9 is Claim 5, and Example 8 is Claim. Sixth and tenth embodiments are claim 7 and the eleventh embodiment is claim 9. Comparative Examples 1 and 2 correspond to Examples 1 and 2, Comparative Example 3 corresponds to Example 4, Comparative Example 4 corresponds to Example 5, Comparative Examples 5 and 6 correspond to Examples 7 and 8, and Example 7 corresponds to Example 9, Comparative Example 8 corresponds to Example 10, and Comparative Example 9 corresponds to Example 11.

【0023】本発明法では従来法に比べ、平均粒径φ1
0μm以下の微細粉末の収率は高く、その後のアトライ
ターによるミーリング処理後のフレークサイズも、より
短時間処理でより微細となり、アスペクト比(粒径/厚
み)が10〜20のフレーク状微粉末が得られ、効率の
高いクレーク加工が可能となり比表面積の大きい良好な
製品が得られた。
In the method of the present invention, the average particle diameter φ1 is smaller than that of the conventional method.
The yield of fine powder of 0 μm or less is high, and the flake size after milling treatment by an attritor becomes finer in a shorter time, and the aspect ratio (particle size / thickness) is 10 to 20. And a highly efficient creaking process became possible, and a good product having a large specific surface area was obtained.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【表3】 [Table 3]

【0027】[0027]

【発明の効果】この発明に従って製造された金属微粉末
は、経済的に安定して平均粒径10μm以下の微粉末が
得られるので、産業上に及ぼす効果は極めて大きい。
The fine metal powder produced according to the present invention is economically stable and can be obtained with a fine powder having an average particle diameter of 10 μm or less.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 義徳 青森県八戸市河原木遠山新田(番地なし) 大平洋金属株式会社八戸製造所内 (72)発明者 加藤 欽之 東京都千代田区大手町1−6−1 大平洋 金属株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Yoshinori Tanaka, Inventor Yoshinori Tanaka Kawaragi Toyama Nitta, Hachinohe City, Aomori Prefecture (No address) Inside Hachinohe Works, Taiheiyo Metal Co., Ltd. 6-1 Hiroshi Ohira Metals Co., Ltd.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 溶融金属から水アトマイズ法やガスアト
マイズ法などの噴霧法によって金属粉末を製造する方法
において、該溶融金属に重量%で0.03〜0.30%
のSまたはSeの1種または2種を含有させることを特
徴とする金属微粉末の製造方法。
1. A method for producing a metal powder from a molten metal by a spraying method such as a water atomizing method or a gas atomizing method, wherein the molten metal has a content of 0.03 to 0.30% by weight.
A method for producing a fine metal powder, comprising one or two of S or Se.
【請求項2】 溶融金属から水アトマイズ法やガスアト
マイズ法などの噴霧法によって金属粉末を製造する方法
において、該溶融金属に重量%で0.03〜0.30%
のSまたはSeの1種または2種を含有させて金属微粉
末を製造した後に、さらに、スタンピング (stamping)
、またはミーリング (milling)によって、破砕・フレ
ーク化または球状化させることを特徴とする金属微粉末
の製造方法。
2. A method for producing a metal powder from a molten metal by a spraying method such as a water atomization method or a gas atomization method, wherein the molten metal has a content of 0.03 to 0.30% by weight.
After producing one or two kinds of S or Se of the above, the metal fine powder is produced, and then further stamping is performed.
Or a method of producing fine metal powder, which is crushed, flaked or spheroidized by milling.
【請求項3】 溶融金属が重量%で、 C :2.0%以下、 Si:5.0%以下、 Mn:2.0%以下、 Cr:7.5〜30.0%、 Ni:40.0%以下、 O :0.005〜0.10%、 N :0.30%以下 を含有し、残部はFeおよび不可避不純物成分からなる
ステンレス溶鋼であることを特徴とする請求項1または
2に記載の金属微粉末の製造方法。
3. Molten metal in weight%, C: 2.0% or less, Si: 5.0% or less, Mn: 2.0% or less, Cr: 7.5 to 30.0%, Ni: 40 3% or less, O: 0.005 to 0.10%, N: 0.30% or less, and the balance is stainless steel molten steel comprising Fe and unavoidable impurity components. 3. The method for producing a metal fine powder according to item 1.
【請求項4】 ステンレス溶鋼が、重量%で、 Mo:7.0%以下、 Cu:5.0%以下、 Nb:3.0%以下、 Ti:2.0%以下、 V :0.5%以下 の1種または2種以上を含有することを特徴とする請求
項3記載の金属微粉末の製造方法。
4. Molten steel is 7.0% or less, Cu: 5.0% or less, Nb: 3.0% or less, Ti: 2.0% or less, V: 0.5% by weight of stainless steel molten steel. The method for producing a metal fine powder according to claim 3, wherein one or more kinds of the metal powders are contained.
【請求項5】 溶融金属が重量%で、 Si:2.0%以下、 Mn:2.0%以下、 Ni:30.0%以上、 O :0.005〜0.10%、 を含有し、残部はFeおよび不可避不純物成分からなる
溶融高Ni合金を特徴とする請求項1または2記載の金
属微粉末の製造方法。
5. The molten metal contains, by weight, Si: 2.0% or less, Mn: 2.0% or less, Ni: 30.0% or more, and O: 0.005 to 0.10%. 3. The method according to claim 1, wherein the balance is a molten high Ni alloy comprising Fe and unavoidable impurity components.
【請求項6】 溶融高Ni合金がさらに重量%で、10
%以下のMo,Cu,Crの1種または2種以上を含有
することを特徴とする請求項5記載の金属微粉末の製造
方法。
6. The molten high Ni alloy further comprises 10% by weight.
The method for producing a metal fine powder according to claim 5, wherein the metal powder contains at least one of Mo, Cu, and Cr in an amount of at most 1%.
【請求項7】 溶融金属が重量%で、Si:3.0〜1
5%、Al:2.0〜15.0%を含有し、残部はFe
および不可避不純物からなる溶融Fe−Si−Al合金
であることを特徴とする請求項1または2記載の金属微
粉末の製造方法。
7. The molten metal in weight%, Si: 3.0 to 1
5%, Al: 2.0-15.0%, the balance being Fe
The method for producing a metal fine powder according to claim 1 or 2, wherein the method is a molten Fe-Si-Al alloy comprising unavoidable impurities.
【請求項8】 溶融Fe−Si−Al合金が、さらに重
量%で、Caを0.001〜0.010%含有すること
を特徴とする請求項7記載の金属微粉末の製造方法。
8. The method for producing fine metal powder according to claim 7, wherein the molten Fe—Si—Al alloy further contains 0.001 to 0.010% by weight of Ca.
【請求項9】 溶融金属が重量%で、Al:1.0%〜
10.0%を含有し、残部はNiおよび不可避不純物成
分からなる溶融Ni−Al合金を特徴とする請求項1ま
たは2記載の金属微粉末の製造方法。
9. The method according to claim 1, wherein the molten metal is Al in an amount of 1.0% by weight.
3. The method according to claim 1, wherein the molten Ni-Al alloy contains 10.0%, and the balance is Ni and an unavoidable impurity component.
【請求項10】 溶融Ni−Al合金がさらに重量%で
Caを0.001〜0.010%含有することを特徴と
する請求項9記載の金属微粉末の製造方法。
10. The method according to claim 9, wherein the molten Ni-Al alloy further contains 0.001 to 0.010% of Ca by weight.
JP8253623A 1996-09-25 1996-09-25 Manufacture of fine metallic powder Pending JPH10102105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8253623A JPH10102105A (en) 1996-09-25 1996-09-25 Manufacture of fine metallic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8253623A JPH10102105A (en) 1996-09-25 1996-09-25 Manufacture of fine metallic powder

Publications (1)

Publication Number Publication Date
JPH10102105A true JPH10102105A (en) 1998-04-21

Family

ID=17253935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8253623A Pending JPH10102105A (en) 1996-09-25 1996-09-25 Manufacture of fine metallic powder

Country Status (1)

Country Link
JP (1) JPH10102105A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0900611A3 (en) * 1997-09-05 1999-12-15 Kawatetsu Mining Co., LTD. Ultrafine nickel powder
JP2003257722A (en) * 2002-03-06 2003-09-12 Daido Steel Co Ltd Soft magnetic powder and dust core using it
JP2007324270A (en) * 2006-05-31 2007-12-13 Toyota Motor Corp Method of manufacturing magnetic powder, and dust core
EP1992709A1 (en) * 2007-05-14 2008-11-19 EOS GmbH Electro Optical Systems Metal powder for use in additive method for the production of three-dimensional objects and method using such metal powder
KR101118310B1 (en) 2009-12-24 2012-03-20 재단법인 포항산업과학연구원 Electromagnetic wave absorber for high frequency and fabricating method thereof
WO2013015641A3 (en) * 2011-07-28 2013-06-13 자동차부품연구원 Aluminum alloy including iron-manganese homogeneous solid solution and preparation method thereof
WO2015137507A1 (en) * 2014-03-14 2015-09-17 山陽特殊製鋼株式会社 Precipitation-hardening stainless steel powder and sintered compact thereof
JP2015175026A (en) * 2014-03-14 2015-10-05 山陽特殊製鋼株式会社 Precipitation hardening stainless steel powder obtaining high strength after sinter-aging treatment, manufacturing method therefor and molded body thereof
JP2015175054A (en) * 2014-03-18 2015-10-05 山陽特殊製鋼株式会社 Precipitation hardening stainless steel powder and sintered body thereof
JP2017122256A (en) * 2016-01-06 2017-07-13 セイコーエプソン株式会社 Ornament
CN110791696A (en) * 2019-10-25 2020-02-14 湖南英捷高科技有限责任公司 Niobium-420-containing stainless steel material and preparation method and application thereof
CN112387978A (en) * 2020-10-21 2021-02-23 西安斯瑞先进铜合金科技有限公司 Preparation method of CuFe alloy powder for brake pad
EP3967423A1 (en) * 2020-09-11 2022-03-16 Questek Innovations LLC Stainless steel powders for additive manufacturing
US20230134452A1 (en) * 2021-11-01 2023-05-04 Questek Innovations Llc Stainless steel powders for additive manufacturing

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0900611A3 (en) * 1997-09-05 1999-12-15 Kawatetsu Mining Co., LTD. Ultrafine nickel powder
JP2003257722A (en) * 2002-03-06 2003-09-12 Daido Steel Co Ltd Soft magnetic powder and dust core using it
JP2007324270A (en) * 2006-05-31 2007-12-13 Toyota Motor Corp Method of manufacturing magnetic powder, and dust core
EP1992709A1 (en) * 2007-05-14 2008-11-19 EOS GmbH Electro Optical Systems Metal powder for use in additive method for the production of three-dimensional objects and method using such metal powder
KR101118310B1 (en) 2009-12-24 2012-03-20 재단법인 포항산업과학연구원 Electromagnetic wave absorber for high frequency and fabricating method thereof
KR101388922B1 (en) * 2010-07-28 2014-04-24 자동차부품연구원 Aluminum alloys including Fe-Mn solid solution and method of manufacturing the same
WO2013015641A3 (en) * 2011-07-28 2013-06-13 자동차부품연구원 Aluminum alloy including iron-manganese homogeneous solid solution and preparation method thereof
CN103842533A (en) * 2011-07-28 2014-06-04 自动车部品研究院 Aluminum alloy including iron-manganese homogeneous solid solution and preparation method thereof
JP2014526975A (en) * 2011-07-28 2014-10-09 コリア オートモーティブ テクノロジー インスティテュート Aluminum alloy containing solid solution of iron-manganese and its manufacturing method
US9617623B2 (en) 2011-07-28 2017-04-11 Korea Automotive Technology Institute Aluminum alloy including iron-manganese complete solid solution and method of manufacturing the same
JP2015175026A (en) * 2014-03-14 2015-10-05 山陽特殊製鋼株式会社 Precipitation hardening stainless steel powder obtaining high strength after sinter-aging treatment, manufacturing method therefor and molded body thereof
WO2015137507A1 (en) * 2014-03-14 2015-09-17 山陽特殊製鋼株式会社 Precipitation-hardening stainless steel powder and sintered compact thereof
US10011894B2 (en) 2014-03-14 2018-07-03 Sanyo Special Steel Co., Ltd. Precipitation-hardening stainless steel powder and sintered compact thereof
JP2015175054A (en) * 2014-03-18 2015-10-05 山陽特殊製鋼株式会社 Precipitation hardening stainless steel powder and sintered body thereof
JP2017122256A (en) * 2016-01-06 2017-07-13 セイコーエプソン株式会社 Ornament
CN110791696A (en) * 2019-10-25 2020-02-14 湖南英捷高科技有限责任公司 Niobium-420-containing stainless steel material and preparation method and application thereof
CN110791696B (en) * 2019-10-25 2022-03-15 湖南英捷高科技有限责任公司 Niobium-420-containing stainless steel material and preparation method and application thereof
EP3967423A1 (en) * 2020-09-11 2022-03-16 Questek Innovations LLC Stainless steel powders for additive manufacturing
JP2022047494A (en) * 2020-09-11 2022-03-24 クエステック イノベーションズ リミテッド ライアビリティ カンパニー Stainless steel powders for additive manufacturing
CN112387978A (en) * 2020-10-21 2021-02-23 西安斯瑞先进铜合金科技有限公司 Preparation method of CuFe alloy powder for brake pad
US20230134452A1 (en) * 2021-11-01 2023-05-04 Questek Innovations Llc Stainless steel powders for additive manufacturing

Similar Documents

Publication Publication Date Title
KR102408835B1 (en) Stainless Steel Powder for Manufacturing Duplex Sintered Stainless Steel
JP3227734B2 (en) High corrosion resistant duplex stainless steel and its manufacturing method
US4419130A (en) Titanium-diboride dispersion strengthened iron materials
US5989491A (en) Oxide dispersion strengthened heat resisting powder metallurgy alloy and process for producing the same
US4093454A (en) Nickel-base sintered alloy
US20200156156A1 (en) Powder metal material for wear and temperature resistance applications
JPH10102105A (en) Manufacture of fine metallic powder
KR102061839B1 (en) Neutron absorption material and method for manufacturing the same
JPS5867842A (en) Hard sintered alloy
JPH068484B2 (en) Article made from processable boron-containing stainless steel alloy and method of making the same
US4089682A (en) Cobalt-base sintered alloy
WO2017051541A1 (en) Method for manufacturing alloy steel powder for sintered member raw material
JPS59200743A (en) Sintered alloy steel
US4430115A (en) Boron stainless steel powder and rapid solidification method
JPH093590A (en) Oxide dispersion strengthened ferritic heat resistant steel sheet and its production
JPH0257606A (en) Stainless steel fine powder and sintering material
US4792351A (en) Hydrometallurgical process for producing irregular morphology powders
JPS61295302A (en) Low-alloy iron powder for sintering
JPH09279287A (en) Grain dispersed powdery heat resistant alloy
JP2696624B2 (en) Oxide dispersion strengthened ferritic heat-resistant steel sheet
RU2806109C1 (en) Metal powder for additive manufacturing
JPH01283340A (en) Manufacture of high density and high strength sintered body
JPS5947358A (en) Steel powder for wear resistant sintered alloy
JPH0213001B2 (en)
CN112522642A (en) Tungsten-containing rare earth-free economical duplex stainless steel and preparation method thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070327