JPH01290704A - Kneaded matter of magnetic powder for sintering - Google Patents

Kneaded matter of magnetic powder for sintering

Info

Publication number
JPH01290704A
JPH01290704A JP63118919A JP11891988A JPH01290704A JP H01290704 A JPH01290704 A JP H01290704A JP 63118919 A JP63118919 A JP 63118919A JP 11891988 A JP11891988 A JP 11891988A JP H01290704 A JPH01290704 A JP H01290704A
Authority
JP
Japan
Prior art keywords
powder
carbonyl
sintering
alloy steel
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63118919A
Other languages
Japanese (ja)
Inventor
Katsuji Kusaka
草加 勝司
Yasumasa Kato
靖正 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP63118919A priority Critical patent/JPH01290704A/en
Publication of JPH01290704A publication Critical patent/JPH01290704A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To improve flowability and formability and to allow easier diffusion and alloying by kneading a specified ratio of water sprayed alloy steel powder which contains carbonyl Fe or Ni powder and Fe and Si and is specified in grain size together with an org. binder. CONSTITUTION:The kneaded matter of the magnetic powder for sintering is prepd. by mixing 10-30wt.% water sprayed alloy steel powder with the carbonyl Fe powder or Ni powder and further, incorporating the org. binder therein. The water sprayed alloy steel powder which contains >=30% Fe and 10-25% Si and is adjusted in the average grain size to the range of 1-6 times the average grain size of the carbonyl Fe or Ni powder is used. The diffusion and alloying of the alloy components are accelerated at the time of sintering after forming and the high-density sintered body is obtd. if this kneaded matter is used. In addition, the sintered body having excellent magnetic characteristics such as saturation magnetic flux density and max. magnetic permeability is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、成形性に優れ、かつ焼結時に拡散合金化しや
すく、磁気特性を良好ならしめる焼結用磁性粉末混練物
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a magnetic powder kneaded material for sintering that has excellent formability, is easily formed into a diffusion alloy during sintering, and has good magnetic properties.

(従来の技術) 粉末冶金法は、鋳造、鍛造などの溶製法と並んで最終製
品またはそれに近い形状の機械構造部品、磁性材料部品
などを製造する方法として広く知られている。
(Prior Art) Powder metallurgy is widely known as a method for manufacturing final products or mechanical structural parts, magnetic material parts, etc. in shapes similar to final products, along with melting methods such as casting and forging.

この粉末冶金法で造られる磁性材料部品は、その飽和磁
束密度、最大透磁率等の磁気特性が金属組織によって影
響を受けやすいため、粉末冶金用の原料粉末は、焼結後
にミクロ偏析が小さい高密度焼結体を製造できる粉末で
あることが望ましい。
The magnetic properties of magnetic material parts manufactured using this powder metallurgy method, such as saturation magnetic flux density and maximum magnetic permeability, are easily affected by the metal structure. It is desirable that the powder be able to produce a dense sintered body.

例えばFe−3i系のケイ素鋼(Si鋼)軟質磁性粉末
は鉄粉にSi、Cr、Moなとの元素粉末を少量配合さ
せたもので、その磁性粉末の製造法としては、溶湯噴霧
法による製法のほか、鉄粉に所定成分の元素粉末を添加
・混合する母合金混合法が知られている。
For example, Fe-3i silicon steel (Si steel) soft magnetic powder is made by mixing small amounts of elemental powders such as Si, Cr, and Mo with iron powder. In addition to the manufacturing method, a master alloy mixing method is known in which elemental powders of predetermined components are added and mixed with iron powder.

ところが、溶湯噴霧法によると、磁性粉末中の合金元素
が固溶硬化しているため、成形時に鉄粉本来の良好な圧
縮性が発揮されず、高密度の焼結体が得られない。また
、母合金混合法によると。
However, according to the molten metal spraying method, since the alloying elements in the magnetic powder are solid solution hardened, the good compressibility inherent to the iron powder is not exhibited during molding, and a high-density sintered body cannot be obtained. Also according to the master alloy mixing method.

鉄粉の周囲に元素粉末が付着しただけで圧縮性は比較的
良好であるが、しかし、焼結時に鉄粉中に合金元素が充
分に拡散・均一化しに<<、磁気特性向上に必要な金属
組織の均一化がはかれない。
Compressibility is relatively good because the elemental powder just adheres to the surroundings of the iron powder. The metal structure cannot be made uniform.

そこで、この母合金混合法の改良として本発明者の1人
は、鉄粉に添加する合金元素を予め細粒径の鉄合金粉末
の形で鉄粉に付着させることにより焼結時の拡散合金化
が一層容易にな息ることを見出し、この知見に基づいて
本出願人は特許出願を行なった(特願昭61−2585
83号、特願昭62−234797号)。
Therefore, in order to improve this master alloy mixing method, one of the inventors of the present invention proposed that the alloying elements to be added to the iron powder be attached to the iron powder in advance in the form of fine-grained iron alloy powder, thereby forming a diffusion alloy during sintering. Based on this knowledge, the applicant filed a patent application (Japanese Patent Application No. 61-2585).
No. 83, Japanese Patent Application No. 62-234797).

Fe−3i系のケイ素鋼の焼結体としては、本出願人に
より特願昭62−294 ] 442号特願昭62−2
94143号明細書にそれぞれ開示されている。
A sintered body of Fe-3i silicon steel is disclosed in Japanese Patent Application No. 62-294] No. 442 by the present applicant.
No. 94143, respectively.

(発明が解決しようとする課題) ところで、最近の粉末冶金によると、射出成形法により
最終製品またはこれに近い特定の3次元形状の磁性粉末
焼結晶を直接製造できるようになった。
(Problems to be Solved by the Invention) According to recent powder metallurgy, it has become possible to directly produce sintered magnetic powder crystals in a final product or a specific three-dimensional shape similar to the final product by injection molding.

ここに、射出成形法に用いる金属粉末は、q・目11成
形時の流動性を確保するため、従来の2次元形状の焼結
晶を造るときの粉末冶金用原料粉の粒径に比較して粒径
が1桁小さい細粒金属粉を用い、例えば金属カーボニル
の熱分解という特殊な製造法によって造る細粒のカーボ
ニル170粉末やカーボニルNi粉末(平均粒度5μm
以ド)を使用している。
Here, the metal powder used in the injection molding method has a particle size that is larger than the particle size of the raw material powder for powder metallurgy when making conventional two-dimensional shaped sintered crystals, in order to ensure fluidity during q-th 11 molding. Using fine metal powder with an order of magnitude smaller particle size, for example, fine carbonyl 170 powder or carbonyl Ni powder (average particle size 5 μm
(below) is used.

しかし、従来の射出成形法に用いる金属粉末については
、高圧ガス噴霧法あるいは高圧水噴霧法等の溶湯噴霧法
により製造した6R性合金鋼扮であると、装置等の制約
から粉末粒径は10μm付近が細粒化の限度であり、こ
れよりも細粒径の合金鋼粉を造ることは困難である。つ
まり、溶湯噴霧法により製造した磁性合金鋼わ)末であ
ると、1種の機械的粉砕によるため細粒化に限度があり
、形状的にもカーボニルFc、Ni粉末はど球状でかつ
均一粒度のものは得がたい。したがって、溶湯噴霧法に
より製造した合金鋼粉を用いてq=を出成形すると、粉
末が粗大で粒度が不均一等の理由により、流動性および
成形性が悪化し、焼結体の高密度化がはかれないという
問題がある。
However, the metal powder used in conventional injection molding methods is 6R alloy steel manufactured by molten metal spraying methods such as high-pressure gas spraying or high-pressure water spraying, and the powder particle size is 10 μm due to equipment limitations. This is the limit for grain refinement, and it is difficult to produce alloy steel powder with a grain size finer than this. In other words, in the case of magnetic alloy steel powder manufactured by the molten metal spraying method, there is a limit to the fineness of the particles due to a type of mechanical pulverization, and in terms of shape, the carbonyl Fc and Ni powders are spherical and have uniform particle size. It's hard to get something like that. Therefore, when q = is extruded using alloyed steel powder produced by the molten metal spraying method, the powder is coarse and the particle size is uneven, resulting in poor fluidity and formability, resulting in an increase in the density of the sintered body. The problem is that it cannot be measured.

特に高圧水噴霧法による磁性合金銅粉を用いると、粒形
が不規則化するため、有機バインダとの混練物の形にし
た場合、一定の流動性を確保するため多量の有機バイン
ダを必要とし、この有機バインダを増量すると、脱脂処
理や焼結部品の寸法管理が困難になるという問題も生じ
る。
In particular, when using magnetic alloy copper powder produced by high-pressure water spraying, the particle shape becomes irregular, so when mixed with an organic binder, a large amount of organic binder is required to ensure a certain level of fluidity. However, when the amount of this organic binder is increased, the problem arises that degreasing treatment and dimensional control of sintered parts become difficult.

そこで本発明者らは、前述した母合金混合法を応用し、
一般に細粒であるカーボニルFe、Ni粉末に高圧水噴
霧法などで製造したFe−3i系合金鋼粉末を添加し、
この混合粉末に有機バインダを混入した混練物を原料と
すれば、射出成形時の流動性が良好になりかつ焼結時に
比較的容易に拡散・合金化して磁気特性の良好なケイ素
鋼粉末焼結体が得られることを見出した。
Therefore, the present inventors applied the above-mentioned master alloy mixing method,
Generally, Fe-3i alloy steel powder produced by high-pressure water spraying method is added to carbonyl Fe and Ni powder, which are fine particles, and
If this mixed powder mixed with an organic binder is used as a raw material, it will have good fluidity during injection molding, and will be relatively easily diffused and alloyed during sintering, resulting in silicon steel powder sintered with good magnetic properties. I found out that the body can be obtained.

本発明の目的は、射出成形時の流動性および成形性に優
れ、焼結時に拡散合金化しやすい磁気特性の良好な焼結
用磁性粉末混練物を提供することである。
An object of the present invention is to provide a magnetic powder kneaded material for sintering that has excellent fluidity and formability during injection molding, and has good magnetic properties that facilitate diffusion alloying during sintering.

(課題を解決するための手段) そのために本発明の焼結用磁性粉末混練物は、カーボニ
ルFeまたはNi粉末に水噴霧合金鋼粉末10〜30重
量%を混合し、この混合粉末に有機バインダを適量混入
した混練物からなり、前記水噴霧合金鋼粉末はFe30
Euffi%以上および5i10〜25重量%を含有し
、かつ前記水噴霧合金鋼の平均粒径は前記カーボニルF
eまたはN1粉末の平均粒径の1〜6倍の範囲にあるこ
とを特徴とする。
(Means for Solving the Problems) For this purpose, the magnetic powder kneaded material for sintering of the present invention is prepared by mixing 10 to 30% by weight of water spray alloy steel powder with carbonyl Fe or Ni powder, and adding an organic binder to this mixed powder. The water-sprayed alloy steel powder is composed of a kneaded material mixed with an appropriate amount of Fe30.
Euffi% or more and 10 to 25% by weight of 5i, and the average grain size of the water spray alloy steel is the carbonyl F
It is characterized by being in the range of 1 to 6 times the average particle size of the e or N1 powder.

カーボニルFe粉末を用いたのは、金属カーボニルの熱
分解という特殊な製造法によって、粒径が5μm以下の
細粒で、均一、かつ球形しかも高純度の粉末が比較的容
易に得られるからである。
Carbonyl Fe powder was used because it is relatively easy to obtain fine, uniform, spherical, and highly pure powder with a particle size of 5 μm or less using a special manufacturing method called thermal decomposition of metal carbonyl. .

水噴霧合金鋼粉末を用いたのは、この合金鋼粉を比較的
低コストに製造することができるからである。この水噴
霧合金粉末中のFeを30重;%以上含有したのは、3
0重1%未満であると、Slなどの合金元素が焼結時に
カーボニルFeまたはNi粉末中に拡散反応しに<<、
特にSi、AQなどの合金元素の場合は焼結時に酸化し
やすく安定な酸化物を生成してしまうからである。なお
、水噴霧合金鋼粉末中に含有されるFe、Si以外の合
金元素としては、八β、Ni、Cr、MO,co等の各
種特性改善元素を挙げることができるが、これらの元素
に限定されるものでないことはもちろんである。。
Water-sprayed alloyed steel powder was used because this alloyed steel powder can be produced at relatively low cost. The water-sprayed alloy powder containing 30 weight% or more of Fe was 3
If the weight is less than 1%, alloying elements such as Sl will not diffuse into the carbonyl Fe or Ni powder during sintering.
In particular, alloy elements such as Si and AQ are easily oxidized during sintering and produce stable oxides. In addition, as alloying elements other than Fe and Si contained in the water spray alloyed steel powder, various property improving elements such as octaβ, Ni, Cr, MO, and co can be mentioned, but it is limited to these elements. Of course, this is not something that can be done. .

水噴霧合金鋼粉末中のSi含量を1.0〜25重1%と
したのは、この範囲内で融点が通常の焼結温度上限13
30℃以下の温度になるためで、例えば、Si含有量が
21重量%であると、1200℃で融液を生成し、この
領域では比較的低温埠結となり、高密度化および組織の
均一かがはかれる。
The reason why the Si content in the water-sprayed alloy steel powder is set to 1.0 to 25% by weight is that within this range the melting point is the upper limit of the normal sintering temperature.
For example, if the Si content is 21% by weight, a melt will be generated at 1200°C, which will result in relatively low temperature caking in this region, resulting in high density and uniform structure. is measured.

水噴霧合金鋼粉末の平均粒径は、カーボニルFeまたは
N1扮末の平均粒径の1〜6倍に設定する。これは、カ
ーボニルFeまたはNi粉末の平均粒径が5μm以下の
場合、水噴霧合金鋼粉末の平均粒径は30μm以下が対
応する。この範囲内では、水噴霧合金鋼粉末をカーボニ
ルFeまたはNi粉末で希釈することにより、混練物の
流動性を改善できる。鉄合金鋼粉末の平均粒径がカーボ
ニルFeまたはNi粉末の平均粒径の6倍を超えると、
鉄合金鋼粉末とカーボニルFe粉末の混合比が後述する
配合割合(混合率)では有機バインダを過剰に加えない
限り、射出成形が困難になりかつ焼結体の密度が低下し
てしまう。
The average particle size of the water-sprayed alloy steel powder is set to 1 to 6 times the average particle size of the carbonyl Fe or N1 powder. This means that when the carbonyl Fe or Ni powder has an average particle size of 5 μm or less, the water spray alloy steel powder has an average particle size of 30 μm or less. Within this range, the fluidity of the kneaded product can be improved by diluting the water-sprayed alloy steel powder with carbonyl Fe or Ni powder. When the average particle size of the iron alloy steel powder exceeds 6 times the average particle size of the carbonyl Fe or Ni powder,
At the mixing ratio (mixing ratio) of the iron alloy steel powder and the carbonyl Fe powder described later, injection molding becomes difficult and the density of the sintered body decreases unless an excessive amount of organic binder is added.

カーボニル粉末に水噴霧合金鋼粉末を10〜30重量%
混合するのは、10重量%未満とすると、水噴霧合金鋼
粉末中の濃化した合金元素が焼結時にカーボニルFeま
たはNi粉末中に十分拡散°しにくく合金元素を均一化
させることが困難になり、ミクロ偏析が残ってケイ素鉄
本来の良好な磁気特性を損なうことになるからである。
10-30% by weight of water-sprayed alloy steel powder into carbonyl powder
If the amount of the mixture is less than 10% by weight, the concentrated alloying elements in the water spray alloyed steel powder will not fully diffuse into the carbonyl Fe or Ni powder during sintering, making it difficult to homogenize the alloying elements. This is because micro-segregation remains and impairs the good magnetic properties inherent to silicon iron.

また、液相焼結を利用する場合、焼結時に融液を生成す
るのに水噴霧合金鋼粉末を10体積%以上必要とされる
。逆に水噴霧合金鋼粉末を30重1%以下としたのは、
カーボニルFeまたはNi粉末本来の持つ特性(≦5μ
m、球状)による混練物の十分な流動性を確保するのに
水噴霧合金鋼粉末の配合割合は小さいほうが良く、その
上限は30重量%が望ましいからである。
Further, when liquid phase sintering is used, 10% by volume or more of water-sprayed alloy steel powder is required to generate a melt during sintering. On the contrary, the water spray alloy steel powder was made less than 30% by weight,
Characteristics inherent to carbonyl Fe or Ni powder (≦5μ
This is because, in order to ensure sufficient fluidity of the kneaded material due to the spherical shape (m, spherical shape), the blending ratio of the water-sprayed alloy steel powder should be small, and the upper limit thereof is preferably 30% by weight.

(実施例) 本発明の実施例について説明する。(Example) Examples of the present invention will be described.

見立■1 平均粒径5μmのカーボニルFe粉末に所定の平均粒径
をもつケイ素鉄粉末Fe−20,731を14重量%混
合し、さらに有機バインダ8重量%を加えて160℃以
下で混練し、十分均一化した。
Mitate ■1 Carbonyl Fe powder with an average particle size of 5 μm was mixed with 14% by weight of silicon iron powder Fe-20,731 having a predetermined average particle size, and further 8% by weight of an organic binder was added and kneaded at 160°C or less. , sufficiently homogenized.

この混練物の成形性を試験するためにメルトインデクサ
(Ml)値を測定した。試験は、ケイ素(鉄粉末の平均
粒径が各種のものについて行なった(試験例1〜3、比
較例4)。
In order to test the moldability of this kneaded product, the melt index (Ml) value was measured. The tests were conducted on silicon (iron powder) having various average particle sizes (Test Examples 1 to 3, Comparative Example 4).

第1図は、ケイ素鉄粉末の平均粒径に応じて混練物のメ
ルトインデクサ値(Ml値)が射出成形温度との関係で
どのように変化するかを示すグラフである。
FIG. 1 is a graph showing how the melt index value (Ml value) of the kneaded material changes in relation to the injection molding temperature depending on the average particle size of the silicon-iron powder.

第1図から明らかなように、カーボニルFe粉末に混合
するケイ素鉄粉末の平均粒径が大きくなるほど、つまり
平均粒径が9.16.27.35μmと大きくなるほど
Ml値が小さくなり、混練物の流動性は低下することが
判る。
As is clear from Fig. 1, the larger the average particle size of the silicon iron powder mixed with the carbonyl Fe powder, that is, the larger the average particle size is 9.16.27.35 μm, the smaller the Ml value of the kneaded product. It can be seen that the fluidity decreases.

この試験結果より、ケイ素鉄粉末の平均粒径が30μm
前後すなわちケイ素鉄粉末の平均粒径がカーボニルFe
粉末の粒径の1〜6倍までであれば、試験例1〜3に示
すように、通常の射出成形温度190℃までのMl値は
比較例4よりも比較的高いので、混練物の成形性が良好
であると判定された。
From this test result, the average particle size of silicon iron powder is 30 μm.
Before and after, that is, the average particle size of the silicon iron powder is carbonyl Fe
If it is 1 to 6 times the particle size of the powder, as shown in Test Examples 1 to 3, the Ml value up to the normal injection molding temperature of 190°C is relatively higher than Comparative Example 4, so it is difficult to mold the kneaded product. The properties were judged to be good.

及五■ユ 平均粒径3〜5μmのカーボニルFeまたはNi粉末に
所定の平均粒径15〜20ALmの各種ケイ素鋼粉末を
適量混合し、この混合粉末に実施例1と同じ要領で有機
バインダを加え、160℃以下で十分混練した。
5) Mix an appropriate amount of various silicon steel powders with a predetermined average particle size of 15-20 ALm with carbonyl Fe or Ni powder with an average particle size of 3-5 μm, and add an organic binder to this mixed powder in the same manner as in Example 1. The mixture was sufficiently kneaded at a temperature of 160°C or lower.

この場合の混練物中の混合粉末の組成およびケイ素鋼粉
末中のSi含有量は、第1表に示すとおりである。
The composition of the mixed powder in the kneaded material and the Si content in the silicon steel powder in this case are as shown in Table 1.

この混練物について190℃でMl値を測定した後、こ
の混練物を温度170〜190℃、圧力1 t o n
 / c m 2で射出成形を行ない、環状成形体を作
製した。得られた環状成形体を加圧雰囲気中で脱脂・焼
結した。焼結温度はケイ素鋼粉末の融点よりも30℃低
い温度に設定した。ただし。
After measuring the Ml value of this kneaded product at 190°C, the kneaded product was heated at a temperature of 170 to 190°C and a pressure of 1 ton.
/ cm 2 injection molding was performed to produce an annular molded body. The obtained annular molded body was degreased and sintered in a pressurized atmosphere. The sintering temperature was set at a temperature 30° C. lower than the melting point of the silicon steel powder. however.

第1表中本印を付したものについては、ケイ素鋼粉末の
融点よりも30℃高い約1230℃の温度で液相焼結を
行なった。
For those marked with this mark in Table 1, liquid phase sintering was performed at a temperature of about 1230°C, which is 30°C higher than the melting point of silicon steel powder.

得られた焼結体の焼結密度、飽和磁束密度および最大透
磁率μmを測定した結果は、第1表に示すとおりである
The results of measuring the sintered density, saturation magnetic flux density, and maximum magnetic permeability μm of the obtained sintered body are shown in Table 1.

一般にFe−3i系磁性材料の特徴としてケイ素含有M
が多くなるほど真密度や飽和磁束密度が減少し、最大透
磁率は増加しつまり磁歪が減少する傾向がある。
In general, a feature of Fe-3i magnetic materials is silicon-containing M.
As the number increases, the true density and saturation magnetic flux density tend to decrease, the maximum magnetic permeability increases, and the magnetostriction tends to decrease.

第1表から明らかなように、試験例5.6.8〜11.
14および16は、比較例12.15に比べ相対的にM
l値が大きく流動性が良好で、したがって射出成形時の
成形性がよく、高い焼結密度になり、飽和磁束密度、最
大透磁率等の磁気特性が良好であった。
As is clear from Table 1, Test Examples 5.6.8 to 11.
14 and 16 are relatively M compared to Comparative Example 12.15.
The l value was large and the fluidity was good, so the moldability during injection molding was good, the sintered density was high, and the magnetic properties such as saturation magnetic flux density and maximum magnetic permeability were good.

これに対し、比較例7および比較例13は、カーボニル
Fe粉末に混入するケイ素鋼粉末中のケイ素含有量が2
5重量%を超え、カーボニルFe粉末へのケイ素鋼粉末
の混合率を小さくしている例であるが、この比較例7と
比較例13は、MI値が大きく混練物の流動性は良好で
あり、焼結密度が比較的大きい割には、最大透磁率が低
く軟質磁性材料としては不良である。これは、焼結時の
拡散合金化が進まず、ミクロ偏析の影響が大きいことが
原因であるものと推定される。
On the other hand, in Comparative Examples 7 and 13, the silicon content in the silicon steel powder mixed into the carbonyl Fe powder was 2.
This is an example in which the mixing ratio of silicon steel powder to carbonyl Fe powder is smaller than 5% by weight, but in Comparative Examples 7 and 13, the MI value is large and the fluidity of the kneaded product is good. Although the sintered density is relatively high, the maximum magnetic permeability is low, making it unsuitable as a soft magnetic material. This is presumed to be due to the fact that diffusion alloying does not proceed during sintering and the influence of micro-segregation is large.

また比較例12では、ケイ素鋼粉末の混合率が多すぎて
標準条件下では射出成形ができず、焼結密度および磁気
特性の測定はできなかった。
Furthermore, in Comparative Example 12, the mixing ratio of silicon steel powder was too high to allow injection molding under standard conditions, and the sintered density and magnetic properties could not be measured.

比較例15は、ケイ素鋼粉末の混合率が多いが射出成形
は可能であった。しかし、組織が内質的に不均一なため
か、焼結後は微小クラックが発生し、ケイ素含有総環が
適量であるものの、最大透磁率は期待される値より遥か
に小さかった。
Comparative Example 15 had a high mixing ratio of silicon steel powder, but injection molding was possible. However, perhaps due to the internal heterogeneity of the structure, microcracks occurred after sintering, and although there was a suitable amount of silicon-containing total rings, the maximum magnetic permeability was much lower than expected.

なお、本発明の焼結用磁性粉末混練物として、判定良好
のものは第1表中○印で示し1判定不良のものは第1表
中X印で示し、判定不良の判断基準は、MI値が20以
下、最大透磁率μmが3000以下とした。
In addition, as for the magnetic powder kneaded material for sintering of the present invention, those with good judgment are marked with ○ in Table 1, those with poor judgment are shown with X in Table 1, and the criteria for poor judgment are MI The value was 20 or less, and the maximum magnetic permeability μm was 3000 or less.

(発明の効果) 以上説明したように、本発明の焼結用磁性粉末混練物を
用いると、流動性ないし成形性が良好なため射出成形時
に特定の3次元形状の成形品を容易に造ることができ、
この成形品を焼結すると、合金成分の拡散合金化が促進
されるので、高密度の焼結体が得られ、飽和磁束密度、
最大透磁率等の磁気特性の優れた焼結体が得られるとい
う効果がある。
(Effects of the Invention) As explained above, when the magnetic powder kneaded material for sintering of the present invention is used, molded products with a specific three-dimensional shape can be easily produced during injection molding because of good fluidity or moldability. is possible,
When this molded product is sintered, the diffusion alloying of the alloy components is promoted, so a high-density sintered body is obtained, and the saturation magnetic flux density is
This has the effect that a sintered body with excellent magnetic properties such as maximum magnetic permeability can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例における各種水噴霧合金鋼の平
均粒径の異なる混練物のメルトインデクサ値と射出成形
温度との関係を表わすグラフである。 温度(0C) 第1図
FIG. 1 is a graph showing the relationship between the melt index value and the injection molding temperature of various kneaded water-sprayed alloy steels having different average particle sizes in Examples of the present invention. Temperature (0C) Figure 1

Claims (1)

【特許請求の範囲】[Claims] (1)カーボニルFeまたはNi粉末に水噴霧合金鋼粉
末10〜30重量%を混合し、この混合粉末に有機バイ
ンダを適量混入した混練物からなり、前記水噴霧合金鋼
粉末はFe30重量%以上およびSi10〜25重量%
を含有し、 前記水噴霧合金鋼粉末の平均粒径は前記カーボニルFe
またはNi粉末の平均粒径の1〜6倍の範囲にあること
を特徴とする焼結用磁性粉末混練物。
(1) It consists of a kneaded product in which carbonyl Fe or Ni powder is mixed with 10 to 30% by weight of water-sprayed alloy steel powder, and an appropriate amount of an organic binder is mixed into this mixed powder, and the water-sprayed alloy steel powder contains 30% by weight or more of Fe and Si10-25% by weight
and the average particle size of the water-sprayed alloy steel powder is the carbonyl Fe
Or a magnetic powder kneaded material for sintering, characterized in that the average particle diameter is in a range of 1 to 6 times the average particle diameter of Ni powder.
JP63118919A 1988-05-16 1988-05-16 Kneaded matter of magnetic powder for sintering Pending JPH01290704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63118919A JPH01290704A (en) 1988-05-16 1988-05-16 Kneaded matter of magnetic powder for sintering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63118919A JPH01290704A (en) 1988-05-16 1988-05-16 Kneaded matter of magnetic powder for sintering

Publications (1)

Publication Number Publication Date
JPH01290704A true JPH01290704A (en) 1989-11-22

Family

ID=14748430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63118919A Pending JPH01290704A (en) 1988-05-16 1988-05-16 Kneaded matter of magnetic powder for sintering

Country Status (1)

Country Link
JP (1) JPH01290704A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0710516A3 (en) * 1994-10-07 1996-07-24 Basf Ag Process and injection-moulding compound for the manufacturing of shaped metallic bodies
EP0976680A1 (en) * 1998-07-29 2000-02-02 Basf Aktiengesellschaft Carbonyl iron silicide powder

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0710516A3 (en) * 1994-10-07 1996-07-24 Basf Ag Process and injection-moulding compound for the manufacturing of shaped metallic bodies
US5802437A (en) * 1994-10-07 1998-09-01 Basf Aktiengesellschaft Production of metallic shaped bodies by injection molding
EP0976680A1 (en) * 1998-07-29 2000-02-02 Basf Aktiengesellschaft Carbonyl iron silicide powder
US6309620B1 (en) * 1998-07-29 2001-10-30 Basf Aktiengesellschaft Carbonyl iron silicide powder

Similar Documents

Publication Publication Date Title
US5108493A (en) Steel powder admixture having distinct prealloyed powder of iron alloys
US7309374B2 (en) Diffusion bonded nickel-copper powder metallurgy powder
CN104308141A (en) Iron-based mixed powder for powder metallurgy
US5217683A (en) Steel powder composition
JP6690781B2 (en) Alloy steel powder
JPH10504353A (en) Iron-based powder containing chromium, molybdenum and manganese
JP6741153B2 (en) Partially diffused alloy steel powder
JPH0257608A (en) Fe-co based alloy fine powder and fe-co based sintered magnetic material
JP4371003B2 (en) Alloy steel powder for powder metallurgy
EP0354666B1 (en) Alloy steel powders for injection molding use, their commpounds and a method for making sintered parts from the same
JPH01290704A (en) Kneaded matter of magnetic powder for sintering
JP2007009288A (en) Soft magnetic alloy powder
JP2007169736A (en) Alloy steel powder for powder metallurgy
JPS5854185B2 (en) Powder for high permeability sintered iron-nickel alloys
JPH0751721B2 (en) Low alloy iron powder for sintering
JPH01290703A (en) Kneaded matter of low-alloy steel powder for sintering
JPH05507967A (en) Iron-based powder, parts manufactured with it, and method for manufacturing this part
JPH0375621B2 (en)
JPS6123702A (en) Raw material powder of powder metallurgy for producing ferrous parts
JPH0213001B2 (en)
JPS6123701A (en) Raw material powder of powder metallurgy for producing ferrous parts
JP2639812B2 (en) Magnetic alloy powder for sintering
JP3160468B2 (en) Alloy powder and compact using the same
JPH05148590A (en) Low thermal expansion alloy powder and composition thereof
JP2005068483A (en) Production method for sintered compact of mn-based high-damping alloy