JPH1053498A - Reaction vessel for semiconductor wafer and heat-treating apparatus using the vessel - Google Patents

Reaction vessel for semiconductor wafer and heat-treating apparatus using the vessel

Info

Publication number
JPH1053498A
JPH1053498A JP8224394A JP22439496A JPH1053498A JP H1053498 A JPH1053498 A JP H1053498A JP 8224394 A JP8224394 A JP 8224394A JP 22439496 A JP22439496 A JP 22439496A JP H1053498 A JPH1053498 A JP H1053498A
Authority
JP
Japan
Prior art keywords
reaction vessel
quartz glass
wafer
heat treatment
semiconductor wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8224394A
Other languages
Japanese (ja)
Other versions
JP3412734B2 (en
Inventor
Itsuo Araki
逸男 荒木
Toshikatsu Matsutani
利勝 松谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Yamagata Shin Etsu Quartz Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Yamagata Shin Etsu Quartz Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd, Yamagata Shin Etsu Quartz Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP22439496A priority Critical patent/JP3412734B2/en
Publication of JPH1053498A publication Critical patent/JPH1053498A/en
Application granted granted Critical
Publication of JP3412734B2 publication Critical patent/JP3412734B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a reaction vessel for a semiconductor wafer capable of suppressing the increase in the size of the apparatus and the generation of particles and keeping high heat-insulation performance without using a separate heatinsulation cylinder and to provide a heat-treating apparatus by using the reaction vessel. SOLUTION: This reaction vessel 50 for the heat treatment of a semiconductor wafer 10 in a state held in the vessel shown by the drawing has a wafer- holding reaction vessel main body 52 made of a transparent quartz glass and a flange part 60 connected to the main body 52 and having a sandwich structure 63 composed of an opaque quartz glass 61 and a foamed quartz glass 62 containing a number of small spaces in and quartz thin films extending in vertical and lateral directions.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体ウェーハの
拡散処理、酸化処理、減圧CVDなどに使用される半導
体ウェーハの反応容器と該容器を用いた熱処理装置熱処
理装置に係わり、特にウェーハを直立状に収納する枚葉
式の半導体ウェーハの熱処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor wafer reaction vessel used for semiconductor wafer diffusion processing, oxidation processing, low-pressure CVD, etc., and a heat treatment apparatus using the vessel. The present invention relates to a single-wafer-type semiconductor wafer heat treatment apparatus housed in a semiconductor device.

【0002】[0002]

【従来の技術】従来より半導体ウェーハの熱処理をする
場合、複数枚のウェーハをウェーハボート積層配設載置
して、反応容器内での一括熱処理するバッチ方式が採用
されている。この方式では、ウェーハとボートとの接触
部分近傍で生じる気流の乱れや、ウェーハを多段積層す
ることで気流に乱れを起し投入ウェーハを均質に処理す
ることは困難であった。また、ウェーハの口径の大口径
化につれ、前記バッチ処理方式では重量負担に対応する
ボート及び支持部の製作が困難であること、また、大口
径化に伴う反応容器の大型化、加熱温度分布やガス分布
の均一化、加熱源の無用の増大化につながり、ウェーハ
の大口径化に対応するのには従来のバッチ方式では対処
困難な種々の問題点があった。さらに、次世代の、64
M、1G等の高集積密度化の半導体製造プロセスではサ
ブミクロン単位の精度が要求され、複数枚のウェーハを
一括処理するバッチシステムではウェーハの積層位置や
ガス流の流入側と排出側とはそれぞれ処理条件にバラツ
キを生じ、また積層されたウェーハ相互間で影響を及ぼ
し合い、またボートの接触部位よりパーティクル等が発
生し、高品質の加工は困難であった。
2. Description of the Related Art Conventionally, in the case of heat treatment of a semiconductor wafer, a batch method has been adopted in which a plurality of wafers are stacked and mounted on a wafer boat and batch heat treatment is performed in a reaction vessel. In this method, it is difficult to uniformly process the input wafer by causing turbulence in the airflow generated near the contact portion between the wafer and the boat and turbulence in the airflow by stacking the wafers in multiple stages. Further, as the diameter of the wafer becomes larger, it is difficult to manufacture a boat and a supporting portion corresponding to the weight burden in the batch processing method, and the reaction vessel becomes larger due to the larger diameter, the heating temperature distribution and the like. This has led to uniformization of gas distribution and unnecessary increase in the number of heating sources, and there have been various problems that are difficult to cope with with a conventional batch method in order to cope with an increase in the diameter of a wafer. In addition, the next generation of 64
Sub-micron unit accuracy is required in semiconductor manufacturing processes with high integration densities such as M and 1G. In a batch system that processes a plurality of wafers at a time, the stacking position of wafers and the inflow side and outflow side of the gas flow are respectively Variations in processing conditions occur, affect each other between stacked wafers, and generate particles and the like from contact portions of the boat, making high-quality processing difficult.

【0003】上記問題解決のため、一枚のウェーハ毎に
熱処理を行なう枚葉式熱処理装置が注目され、種々の提
案がなされているが、最近の提案(特開平5ー2911
54号公報に開示)には、下記枚葉式熱処理装置が記載
されている。該熱処理装置においては、サセプタの下方
に設けた加熱源によりサセプタ上に水平状に載置したウ
ェーハを、低圧反応ガス雰囲気中で加熱してウェーハ上
に成膜するようにしてある。上記水平状にウェーハを載
置する場合は、下記問題点を内蔵している。即ち、 1)、ウェーハが水平状に載置されているため、ウェー
ハに自重による撓みの発生の問題がある。 2)、反応容器が大型になる。従って加熱源等の動力源
も大きくなる。
In order to solve the above problem, attention has been paid to a single-wafer heat treatment apparatus for performing heat treatment for each wafer, and various proposals have been made.
No. 54) discloses the following single-wafer heat treatment apparatus. In the heat treatment apparatus, a wafer placed horizontally on a susceptor by a heating source provided below the susceptor is heated in a low-pressure reaction gas atmosphere to form a film on the wafer. When the wafer is placed horizontally, the following problems are incorporated. 1) Since the wafer is placed horizontally, there is a problem that the wafer is bent by its own weight. 2) The reaction vessel becomes large. Therefore, a power source such as a heating source also becomes large.

【0004】そこで、本発明者等は、ウェーハの大口径
化と次世代の64M、1G等の高集積密度化に対処すべ
く、枚葉式のウェーハ熱処理装置の開発に携わつてきた
が、収納するウェーハの大きさに対し、必要最小限の大
きさを確保できる形状を持つ枚葉反応容器とウェーハの
直立支持装置を備えた半導体ウェーハの熱処理装置に関
する提案を特願平8ー224823に提案している。
(非公知)
Therefore, the present inventors have been involved in the development of a single-wafer-type wafer heat treatment apparatus in order to cope with an increase in the diameter of the wafer and a high integration density of the next generation 64M, 1G, etc. Japanese Patent Application No. Hei 8-224823 proposes a proposal for a heat treatment apparatus for a semiconductor wafer having a single-wafer reaction container having a shape capable of securing a necessary minimum size and a wafer upright support device with respect to the size of a wafer to be formed. ing.
(Unknown)

【0005】上記提案においては、ウェーハの収納姿勢
は直立タイプであり、またウェーハ表面への熱分布を均
一と反応ガス流の分布も一様にするため、ウェーハの熱
処理面に対し扁平形状とした扁平ドーム状とし、反応容
器の大きさを必要最小限に押さえる構成としてある。即
ち、図5に示すように、偏平ドーム状の反応容器50と
該容器内にウエーハ10を直立支持する支持装置40と
前記反応容器50の偏平側に対面して配設した一対の平
板状発熱体57からなり、そして反応容器50は、透明
石英ガラスよりなる一体構成の反応容器本体52に非透
明石英ガラスよりなるフランジ51を溶接接合するとと
もに、必要に応じて反応ガスは容器52の上部流入孔5
3より流入し下部排出孔58より排出するようにしてあ
る。また、直立支持装置40は石英ガラス若しくは炭化
珪素よりなり、前記ウエーハを直立に支持する支持部4
1と前記フランジ下面にOリング54を介して密閉する
ベース体42からなる。
In the above proposal, the wafer is stored in an upright position, and the heat distribution on the wafer surface is made uniform and the distribution of the reactant gas flow is made uniform. It has a flat dome shape, and is designed to keep the size of the reaction vessel to a minimum. That is, as shown in FIG. 5, a flat dome-shaped reaction vessel 50, a support device 40 for supporting the wafer 10 upright in the vessel, and a pair of flat plate-shaped heat generators disposed facing the flat side of the reaction vessel 50. The reaction vessel 50 is formed by welding and joining a flange 51 made of non-transparent quartz glass to a reaction vessel body 52 integrally formed of transparent quartz glass, and a reaction gas flows into the upper part of the vessel 52 as necessary. Hole 5
3 and is discharged from the lower discharge hole 58. The upright support device 40 is made of quartz glass or silicon carbide, and supports the wafer 4 upright.
1 and a base body 42 hermetically sealed to the lower surface of the flange via an O-ring 54.

【0006】上記提案によれば、前記反応容器50は薄
肉を図っても真空強度がある。肉薄の為に軽量化が図れ
る。内側曲面に沿ってガスの流れが良い。等の利点を持
っているが、前記反応容器50内の処理空間は600〜
1000℃前後の高温で熱処理を行うために、而もOリ
ング54その他のシール部して機能するフランジは熱処
理空間となる反応容器本体52の直下に位置する為に前
記シール部に高温が伝搬しやすく、この為前記技術にお
いては、前記フランジを非透明石英ガラスで形成し、O
リング54その他のシール部分に高温が伝搬するのを防
いでいるが必ずしも十分でない。このため円筒状の反応
容器を用いる縦型炉芯管においては炉心管内の加熱区域
と炉管開口端側間に石英ガラス製の断熱筒を配して前記
ウエハ熱処理用空間温度の均等化を図るとともに、前記
炉芯管周囲に囲繞した発熱体57を断熱筒上方に位置せ
しめ、前記断熱筒を熱遮断手段として機能させる事によ
り、炉心管開口端側に設けたOリング54その他のシー
ル部分に高温が伝搬するのを防いでいる。
According to the above proposal, the reaction vessel 50 has vacuum strength even if it is made thin. Light weight can be achieved due to the thinness. Good gas flow along the inner curved surface. However, the processing space in the reaction vessel 50 is 600 to
Since heat treatment is performed at a high temperature of about 1000 ° C., the O-ring 54 and other flanges that function as seals are located immediately below the reaction vessel main body 52 serving as a heat treatment space. Therefore, in the technique, the flange is formed of non-transparent quartz glass, and
Although the high temperature is prevented from propagating to the ring 54 and other sealing parts, it is not always sufficient. For this reason, in a vertical furnace core tube using a cylindrical reaction vessel, a heat insulating tube made of quartz glass is arranged between the heating section in the furnace core tube and the opening end side of the furnace tube to equalize the space temperature for the wafer heat treatment. At the same time, the heating element 57 surrounding the furnace core tube is positioned above the heat insulating tube, and the heat insulating tube functions as a heat shut-off means. Prevents high temperatures from propagating.

【0007】そしてこのような断熱筒は一般に、密封さ
れた石英ガラス製の円筒体内に、長繊維状の石英ガラス
ウールを封入して構成したが、特願昭62−20349
9において前記断熱筒を、内部に多数の微小空間を有し
石英薄膜が縦横に張りめぐらされた石英ガラス発泡体、
言い換えれば前記発泡体がガラスウール等の柔軟性を有
する部材で形成されているのではなく、例えば発泡ガラ
ス体のように多数の微小空間を内部に有し且つそれ自体
は硬質な薄膜石英ガラスが網目状に縦横に張りめぐらさ
れている石英ガラス体で形成したものを提案している。
In general, such a heat insulating cylinder is constituted by enclosing a long fiber-shaped quartz glass wool in a sealed quartz glass cylinder, as disclosed in Japanese Patent Application No. 62-20349.
9, a quartz glass foam in which the heat insulating cylinder is provided with a large number of minute spaces inside and a quartz thin film is stretched vertically and horizontally;
In other words, the foam is not formed of a flexible member such as glass wool, but has a large number of minute spaces inside, such as a foam glass body, and is itself formed of a hard thin-film quartz glass. A proposal made of a quartz glass body stretched vertically and horizontally in a mesh shape has been proposed.

【0008】しかしながら前記のように独立した断熱筒
を用いることは、部品点数の増加のみならず、断熱筒上
面に設置されるウエーハボードとの摺擦によりパーティ
クルが発生しやすくなる。また基本的に前記枚葉式の反
応容器50においては図5に示すように容器本体52と
フランジ間が極めて近接している為に、断熱筒を介装す
る余地がない。
However, the use of the independent heat insulating cylinder as described above not only increases the number of parts, but also tends to generate particles due to rubbing with the wafer board installed on the upper surface of the heat insulating cylinder. Basically, in the single-wafer reaction vessel 50, as shown in FIG. 5, the space between the vessel body 52 and the flange is extremely close to each other, so that there is no room for interposing a heat insulating cylinder.

【0009】[0009]

【発明が解決しようとする課題】本発明は、かかる従来
技術の欠点に鑑み独立した断熱筒を用いることなく、又
装置の大型化の抑制やパーティクルの発生を抑え、高い
熱遮断性を維持し得る半導体ウェーハの反応容器と該容
器を用いた熱処理装置の提供を目的としたものである。
SUMMARY OF THE INVENTION In view of the drawbacks of the prior art, the present invention does not use an independent heat insulating cylinder, suppresses the size of the apparatus, suppresses the generation of particles, and maintains a high thermal insulation. It is an object of the present invention to provide a reaction vessel for a semiconductor wafer to be obtained and a heat treatment apparatus using the vessel.

【0010】[0010]

【課題を解決するための手段】請求項1記載の発明は、
半導体ウェーハを収納した状態で熱処理を行うウエーハ
熱処理用反応容器50において、ウエーハを収納する反
応容器本体52を透明石英ガラス体で形成するととも
に、該本体52に連設するフランジ部60を非透明石英
ガラス体61と内部に多数の微小空間を有し石英薄膜が
縦横に張りめぐらされた石英ガラス発泡体62とのサン
ドイッチ構造63で形成したことを特徴とする。ここで
非透明ガラス体とは半透明若しくは不透明ガラス体のい
ずれも含むが摺りガラス状の表面のみが不透明のガラス
体は含まない。そして本発明は特に枚葉式反応容器50
に好適に適用されるものであるが、これのみに限定され
ず容器開口下端にフランジを有する縦型炉芯間にも適用
可能である。
According to the first aspect of the present invention,
In a reaction vessel 50 for wafer heat treatment in which heat treatment is carried out in a state in which a semiconductor wafer is contained, a reaction vessel main body 52 for containing a wafer is formed of a transparent quartz glass body, and a flange portion 60 connected to the main body 52 is made of non-transparent quartz. It is characterized in that it is formed by a sandwich structure 63 of a glass body 61 and a quartz glass foam body 62 having a large number of minute spaces inside and a quartz thin film stretched vertically and horizontally. Here, the non-transparent glass body includes both a translucent and an opaque glass body, but does not include a glass body whose frosted glass-like surface is only opaque. The present invention is particularly applicable to the single-wafer reaction vessel 50.
However, the present invention is not limited to this, and is also applicable between vertical furnace cores having a flange at the lower end of the vessel opening.

【0011】請求項2記載の発明は、前記反応容器本体
52を特定し、ウエーハを直立状に収納可能に扁平曲面
体で形成したことを特徴とするものである。なお、非透
明石英ガラスは見かけ密度0.9g/cm3 以上の気泡
含有石英ガラスで構成しその気泡は直径10乃至250
μmのものが20000個/cm3以上、好ましくは4
0000〜70000個/cm3のものが存在するもの
をいう。又石英ガラス発泡体62は見かけ密度0.1〜
0.8g/cm3 の発泡石英ガラスで構成するのがよ
い。
The invention according to claim 2 is characterized in that the reaction vessel main body 52 is specified and is formed of a flat curved body so that the wafer can be stored upright. The non-transparent quartz glass is composed of quartz glass containing bubbles having an apparent density of 0.9 g / cm 3 or more, and the bubbles have a diameter of 10 to 250 mm.
20,000 / cm 3 or more, preferably 4 μm
It refers to the presence of 0000 to 70,000 particles / cm 3 . The quartz glass foam 62 has an apparent density of 0.1 to
It is preferable to use 0.8 g / cm 3 of expanded quartz glass.

【0012】請求項4記載の発明は半導体ウェーハを収
納した反応容器50と該容器内にウエーハを支持させる
支持手段40とからなる熱処理装置において、前記支持
手段の非熱処理区域側に非透明石英ガラス体61と内部
に多数の微小空間を有し石英薄膜が縦横に張りめぐらさ
れた石英ガラス発泡体62とのサンドイッチ構造体63
を設けたことを特徴とする。
According to a fourth aspect of the present invention, there is provided a heat treatment apparatus comprising a reaction vessel 50 accommodating a semiconductor wafer and a supporting means 40 for supporting a wafer in the vessel. A sandwich structure 63 of a body 61 and a quartz glass foam body 62 having a large number of minute spaces inside and having a quartz thin film stretched vertically and horizontally.
Is provided.

【0013】そしてこの場合も前記発明を枚葉式熱処理
装置に適用するのが有効であり、請求項5記載のよう
に、前記支持手段40が半導体ウェーハを容器内にほぼ
直立支持させる支持手段40であり、前記反応容器50
が、ウエーハを直立状に収納可能に扁平曲面体で形成す
るのがよい。尚前記発泡体62はその表面側を透明ガラ
ス層で隠蔽するのがよく又前記発泡体62の微小空間は
減圧又は真空状態にあるのがよい。
In this case as well, it is effective to apply the invention to a single-wafer heat treatment apparatus. As described in claim 5, the supporting means 40 supports the semiconductor wafer substantially upright in the container. And the reaction vessel 50
However, it is preferable to form the wafer into a flat curved body so that the wafer can be stored upright. Preferably, the surface of the foam 62 is covered with a transparent glass layer, and the minute space of the foam 62 is preferably in a reduced pressure or vacuum state.

【0014】尚前記サンドイッチ構造体63の縦方向の
強度不足を解消する為に、必要に応じ棒状キールを付設
しても良い。
In order to solve the shortage of the strength of the sandwich structure 63 in the vertical direction, a bar-shaped keel may be provided if necessary.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施例の形態を、
図示例と共に説明する。ただし、この実施例に記載され
ている構成部品の寸法、形状、その相対的位置等は特に
特定的な記載がないかぎりは、この発明の範囲をそれに
限定する趣旨ではなく、単なる説明例にすぎない。図1
は反応容器50のフランジ部60に前記サンドイッチ構
造体63を用いた熱処理装置の一例を示す概略構成図、
図2及び図3はウエーハ支持装置40にサンドイッチ構
造体63を組込んだ熱処理装置の概略構成図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described.
This will be described together with the illustrated example. However, unless otherwise specified, the dimensions, shapes, relative positions, and the like of the components described in this embodiment are not intended to limit the scope of the present invention, but are merely illustrative examples. Absent. FIG.
Is a schematic configuration diagram showing an example of a heat treatment apparatus using the sandwich structure 63 in the flange portion 60 of the reaction vessel 50,
FIG. 2 and FIG. 3 are schematic configuration diagrams of a heat treatment apparatus in which the sandwich structure 63 is incorporated in the wafer support apparatus 40.

【0016】図1に示す熱処理装置は、偏平ドーム状の
反応容器50と該容器内にウエーハを直立支持する支持
装置40と前記反応容器50の偏平側に対面して配設し
た一対の平板状発熱体57からなり、前記反応容器50
は図5と同様に、反応容器50はウェーハの熱処理面に
対し扁平形状とした扁平ドーム状とし、反応容器50の
大きさを必要最小限に押さえるとともに、該反応容器5
0は、透明石英ガラスよりなる一体構成の反応容器本体
52に非透明石英ガラス板と内部に多数の微小空間を有
し石英薄膜が縦横に張りめぐらされた石英ガラス発泡体
62からなる発泡ガラス板とを順次積層溶接してサンド
イッチ構造63となしたフランジ部60を溶接接合す
る。尚、必要に応じて反応ガスは容器52の上部流入孔
53より流入し下部排出孔58より排出するようにして
ある。また、直立支持装置40は石英ガラス若しくは炭
化珪素よりなり、前記ウエーハを直立に支持する支持部
41と前記フランジ下面にOリング54を介して密閉す
るベース体42からなる。
The heat treatment apparatus shown in FIG. 1 has a flat dome-shaped reaction vessel 50, a support apparatus 40 for supporting a wafer upright in the vessel, and a pair of flat plate-shaped pieces disposed facing the flat side of the reaction vessel 50. A heating element 57,
As in FIG. 5, the reaction vessel 50 has a flat dome shape that is flat with respect to the heat-treated surface of the wafer, the size of the reaction vessel 50 is kept to a minimum, and the reaction vessel 5
Numeral 0 is a foam glass plate made of a quartz glass foam 62 in which a non-transparent quartz glass plate is provided in a reaction vessel main body 52 made of transparent quartz glass, and a large number of minute spaces are provided, and a quartz thin film is stretched vertically and horizontally. Are sequentially laminated and welded to the flange portion 60 having the sandwich structure 63. It is to be noted that the reactant gas flows in from the upper inlet 53 of the container 52 and is discharged from the lower outlet 58 as required. The upright support device 40 is made of quartz glass or silicon carbide, and includes a support portion 41 that supports the wafer upright and a base body 42 that seals the lower surface of the flange through an O-ring 54.

【0017】以下前記サンドイッチ構造体63の製造手
順について図4に基づいて説明するに、先ず非透明ガラ
ス板とは内部に直径10〜250μmで1cm3当り2
0000個以上、好ましくは40000〜70000個
/cm3の気泡が含有されているものを作成する。この
作成方法は、公知のように原料粉として結晶水を含まな
い結晶質石英の粉体を使用し、その粒度分布を300〜
100μmの範囲に制御して加熱溶融条件をたとえば1
600℃以上の温度に制御しながら溶融することによ
り、容易に形成される。次に図4(A)に示すように、
前記非透明石英ガラス板61Bを、前記フランジ部60
とほぼ同形、具体的には外径を僅かに前記フランジ部6
0の楕円リング状に形成するとともに、その下面にやは
り棒状非透明石英ガラス体からなる脚610を溶接す
る。前記脚610の長さは後記する発泡体62厚さとほ
ぼ同長に設定する。
The procedure for manufacturing the sandwich structure 63 will now be described with reference to FIG. 4. First, the non-transparent glass plate is internally formed with a diameter of 10 to 250 μm and a diameter of 2 to 1 cm 3.
A foam containing 0000 or more, preferably 40,000 to 70,000 bubbles / cm 3 is prepared. This production method uses a crystalline quartz powder containing no crystallization water as a raw material powder as is well known, and the particle size distribution is 300 to
The heating and melting conditions are controlled, for example, to 1 in a range of 100 μm.
It is easily formed by melting while controlling the temperature to 600 ° C. or higher. Next, as shown in FIG.
The non-transparent quartz glass plate 61B is
Substantially the same shape as that of the flange 6
In addition, a leg 610 made of a rod-shaped non-transparent quartz glass body is welded to a lower surface of the ring 610 in a shape of an oval ring. The length of the leg 610 is set substantially equal to the thickness of the foam 62 described later.

【0018】次にフランジ形成用の容器65として上方
が開口し、前記フランジ部60と同形で且つ背高のみが
大なる前記非透明石英ガラス体61からなるリング楕円
形状の石英ガラス容器65を形成した後、該容器65内
に石英微粉62’及び前記脚付き非透明石英ガラス板6
1B更にその上に石英微粉62’を順次投入し、石英微
粉62’とフランジ部60が交互に積層された積層体を
形成した後、真空炉中で1300〜1600℃前後の温
度で加熱する事により、図4(B)に示すように内部に
多数の微小空間62aを有し、石英薄膜62bが縦横に
張りめぐらされた石英ガラス発泡体62(断面構造は図
6の(A),(B),(C)の様なもの)と前記非透明
の石英ガラス板61が交互に積層されたサンドイッチ構
造体63が形成される。61は61A、61B、61C
の総称である。この際前記石英微粉内にカーボン粉とと
もに水を混入して泥状にした状態で、加熱させる事によ
り更に多数の真空微小空間を有する発泡ガラス状の発泡
体62が形成出来、好ましい。
Next, a ring-shaped elliptical quartz glass container 65 made of the non-transparent quartz glass body 61 having the same shape as the flange portion 60 but having a large height is formed as a container 65 for forming a flange. After that, the quartz fine powder 62 ′ and the non-transparent quartz glass plate 6 with legs are placed in the container 65.
1B Further, a quartz fine powder 62 'is sequentially put thereon, and after forming a laminate in which the quartz fine powder 62' and the flange portion 60 are alternately laminated, heating is performed at a temperature of about 1300 to 1600 ° C in a vacuum furnace. As a result, as shown in FIG. 4B, a quartz glass foam 62 having a large number of minute spaces 62a therein and having a quartz thin film 62b stretched vertically and horizontally (the cross-sectional structure is shown in FIGS. 6A and 6B). ) And (C)) and the non-transparent quartz glass plate 61 are alternately laminated to form a sandwich structure 63. 61 is 61A, 61B, 61C
Is a generic term for At this time, foamed glass-like foam 62 having more vacuum microspaces can be formed by heating in a state in which water is mixed together with carbon powder in the quartz fine powder to form a mud.

【0019】尚発泡体62は前記加熱により、その表面
が石英容器65及び石英ガラス板61と一体的に溶着す
るとともに、前記加熱により体積が減少する為に、その
減少量に見合って石英ガラス粉を多く投入し、加熱によ
りフランジ部60の脚長と同程度の厚さの発泡体62に
なるように設定する。そして前記容器65の上側開放部
分を切断し、その上面に非透明石英ガラスからなる楕円
リング状の蓋体61Aを溶着して、図4(B)に示すサ
ンドイッチ構造体63が形成される。
The surface of the foam 62 is welded integrally with the quartz container 65 and the quartz glass plate 61 by the heating, and the volume is reduced by the heating. And a foam 62 having a thickness approximately equal to the leg length of the flange portion 60 is set by heating. Then, the upper open portion of the container 65 is cut, and an elliptical ring-shaped lid 61A made of non-transparent quartz glass is welded to the upper surface to form a sandwich structure 63 shown in FIG. 4B.

【0020】このように形成されたサンドイッチ構造体
63を前記反応容器本体52の開口端に溶着することに
より反応容器50が形成される。尚、このような構成を
採らずに、カーボン製のルツボ内で前記発泡体62を形
成した後、該発泡体62を板状に削成して楕円リング円
状の板状体にしたものを、前記非透明石英ガラス板と交
互に積層した後、真空炉中で加熱して一体的に溶着して
も良い。
The reaction vessel 50 is formed by welding the sandwich structure 63 thus formed to the open end of the reaction vessel main body 52. It should be noted that, after adopting such a configuration, after forming the foam 62 in a carbon crucible, the foam 62 was cut into a plate to form an elliptical ring-shaped plate. Alternatively, after alternately laminating with the non-transparent quartz glass plate, the layers may be integrally welded by heating in a vacuum furnace.

【0021】かかる実施例によれば前記非透明石英ガラ
ス板61自体は発泡体62に比較して大幅に強度性を有
し、一方発泡体62は非透明石英ガラス板61に比較し
て大幅に大なる断熱性を有し、従って両者をサンドイッ
チ構造にすることにより、耐圧強度性を有し前記反応容
器本体52が大径化した場合でも十分ある強度をもって
断熱性を達成し得る。従って前記実施例においては、熱
処理を行う反応容器本体52の直下に前記サンドイッチ
構造体63のフランジ体60を形成したために、前記容
器本体52内の加熱処理温度が600〜1100℃前後
に加熱した場合でもフランジ面下面側のOリング54そ
の他のシール部分に高温が伝搬するのを有効に防ぐこと
ができる。
According to this embodiment, the non-transparent quartz glass plate 61 itself has a great strength compared to the foam 62, while the foam 62 has a great strength compared to the non-transparent quartz glass plate 61. By having a large heat insulating property and thus having a sandwich structure, the heat insulating property can be achieved with a sufficient strength even if the diameter of the reaction vessel main body 52 is increased by having a pressure resistance. Therefore, in the above embodiment, since the flange body 60 of the sandwich structure 63 is formed immediately below the reaction vessel main body 52 for performing the heat treatment, the heat treatment temperature in the vessel main body 52 is heated to about 600 to 1100 ° C. However, it is possible to effectively prevent high temperature from propagating to the O-ring 54 and other seal portions on the lower surface side of the flange surface.

【0022】図2及び図3は、半導体ウェーハの支持装
置40に前記サンドイッチ構造体63を配した他の実施
例である。本実施例の支持装置40は前記ウエーハを直
立に支持する支持部41と前記フランジ下面にOリング
54を介して密閉するベース体42からなり、前記ベー
ス体42と支持部41との間に介装される。支持部41
は前記サンドイッチ構造体63の非透明ガラス体上面
に、3本の棒状ウエーハ支持部41を立設し、1枚のウ
エーハを3箇所で支持する3点支持方式のものである。
この場合反応容器50は前記サンドイッチ構造体63が
介装した部分が加熱されないようにフランジ部60と容
器本体52間の接合部を楕円筒状に垂直に伸長させてい
る。
FIGS. 2 and 3 show another embodiment in which the sandwich structure 63 is disposed on a semiconductor wafer support device 40. FIG. The support device 40 of the present embodiment includes a support portion 41 for supporting the wafer upright and a base body 42 hermetically sealed on the lower surface of the flange via an O-ring 54. Be mounted. Support part 41
Is a three-point support type in which three bar-shaped wafer support portions 41 are erected on the upper surface of the non-transparent glass body of the sandwich structure 63, and one wafer is supported at three places.
In this case, in the reaction vessel 50, the joint between the flange portion 60 and the vessel main body 52 is vertically extended in an elliptical cylindrical shape so that the portion interposed by the sandwich structure 63 is not heated.

【0023】かかる実施例によれば、前記反応容器本体
52とフランジ部60間の伸長体55に位置する部分に
サンドイッチ構造体63が位置しているためにフランジ
部60に熱が伝わりにくく、該フランジ51を従来技術
のように非透明石英ガラスで形成してもOリング54そ
の他のシール部分に高温が伝搬するのを有効に防ぐこと
ができる。又前記サンドイッチ構造体63の存在により
容器本体52内の前記ウエーハ熱処理用空間温度の均等
化を図る事ができる。又本発明によれば独立した断熱筒
を用いることなくウエーハ支持装置40と一体化したた
めに、部品点数の低減のみならず、パーティクルの発生
の恐れもない。
According to this embodiment, since the sandwich structure 63 is located at the portion of the elongated body 55 between the reaction vessel main body 52 and the flange portion 60, heat is not easily transmitted to the flange portion 60. Even if the flange 51 is formed of non-transparent quartz glass as in the prior art, it is possible to effectively prevent high temperature from propagating to the O-ring 54 and other sealing portions. Further, the presence of the sandwich structure 63 makes it possible to equalize the space temperature for the wafer heat treatment in the container body 52. In addition, according to the present invention, since it is integrated with the wafer support device 40 without using an independent heat insulating cylinder, not only the number of parts is reduced but also there is no possibility of generation of particles.

【0024】[0024]

【発明の効果】以上記載のごとく本発明によれば、独立
した断熱筒を用いることなく、又装置の大型化の抑制や
パーティクルの発生を抑え、高い熱遮断性を維持し得る
半導体ウェーハの反応容器と該容器を用いた熱処理装置
を提供する事ができる。
As described above, according to the present invention, it is possible to suppress the reaction of a semiconductor wafer without using an independent heat insulating cylinder, suppressing the increase in size of the apparatus, suppressing the generation of particles, and maintaining a high thermal insulation. A container and a heat treatment apparatus using the container can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は反応容器のフランジ部に前記サンドイッ
チ構造体を用いた熱処理装置の一例を示す請求項1記載
の発明に対応する概略構成図である。
FIG. 1 is a schematic configuration diagram corresponding to the invention of claim 1, showing an example of a heat treatment apparatus using the sandwich structure in a flange portion of a reaction vessel.

【図2】図2はウエーハ支持装置にサンドイッチ構造体
を組込んだ熱処理装置一例を示す請求項4記載の発明に
対応する概略構成図である。
FIG. 2 is a schematic structural view corresponding to the invention according to claim 4, showing an example of a heat treatment apparatus in which a sandwich structure is incorporated in a wafer support apparatus.

【図3】図2の側面図であるFIG. 3 is a side view of FIG. 2;

【図4】サンドイッチ構造体の製造手順を示し、(A)
は分解斜視図、(B)はサンドイッチ構造体を示す斜視
図である。
FIG. 4 shows a manufacturing procedure of the sandwich structure, and (A)
FIG. 2 is an exploded perspective view, and FIG. 2B is a perspective view showing a sandwich structure.

【図5】未公知の特願平8ー24823の明細書記載の
シリコンウェーハの熱処理装置の概略の構成を示す図で
ある。
FIG. 5 is a view showing a schematic configuration of a heat treatment apparatus for a silicon wafer described in the specification of Japanese Patent Application No. 8-24823, which is unknown.

【図6】(A)〜(C)は本発明に使用される発泡体の
内部構成を示す拡大図である。
FIGS. 6A to 6C are enlarged views showing the internal structure of a foam used in the present invention.

【符号の説明】[Explanation of symbols]

10 半導体ウェーハ 50 反応容器 51 非透明フランジ 60 サンドイッチ構造体のフランジ部 61 非透明石英ガラス体 62 石英ガラス発泡体 63 サンドイッチ構造体 40 支持装置 DESCRIPTION OF SYMBOLS 10 Semiconductor wafer 50 Reaction container 51 Non-transparent flange 60 Flange part of sandwich structure 61 Non-transparent quartz glass body 62 Quartz glass foam 63 Sandwich structure 40 Supporting device

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/324 H01L 21/324 D ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical display location H01L 21/324 H01L 21/324 D

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 半導体ウェーハを収納した状態で熱処理
を行うウエーハ熱処理用反応容器において、 ウエーハを収納する反応容器本体を透明石英ガラス体で
形成するとともに、該本体に連設するフランジ部を非透
明石英ガラス体と内部に多数の微小空間を有する石英ガ
ラス発泡体とのサンドイッチ構造で形成したことを特徴
とする反応容器。
1. A wafer heat treatment reaction vessel for carrying out heat treatment with a semiconductor wafer housed therein, wherein a reaction vessel main body for housing the wafer is formed of a transparent quartz glass body and a flange portion connected to the main body is non-transparent. A reaction vessel characterized by having a sandwich structure of a quartz glass body and a quartz glass foam body having a large number of minute spaces inside.
【請求項2】 前記反応容器本体をウエーハを直立状に
収納可能に扁平曲面体で形成したことを特徴とする請求
項1記載の反応容器。
2. The reaction vessel according to claim 1, wherein the reaction vessel main body is formed of a flat curved body so that a wafer can be stored upright.
【請求項3】 前記非透明石英ガラスは見かけ密度0.
9g/cm3 以上の気泡含有石英ガラスで構成し、石英
ガラス発泡体は見かけ密度0.1〜0.8g/cm3
発泡石英ガラスで構成した請求項1記載の反応容器。
3. The non-transparent quartz glass has an apparent density of 0.3.
Composed of 9 g / cm 3 or more bubble-containing quartz glass, reaction container according to claim 1, wherein the quartz glass foam was composed of foamed quartz glass apparent density 0.1 to 0.8 g / cm 3.
【請求項4】 半導体ウェーハを収納した反応容器と該
容器内にウエーハを支持させる支持手段とからなる熱処
理装置において、 前記支持手段の非熱処理区域側に非透明石英ガラス体と
内部に多数の微小空間を有し石英薄膜が縦横に張りめぐ
らされた石英ガラス発泡体とのサンドイッチ構造体を設
けたことを特徴とする熱処理装置。
4. A heat treatment apparatus comprising a reaction vessel containing a semiconductor wafer and a support means for supporting a wafer in the vessel, wherein a non-transparent quartz glass body is provided on the non-heat treatment area side of the support means and a large number of fine particles are contained therein. A heat treatment apparatus characterized by comprising a sandwich structure with a quartz glass foam having a space and a quartz thin film stretched vertically and horizontally.
【請求項5】 前記支持手段が半導体ウェーハを容器内
にほぼ直立支持させる支持手段であり、前記反応容器
が、ウエーハを直立状に収納可能に扁平曲面体で形成し
たことを特徴とする請求項4記載の熱処理装置。
5. The reaction device according to claim 1, wherein said support means is a support means for supporting the semiconductor wafer substantially upright in the container, and said reaction vessel is formed of a flat curved body so as to be able to store the wafer upright. 5. The heat treatment apparatus according to 4.
JP22439496A 1996-08-07 1996-08-07 Semiconductor wafer reaction vessel and heat treatment apparatus using the vessel Expired - Fee Related JP3412734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22439496A JP3412734B2 (en) 1996-08-07 1996-08-07 Semiconductor wafer reaction vessel and heat treatment apparatus using the vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22439496A JP3412734B2 (en) 1996-08-07 1996-08-07 Semiconductor wafer reaction vessel and heat treatment apparatus using the vessel

Publications (2)

Publication Number Publication Date
JPH1053498A true JPH1053498A (en) 1998-02-24
JP3412734B2 JP3412734B2 (en) 2003-06-03

Family

ID=16813070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22439496A Expired - Fee Related JP3412734B2 (en) 1996-08-07 1996-08-07 Semiconductor wafer reaction vessel and heat treatment apparatus using the vessel

Country Status (1)

Country Link
JP (1) JP3412734B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5751639U (en) * 1980-09-09 1982-03-25
JPS5812280U (en) * 1981-07-15 1983-01-26 東芝セラミツクス株式会社 Structure of quartz glass flange
JPS63282134A (en) * 1987-05-14 1988-11-18 Fukushima Shinetsu Sekiei:Kk Synthetic quartz glass pipe and production thereof
JPS6447020A (en) * 1987-08-18 1989-02-21 Shinetsu Sekiei Kk Heat treatment device for manufacturing semiconductor
JPH02268420A (en) * 1989-04-10 1990-11-02 Toshiba Ceramics Co Ltd Core tube device
JPH05291154A (en) * 1992-04-06 1993-11-05 Kokusai Electric Co Ltd Method and device for forming single wafer
JPH06256028A (en) * 1993-02-26 1994-09-13 Shinetsu Quartz Prod Co Ltd Highly heat resistant sealant
JPH07237927A (en) * 1994-02-28 1995-09-12 Yamagata Shinetsu Sekiei:Kk Flanged vessel made of quartz glass
JPH08143329A (en) * 1993-10-08 1996-06-04 Tosoh Corp High purity opaque quartz glass, its production and its use
JPH09260297A (en) * 1996-01-19 1997-10-03 Yamagata Shinetsu Sekiei:Kk Wafer thermal treatment reaction chamber and wafer thermal treatment device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5751639U (en) * 1980-09-09 1982-03-25
JPS5812280U (en) * 1981-07-15 1983-01-26 東芝セラミツクス株式会社 Structure of quartz glass flange
JPS63282134A (en) * 1987-05-14 1988-11-18 Fukushima Shinetsu Sekiei:Kk Synthetic quartz glass pipe and production thereof
JPS6447020A (en) * 1987-08-18 1989-02-21 Shinetsu Sekiei Kk Heat treatment device for manufacturing semiconductor
JPH02268420A (en) * 1989-04-10 1990-11-02 Toshiba Ceramics Co Ltd Core tube device
JPH05291154A (en) * 1992-04-06 1993-11-05 Kokusai Electric Co Ltd Method and device for forming single wafer
JPH06256028A (en) * 1993-02-26 1994-09-13 Shinetsu Quartz Prod Co Ltd Highly heat resistant sealant
JPH08143329A (en) * 1993-10-08 1996-06-04 Tosoh Corp High purity opaque quartz glass, its production and its use
JPH07237927A (en) * 1994-02-28 1995-09-12 Yamagata Shinetsu Sekiei:Kk Flanged vessel made of quartz glass
JPH09260297A (en) * 1996-01-19 1997-10-03 Yamagata Shinetsu Sekiei:Kk Wafer thermal treatment reaction chamber and wafer thermal treatment device

Also Published As

Publication number Publication date
JP3412734B2 (en) 2003-06-03

Similar Documents

Publication Publication Date Title
JP2897963B2 (en) Vertical heat treatment equipment and heat insulator
US5540782A (en) Heat treating apparatus having heat transmission-preventing plates
WO2004114377A1 (en) Heat treatment apparatus
JPH08162423A (en) Sheet type wafer heat-treating equipment and manufacture of reaction vessel to be used in the equipment
TWI548016B (en) A substrate stage, a substrate processing apparatus, and a semiconductor device
JP2701767B2 (en) Vapor phase growth equipment
JPH1053498A (en) Reaction vessel for semiconductor wafer and heat-treating apparatus using the vessel
JP2004214283A (en) Semiconductor device manufacturing apparatus
JP2008262959A (en) Radiant heat insulating body and heat treatment apparatus
JPH1053499A (en) Heat treatment apparatus for wafer and method for charging wafer to the apparatus
JP3109702B2 (en) Heat treatment equipment
JP2563981Y2 (en) Vertical heat treatment equipment
JP4071315B2 (en) Wafer heat treatment equipment
JPH063795B2 (en) Heat treatment equipment for semiconductor manufacturing
TWI277130B (en) Quartz element of heat retaining tube included in reaction container and method of fabricating same
JPH07273101A (en) Single sheet heat treatment system
JPH10172915A (en) Wafer heat treatment device
JP4071314B2 (en) Wafer heat treatment equipment
JP2502929Y2 (en) Vertical heat treatment device with heat insulation cylinder
JP3447898B2 (en) Reaction vessel for wafer heat treatment and wafer heat treatment equipment
JP2837333B2 (en) Semiconductor heat treatment equipment
JP3625124B2 (en) Wafer processing equipment
JP2000294547A (en) Substrate heating device
JPH076976A (en) Semiconductor heat treating structure
JP3976090B2 (en) Wafer loading method in wafer heat treatment equipment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090328

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090328

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100328

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100328

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees