JPS63282134A - Synthetic quartz glass pipe and production thereof - Google Patents

Synthetic quartz glass pipe and production thereof

Info

Publication number
JPS63282134A
JPS63282134A JP11783587A JP11783587A JPS63282134A JP S63282134 A JPS63282134 A JP S63282134A JP 11783587 A JP11783587 A JP 11783587A JP 11783587 A JP11783587 A JP 11783587A JP S63282134 A JPS63282134 A JP S63282134A
Authority
JP
Japan
Prior art keywords
synthetic quartz
quartz glass
layer
quartz
bubbles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11783587A
Other languages
Japanese (ja)
Other versions
JPH0657612B2 (en
Inventor
Yasuhiko Sato
恭彦 佐藤
Masaaki Aoyama
青山 雅明
Minoru Saito
実 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUKUSHIMA SHINETSU SEKIEI KK
Original Assignee
FUKUSHIMA SHINETSU SEKIEI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUKUSHIMA SHINETSU SEKIEI KK filed Critical FUKUSHIMA SHINETSU SEKIEI KK
Priority to JP62117835A priority Critical patent/JPH0657612B2/en
Publication of JPS63282134A publication Critical patent/JPS63282134A/en
Publication of JPH0657612B2 publication Critical patent/JPH0657612B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/04Forming tubes or rods by drawing from stationary or rotating tools or from forming nozzles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/01Other methods of shaping glass by progressive fusion or sintering of powdered glass onto a shaping substrate, i.e. accretion, e.g. plasma oxidation deposition
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/04Re-forming tubes or rods
    • C03B23/047Re-forming tubes or rods by drawing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To form a synthetic quartz glass pipe enhanced in resistant heat deformation properties in a high-temp. state by sandwiching a intermediate quartz layer incorporating many fine bubbles with outer and inner two quartz layers free from bubbles so as to making the quartz glass pipe with a three- layer structure. CONSTITUTION:A synthetic quartz glass pipe is formed by providing a quartz layer 3 incorporating many fine bubbles to the intermediate part of the quartz layers 1, 2 consisting of the outer and inner two layers substantially free from bubbles and making it to a three-layer structure. The thickness of the quartz layer 3 is preferably regulated so that it occupies 10-90% in the direction of thickness of the pipe. Further the fine bubbles have 1-1,000mum diameter and these are preferably incorporated at >=1,000 pieces per 1cm<3> volume of the glass layer. The above-mentioned synthetic quartz glass pipe is obtained by the following method. The synthetic quartz glass pipe 17 is obtained by packing synthetic quartz powder 14 into the gap 13 of the synthetic quartz pipe made to a structure of the double pipes 11, 12, heating and melting it and integrally stretching them.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は合成石英ガラス管およびその製造方法、特には
実質的に泡のない上下二層の石英層の間に微細な泡を多
数包含する石英層を設けた三層構造からなる、熱的強度
のすぐれた半導体工業分野などで有用とされる新規な合
成石英ガラス管およびその製造方法に関するものである
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a synthetic quartz glass tube and a method for manufacturing the same, particularly a synthetic quartz glass tube containing a large number of fine bubbles between two substantially bubble-free upper and lower quartz layers. The present invention relates to a new synthetic quartz glass tube having a three-layer structure with a quartz layer, which has excellent thermal strength and is useful in the semiconductor industry, and a method for manufacturing the same.

(従来の技術) 半導体工業用、特にシリコンウェーハの熱処理治具とし
て石英製のものが汎用されているが、これらはその殆ど
が天然水晶またはけい砂を原料とした天然石英ガラス製
のものとされている。しかし、この天然石英ガラスには
多種類の不純物が存在しているためにそれらを加工工程
中で完全に除去することは非常に難しく、含有不純物が
半導体の熱処理工程中に拡散、侵透してシリコンウェー
ハを汚染するために、その工程歩留りがわるくなるとい
うことが知られている。
(Prior art) Quartz jigs are commonly used in the semiconductor industry, especially as heat treatment jigs for silicon wafers, but most of these are made of natural quartz glass made from natural quartz or silica sand. ing. However, since this natural quartz glass contains many types of impurities, it is very difficult to completely remove them during the processing process, and the impurities contained in the glass diffuse and penetrate during the semiconductor heat treatment process. It is known that contamination of silicon wafers reduces the process yield.

このため、半導体工業用に使用される石英ガラス部材を
高純度のけい素化合物を出発原料として化学的に製造さ
れた合成石英ガラスとすることも検討されたけれども、
合成石英ガラスは一般に天然石英ガラスに比較して高温
では軟化し易く、半導体製造用部材としたときに繰り返
しの高温熱処理工程では比較的短時間で変形して遂には
その機能を果たさなくなるという不利があることから、
合成石英ガラスの使用については天然石英ガラスとの多
層構造をとるなどして耐熱性向上の改善も試みられてい
るが、これらは純度の問題もあり満足すべき結果は得ら
れていない。
For this reason, it has been considered to use synthetic quartz glass chemically manufactured using high-purity silicon compounds as starting materials for the quartz glass members used in the semiconductor industry.
Synthetic quartz glass is generally more susceptible to softening at high temperatures than natural quartz glass, and when used as a component for semiconductor manufacturing, it deforms in a relatively short period of time during repeated high-temperature heat treatment processes and eventually loses its function. For some reason,
Regarding the use of synthetic quartz glass, attempts have been made to improve heat resistance by creating a multilayer structure with natural quartz glass, but these have not yielded satisfactory results due to problems with purity.

(発明の構成) 本発明はこのような不利を解決した合成石英ガラス管に
関するものであり、これは実質的に泡を含まない上下二
層の石英層の中間に微細な泡を多数包含する石英層を設
けて三層構造としてなることを特徴とするものである。
(Structure of the Invention) The present invention relates to a synthetic quartz glass tube that solves these disadvantages, and is made of quartz glass containing a large number of fine bubbles between two quartz layers, upper and lower layers, which are substantially free of bubbles. It is characterized by having a three-layer structure.

すなわち、本発明者らは熱的変形することのない合成石
英ガラス管の開発について種々検討した結果、けい素化
合物からの化学的手段で作られた高純度の合成石英ガラ
ス管を2重管とし、この二層の間に粉末状の合成石英粉
を充填し加熱溶融して延伸一体化させると、実質的に泡
のない合成石英層の中間に微細な泡を多数包含する合成
石英層が設けられて、この泡が壁構造上ハニカム形状ま
たはトラス形状となるので、このものが機械的強度の大
きいものとなって高温状態での熱的変形が抑制されるよ
うになるということを見出し、これによれば半導体工業
用に使用される熱処理治具としての合成石英製品を容易
に得ることができることを確認して本発明を完成させた
That is, as a result of various studies on the development of synthetic quartz glass tubes that do not undergo thermal deformation, the present inventors have developed a double tube made of high purity synthetic quartz glass tubes made by chemical means from silicon compounds. When powdered synthetic quartz powder is filled between these two layers, heated and melted, and then stretched and integrated, a synthetic quartz layer containing many fine bubbles is created between the synthetic quartz layer that is substantially free of bubbles. They discovered that this foam has a honeycomb or truss wall structure, which increases its mechanical strength and suppresses thermal deformation at high temperatures. The present invention was completed by confirming that synthetic quartz products can be easily obtained as heat treatment jigs used in the semiconductor industry.

つぎにこの合成石英管およびその製造方法を添付の図面
にもとづいて説明するが、第1図は本発明の合成石英ガ
ラス管の横断面図、第2図はこの合成石英ガラス管の製
造方法の縦断面図を示したものである。
Next, this synthetic quartz tube and its manufacturing method will be explained based on the attached drawings. FIG. 1 is a cross-sectional view of the synthetic quartz glass tube of the present invention, and FIG. 2 is a cross-sectional view of the synthetic quartz glass tube of the present invention. It shows a longitudinal cross-sectional view.

本発明の合成石英ガラス管は第1図に示したように泡の
ない合成石英ガラス層1.2の間に微細な泡を多数包含
する石英層3を介在させたものであるが、このものは泡
を含有する石英層における多数の泡がハニカム形状、ト
ラス形状となるので機械的強度の大きい、したがって熱
的変形のし難いものになるという有利性をもつものにな
る。
As shown in FIG. 1, the synthetic quartz glass tube of the present invention has a quartz layer 3 containing many fine bubbles interposed between the bubble-free synthetic quartz glass layers 1 and 2. Since a large number of bubbles in the quartz layer containing bubbles form a honeycomb shape or a truss shape, the quartz layer has the advantage of having high mechanical strength and therefore being difficult to thermally deform.

この抱を含有する石英層はそれが管壁の厚さの10%以
下では高温状態での熱的耐変形の向上が不充分なものと
なり、90%以上とするとこの泡が管壁表面にも浮ぶよ
うになって管表面の平滑性が乱されるので10〜90%
の範囲のものとすることがよい。また、この泡の大きさ
は泡の直径が10〜1,000μsの範囲であれば熱時
強度の向上が得られるのでこの範囲とすればよいが、石
英ガラス管全体の強度の均一性からは泡の径の分布が狭
いほうがよいので50〜500即の範囲とすることがよ
い。また、この泡についてはその泡密度によって熱的強
度の改善効果が異なり、ガラス層体積1d当り1,00
0個以下ではこの改善効果が小さくなるのでlag当り
1,000個以上、好ましくは5,000個以上とする
ことがよいゆこの合成石英ガラス管の製造は例えば第2
図に示したように泡のない合成石英11および12から
なる2重の石英ガラス管の空隙部13に合成石英粉末1
4を充填し、これを電気または火炎を熱源15とする加
熱炉16中に導入して加熱溶融し、延伸一体化して合成
石英ガラス管17を得るようにすればよい。この泡のな
い2重管状の合成石英ガラス管は公知の方法で得た管径
の相違する2本の合成石英ガラス管状体を合体すること
によって作ればよいが、この空隙部13に充填される合
成石英粉末も充分高純度のものとすることから、合成石
英管または棒を機械的粉砕により得たものとすることが
よい、しかし、この合成石英粉末は本発明の合成石英ガ
ラス管における泡の直径、泡密度が上記したように直径
10〜1,000m、密度1a++当り1,000個以
上のものとすることが必要とされることがら粒径が1〜
1,500Atmの範囲、好ましくは20〜1 + O
OOamの範囲のものとすることがよい。また、この合
成石英粉末の空隙部13への充填はこれを加熱溶融、延
伸一体化させたときにこの合成石英ガラス管中の泡の直
径、泡密度を上記の範囲のものとすることが必要とされ
ることから、できるだけ細密に充填することが必要とさ
れるので、この充填に当ってはバイブレータ−などによ
る振動充填を行なうことがよいが、この合成石英粉末に
ついては加熱溶融、延伸一体化後の合成石英ガラス管中
における泡直径を均一なものとし、さらにその均等分布
が特に要望される場合は充填する前に火炎処理などを施
してその形状をできるだけ球状のものとしておくことが
よU)。
If the quartz layer containing this foam is less than 10% of the thickness of the tube wall, the improvement in thermal deformation resistance at high temperatures will be insufficient; if it is more than 90%, the bubbles will also form on the tube wall surface. 10 to 90% because it floats and disturbs the smoothness of the tube surface.
It is recommended that it be within the range of . In addition, the size of the bubbles should be within the range of 10 to 1,000 μs because the strength under heat can be improved, but from the viewpoint of the uniformity of the strength of the entire quartz glass tube, Since it is better to have a narrow bubble diameter distribution, it is preferable to set it in the range of 50 to 500. In addition, the thermal strength improvement effect of this foam differs depending on the foam density, and the thermal strength improvement effect is 1,000 per 1 d of glass layer volume.
If the number of pieces is less than 0, this improvement effect will be small, so it is recommended that the number of pieces per lag be 1,000 or more, preferably 5,000 or more.
As shown in the figure, synthetic quartz powder 1 is placed in the cavity 13 of a double quartz glass tube made of bubble-free synthetic quartz 11 and 12.
4, introduced into a heating furnace 16 using electricity or flame as a heat source 15, heated and melted, and stretched and integrated to obtain a synthetic quartz glass tube 17. This bubble-free double-tubular synthetic quartz glass tube can be made by combining two synthetic quartz glass tubular bodies with different tube diameters obtained by a known method. Since the synthetic quartz powder should also be of sufficiently high purity, it is preferable to use synthetic quartz tubes or rods obtained by mechanical crushing. As mentioned above, the diameter and bubble density are required to be 10 to 1,000 m in diameter and 1,000 or more bubbles per density 1a++.
In the range of 1,500 Atm, preferably 20-1 + O
It is preferable to set it in the range of OOam. In addition, when filling the void 13 with this synthetic quartz powder, it is necessary to make the bubble diameter and bubble density in the synthetic quartz glass tube within the above range when the synthetic quartz powder is heated, melted, drawn and integrated. Therefore, it is necessary to fill the powder as finely as possible, so it is better to perform vibration filling using a vibrator. If the diameter of the bubbles in the synthetic quartz glass tube is to be made uniform, and even distribution is particularly desired, it is recommended to perform flame treatment before filling to make the shape as spherical as possible. ).

合成石英粉末を細密充填した合成石英ガラスニ重管は加
熱溶融、延伸一体化によって目的とする泡層を有する合
成石英ガラス管とされるのであるが、この加熱溶融は電
気または火炎を熱源とする加熱炉中で1,500〜2,
300℃の範囲で行なわせればよく、この延伸一体化は
目的とする合成石英ガラス管の直径、管壁の厚さに合わ
せて任意の速度、大きさで延伸するようにすればよい。
Synthetic quartz glass double tubes that are densely packed with synthetic quartz powder are heated and melted, and stretched and integrated to form synthetic quartz glass tubes with the desired foam layer. 1,500-2,
The stretching may be carried out at a temperature of 300° C., and the stretching may be carried out at any speed and size depending on the diameter of the desired synthetic quartz glass tube and the thickness of the tube wall.

このようにして得られた合成石英ガラス管は合成石英ガ
ラス2重管がその中間に充填された合成石英粉末と共に
溶融され、この合成石英粉末相互の間に存在していた空
気がそのま\残存してこれが気泡として残留するので中
間に多数の気泡を含有するものとなるが、この気泡が壁
構造上ハニカム形状またはトラス形状のものとなるので
、この合成°石英ガラス管は機械的強度の大きいものと
なり、したがって高温状態での熱的変形にも耐えるもの
になるし、このものは純度の高い合成石英で作られてい
て不純物も極めて少ないので特に半導体工業における熱
処理治具として有用とされる。
In the synthetic quartz glass tube obtained in this way, the synthetic quartz glass double tube is melted together with the synthetic quartz powder filled in the middle, and the air that existed between the synthetic quartz powder remains as it is. This remains as air bubbles, which contain many air bubbles in the middle, but because these air bubbles have a honeycomb or truss shape due to the wall structure, this synthetic quartz glass tube has high mechanical strength. Therefore, it can withstand thermal deformation at high temperatures, and since it is made of highly pure synthetic quartz and has extremely few impurities, it is particularly useful as a heat treatment jig in the semiconductor industry.

つぎに本発明の実施例をあげる。Next, examples of the present invention will be given.

実施例 外径150I、内径130m(7)外管と外径8゜■、
内径60m+aの内管とからなる長さ1,500mの合
成石英ガラス2重管の外管と内管との間隙に、平均粒径
800uMのもの75%、1501のもの20%、30
μmのもの5%の割合からなる合成石英粉末を細密充填
したのち、これを1,900℃に加熱している電気加熱
炉内に装入して、これを炉外から引延し、延伸して外径
110aa、内径103mm、肉厚3.5mの合成石英
ガラス管を作ったところ、このものは微細な泡層が管の
中央部に管の厚さ方向で管壁の53%を占めているもの
であり、泡の大きさが約5μr1〜5001、平均25
μm、泡密度が10,000個/aI?(7)モ(7)
1?アった。
Exception diameter 150I, inner diameter 130m (7) outer tube and outer diameter 8゜■,
In the gap between the outer tube and the inner tube of a synthetic quartz glass double tube with a length of 1,500 m consisting of an inner tube with an inner diameter of 60 m+a, 75% of particles with an average particle size of 800 uM, 20% of particles of 1501, and 30
After finely packing synthetic quartz powder with a proportion of 5% μm, it is charged into an electric heating furnace heated to 1,900°C, and drawn from outside the furnace. When a synthetic quartz glass tube with an outer diameter of 110 aa, an inner diameter of 103 mm, and a wall thickness of 3.5 m was made using The size of the bubbles is about 5μr1~5001, average 25μr.
μm, bubble density 10,000/aI? (7) Mo (7)
1? It happened.

また、上記における合成石英ガラスの二重管の肉厚を変
更してその間隙を変えたほかは上記と同様に処理したと
ころ、泡層の厚さが管壁の35%、75%を占める合成
石英ガラス管が得られた。
In addition, when the same process as above was performed except that the wall thickness of the synthetic quartz glass double tube was changed and the gap between them was changed, the foam layer thickness accounted for 35% and 75% of the tube wall. A quartz glass tube was obtained.

つぎに比較のために同一寸法(外径110mm、内径1
03nn)の微細泡層を全く含有しない合成石英ガラス
管と天然石英ガラス管を準備し、上記で得た3種の合成
石英ガラス管と共にその化学分析を行なってその不純物
を測定したところ、第1表に示したとおりの結果が得ら
れたが、ついでこれらから外径110+nm、内径10
3++m、肉厚3.5m、長さ30mの試験用試片を切
り出し、5%HF液で30分間洗浄し、これらを1,2
80℃の加熱炉中に18時間保持したときのつぶれ量を
試験片の縦横径比(OD max X OD main
)で求めたところ第2表に示したとおりの結果が得られ
、本発明品は従来の合成石英ガラス管にくらべて純度は
同等であっても熱的強度は著しく向上しており、泡層の
厚さが管壁の75%のものは天然石英ガラスとほとんど
類似した熱的強度を示すことが確認された。
Next, for comparison, the same dimensions (outer diameter 110 mm, inner diameter 1
Synthetic quartz glass tubes and natural quartz glass tubes containing no microbubble layer (03nn) were prepared, and chemical analysis was performed on them along with the three types of synthetic quartz glass tubes obtained above to measure their impurities. The results shown in the table were obtained, but from these results the outer diameter was 110+nm and the inner diameter was 10 nm.
Test specimens of 3++ m, wall thickness 3.5 m, and length 30 m were cut out and washed with 5% HF solution for 30 minutes.
The amount of crushing when kept in a heating furnace at 80°C for 18 hours is determined by the length/width diameter ratio (OD max x OD main
), the results shown in Table 2 were obtained, and the product of the present invention has significantly improved thermal strength compared to conventional synthetic quartz glass tubes even though the purity is the same. It was confirmed that glass whose thickness is 75% of the tube wall exhibits thermal strength almost similar to that of natural quartz glass.

なお、泡層の厚さが管壁の53%である上記で得た合成
石英ガラス管についてはその泡密度が相違する2種のも
のを作り、これらのつぶれ量を測定したところ、第3表
に示したとおりの結果が得られ、泡密度の高いほうが熱
的強度の大きいことが確認された。
Regarding the synthetic quartz glass tube obtained above, in which the foam layer thickness is 53% of the tube wall, two types of tubes with different bubble densities were made, and the amount of collapse was measured, as shown in Table 3. The results shown in Figure 2 were obtained, and it was confirmed that the higher the foam density, the higher the thermal strength.

第  1  表 (化学分析値) 第  2  表 (加熱処理による管のつぶれ量)第3
表 (加熱処理による管のつぶれ量)
Table 1 (Chemical analysis values) Table 2 (Amount of tube collapse due to heat treatment) Table 3
Table (Amount of tube collapse due to heat treatment)

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の合成石英ガラス管の横断面図、第2図
はこの合成石英ガラス管の製造方法の縦断面図を示した
ものである。 1.2.11.12・・・合成石英ガラス層3・・・泡
含有石英層、 13・・・空隙部、14・・・合成石英
粉末、 15・・・熱源、16・・・電気炉、 ′17
・・・合成石英ガラス管、(S(/ムシ〆 −ど〕 ψ   Ω 7    。
FIG. 1 is a cross-sectional view of the synthetic quartz glass tube of the present invention, and FIG. 2 is a longitudinal cross-sectional view of the method for manufacturing the synthetic quartz glass tube. 1.2.11.12...Synthetic quartz glass layer 3...Bubble-containing quartz layer, 13...Void portion, 14...Synthetic quartz powder, 15...Heat source, 16...Electric furnace , '17
...Synthetic quartz glass tube, (S(/mushi〆-do) ψ Ω 7.

Claims (1)

【特許請求の範囲】 1、実質的に泡を含まない上下二層の石英層の中間に微
細な泡を多数包含する石英層を設けて三層構造としてな
ることを特徴とする合成石英ガラス管。 2、微細な泡を多数包含する石英層の厚さが管の厚さ方
向で10〜90%である特許請求の範囲第1項記載の合
成石英ガラス管。 3、微細な泡は直径が1〜1,000μmのもので、こ
れがガラス層体積1cm^3当り1,000個以上含有
されている特許請求の範囲第1項記載の合成石英ガラス
管。 4、二重管構造とした合成石英管の間隙に合成石英粉末
を充填し加熱溶融して延伸一体化させて実質的に泡を含
まない上下二層の石英層の中間に微細な泡を多数包含す
る石英層を設けてなる三層構造体を得ることを特徴とす
る合成石英ガラス管の製造方法。 5、細密充填となるよう粒度分布を有する粒径1〜1,
000μmの合成石英粉末を充填する特許請求の範囲第
4項記載の合成石英ガラス管の製造方法。 6、充填する合成石英粉末がほゞ球形のものである特許
請求の範囲第4項記載の合成石英ガラス管の製造方法。
[Claims] 1. A synthetic quartz glass tube characterized in that it has a three-layer structure by providing a quartz layer containing many fine bubbles between two upper and lower quartz layers that are substantially free of bubbles. . 2. The synthetic quartz glass tube according to claim 1, wherein the thickness of the quartz layer containing many fine bubbles is 10 to 90% in the thickness direction of the tube. 3. The synthetic quartz glass tube according to claim 1, wherein the fine bubbles have a diameter of 1 to 1,000 μm, and 1,000 or more fine bubbles are contained per 1 cm^3 of glass layer volume. 4. Synthetic quartz powder is filled into the gap between the synthetic quartz tubes with a double-tube structure, heated, melted, and stretched to form a large number of fine bubbles between the upper and lower quartz layers, which are virtually bubble-free. 1. A method for producing a synthetic quartz glass tube, characterized in that a three-layer structure is obtained by providing a containing quartz layer. 5. Particle size 1 to 1, with particle size distribution to ensure close packing.
5. The method for manufacturing a synthetic quartz glass tube according to claim 4, wherein the tube is filled with synthetic quartz powder having a diameter of 0.000 μm. 6. The method for manufacturing a synthetic quartz glass tube according to claim 4, wherein the synthetic quartz powder to be filled has a substantially spherical shape.
JP62117835A 1987-05-14 1987-05-14 Synthetic quartz glass tube and manufacturing method thereof Expired - Lifetime JPH0657612B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62117835A JPH0657612B2 (en) 1987-05-14 1987-05-14 Synthetic quartz glass tube and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62117835A JPH0657612B2 (en) 1987-05-14 1987-05-14 Synthetic quartz glass tube and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS63282134A true JPS63282134A (en) 1988-11-18
JPH0657612B2 JPH0657612B2 (en) 1994-08-03

Family

ID=14721428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62117835A Expired - Lifetime JPH0657612B2 (en) 1987-05-14 1987-05-14 Synthetic quartz glass tube and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0657612B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1053498A (en) * 1996-08-07 1998-02-24 Yamagata Shinetsu Sekiei:Kk Reaction vessel for semiconductor wafer and heat-treating apparatus using the vessel
JP2021024750A (en) * 2019-07-31 2021-02-22 東ソ−・エスジ−エム株式会社 Method for manufacturing multilayer structure quartz glass material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4892410A (en) * 1972-02-11 1973-11-30
JPS5950096A (en) * 1982-09-10 1984-03-22 Toshiba Ceramics Co Ltd Quartz glass core tube for furnace for semiconductor treatment
JPS5968163A (en) * 1982-10-12 1984-04-18 Toshiba Ceramics Co Ltd Quartz glass for emission tube
JPS628933A (en) * 1985-07-05 1987-01-16 Canon Inc Wafer transfer device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4892410A (en) * 1972-02-11 1973-11-30
JPS5950096A (en) * 1982-09-10 1984-03-22 Toshiba Ceramics Co Ltd Quartz glass core tube for furnace for semiconductor treatment
JPS5968163A (en) * 1982-10-12 1984-04-18 Toshiba Ceramics Co Ltd Quartz glass for emission tube
JPS628933A (en) * 1985-07-05 1987-01-16 Canon Inc Wafer transfer device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1053498A (en) * 1996-08-07 1998-02-24 Yamagata Shinetsu Sekiei:Kk Reaction vessel for semiconductor wafer and heat-treating apparatus using the vessel
JP2021024750A (en) * 2019-07-31 2021-02-22 東ソ−・エスジ−エム株式会社 Method for manufacturing multilayer structure quartz glass material

Also Published As

Publication number Publication date
JPH0657612B2 (en) 1994-08-03

Similar Documents

Publication Publication Date Title
TWI252843B (en) Method for manufacture of a component made of opaque synthetic quartz glass, and quartz glass tube manufactured according to the method
US2268589A (en) Method of producing vitreous silica articles
DE102005057194B4 (en) Method for producing a quartz glass ingot
US3764286A (en) Manufacture of elongated fused quartz member
TW406176B (en) Crucible and method of preparation thereof
JPH0733258B2 (en) Method for producing article containing high silica glass body
KR20110052639A (en) Method for producing quartz glass doped with nitrogen and quartz glass grains suitable for carrying out the method
JPH0660027B2 (en) Optical fiber manufacturing method
US4340407A (en) Method of forming cavitated objects of controlled dimension
JPS63282134A (en) Synthetic quartz glass pipe and production thereof
TW200517352A (en) Glass composition and method of fabricating glass products
JPH02283015A (en) Quarts glass body for semiconductor manufacturing equipment or jig
JP3039789B2 (en) Manufacturing method of synthetic quartz glass tube
JP3434945B2 (en) Method for producing hollow silica glass preform for fiber
JPS61232240A (en) Manufacture and apparatus for glass body
Qi et al. Fabrication and characterization of millimeter-sized glass shells for inertial confinement fusion targets
JP3327364B2 (en) Method for producing silica glass processed product
Qiu et al. Hollow glass microsphere production for laser direct-driven fusion targets on Shen Guang II
JPH11199252A (en) Opaque quartz glass
EP0909743A1 (en) Opaque silica glass article having transparent portion and process for producing same
JP3258175B2 (en) Method for producing non-doped or doped silica glass body
JPS6355132A (en) Production of preform for optical fiber
JP2610056B2 (en) Quartz glass member for semiconductor heat treatment and method of manufacturing the same
US3533767A (en) Method for producing tubular glass structures
JPH03242339A (en) Preparation of axially symmetrical optical fiber preform

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070803

Year of fee payment: 13