JP2610056B2 - Quartz glass member for semiconductor heat treatment and method of manufacturing the same - Google Patents

Quartz glass member for semiconductor heat treatment and method of manufacturing the same

Info

Publication number
JP2610056B2
JP2610056B2 JP2120740A JP12074090A JP2610056B2 JP 2610056 B2 JP2610056 B2 JP 2610056B2 JP 2120740 A JP2120740 A JP 2120740A JP 12074090 A JP12074090 A JP 12074090A JP 2610056 B2 JP2610056 B2 JP 2610056B2
Authority
JP
Japan
Prior art keywords
quartz glass
tube
layer
rod
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2120740A
Other languages
Japanese (ja)
Other versions
JPH0387020A (en
Inventor
裕幸 西村
朗 藤ノ木
俊幸 加藤
浩志 小飯田
博至 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Publication of JPH0387020A publication Critical patent/JPH0387020A/en
Application granted granted Critical
Publication of JP2610056B2 publication Critical patent/JP2610056B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Glass Melting And Manufacturing (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体ウエハーの熱処理用炉心管やその他
の治具等に好適に使用し得る石英ガラス部材に関し、更
に詳しくは、溶融粘度の大きく異なる二種類の石英ガラ
スを積層状に加熱融着して成る耐熱性及び機械的強度、
特に衝撃強度の優れた複合層構造石英ガラス部材及びそ
の効果的製造方法に関する。
The present invention relates to a quartz glass member that can be suitably used for a furnace tube for heat treatment of a semiconductor wafer, other jigs, and the like, and more particularly, to a quartz glass member having a large melt viscosity. Heat resistance and mechanical strength, which are made by heating and fusing two different types of quartz glass in a laminate,
In particular, the present invention relates to a quartz glass member having a composite layer structure excellent in impact strength and an effective manufacturing method thereof.

〔従来の技術〕[Conventional technology]

従来、半導体ウエハーの熱処理に使用される炉心管や
ウエハー熱処理用治具類は、例えば、1000〜1300℃の高
温領域で変形することがなく、また半導体ウエハーの熱
処理工程における炉内雰囲気の金属、特に、アルカリ金
属類による汚染を防止するものであることが要望され、
そのような材料として、特に金属不純物含有量の少ない
高純度の石英ガラスが用いられている。
Conventionally, furnace tubes and wafer heat treatment jigs used for heat treatment of semiconductor wafers are, for example, not deformed in a high-temperature region of 1000 to 1300 ° C., and metal in a furnace atmosphere in a heat treatment process of semiconductor wafers. In particular, it is required to prevent contamination by alkali metals,
As such a material, particularly, high-purity quartz glass having a small content of metal impurities is used.

半導体熱処理用の炉心管や治具類は、高純度石英ガラ
ス材料で提供されるにもかかわらず、炉内雰囲気を常に
きれいな状態に保つために、定期的に洗浄する等のクリ
ーニングが行われている。しかし、石英ガラスは一般
に、衝撃に極めて弱く、洗浄操作においてひび割れや欠
け等の破損が容易に発生して使用不能となるケースがし
ばしばである。また、その他の取扱い、例えば、炉心管
を半導体ウエハー熱処理のために炉内へ挿入したり、取
り出す際や、ウエーハボート,保温筒などの治具類を炉
心管内へ出し入れする際に、それらが一寸した衝撃で容
易にひび割れや欠け等が生ずるので、取扱いは慎重にし
なければならないという使用上の不利益が避けられなか
った。従って、それらの取扱いは厄介であり、使用上の
大きな制約ともなっている。
Despite the fact that furnace tubes and jigs for semiconductor heat treatment are provided with high-purity quartz glass material, cleaning such as regular cleaning is performed to keep the atmosphere inside the furnace always clean. I have. However, quartz glass is generally extremely vulnerable to impact, and in many cases, damage such as cracking or chipping easily occurs in a cleaning operation, making it unusable. In addition, when handling other processes, for example, inserting or removing a furnace tube into or from a furnace for heat treatment of semiconductor wafers, or removing or inserting jigs such as a wafer boat or a heat retaining tube into or out of the furnace tube, the core tube may be reduced by one dimension. Cracking and chipping easily occur due to the impact, and a disadvantage in use that care must be taken in handling is inevitable. Therefore, their handling is cumbersome and a major constraint on their use.

特に、近年の半導体チップの高集積化に伴ってウエハ
ーの径は増大し、炉も大形化して、対応する石英ガラス
製炉心管や関連する治具類等が大形化したので、それら
の上記のような破損現象は、工業的に一層重大な問題と
なってきた。
In particular, with the recent increase in the integration of semiconductor chips, the diameter of wafers has increased, the furnaces have also increased in size, and the corresponding quartz glass furnace tubes and related jigs have increased in size. The damage phenomenon as described above has become a more serious problem industrially.

一方、ガラスの機械的強度を向上させる方法として、
該ガラス部材を高温から急冷して歪を発生させ応力を付
与する方法が一般に知られているが、この方法を石英ガ
ラスに応用した場合、充分な歪を発生させるための大き
な温度差が必要なため、制御された歪を発生させること
が難しく、特に、一定方向に応力付与を行うことはでき
なかった。また、この方法では、それにより発生した歪
自体によって破損する危険もあり、耐衝撃強度の改善は
期待できない。更に、石英ガラスは熱膨張係数が小さい
ために、効果的に応力を付与することは実際上、極めて
困難である。
On the other hand, as a method of improving the mechanical strength of glass,
A method of applying strain by generating strain by rapidly cooling the glass member from a high temperature is generally known.However, when this method is applied to quartz glass, a large temperature difference is required to generate sufficient strain. Therefore, it is difficult to generate controlled strain, and in particular, it has not been possible to apply stress in a certain direction. In addition, in this method, there is a risk of damage due to the distortion itself generated, and improvement in impact resistance cannot be expected. Furthermore, since quartz glass has a small coefficient of thermal expansion, it is practically extremely difficult to effectively apply stress.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

従って、本発明の技術的課題は、特に多少の衝撃にも
破損することのない耐衝撃性の改善された長期にわたっ
て安定に使用できる石英ガラス部材を提供することにあ
る。また、本発明の他の課題は、半導体ウエハーの熱処
理において、その熱処理高温条件下にも優れた耐熱性を
有し、実質的にウエハーを汚染することのない高純度の
石英ガラス炉心管、治具類等の部材を提供することにあ
る。更に他の課題は、そのような部材の効果的且つ実用
的製造方法を提供することにある。
Accordingly, it is an object of the present invention to provide a quartz glass member having improved impact resistance which can be stably used for a long period of time without being damaged by any impact. Another object of the present invention is to provide a high-purity quartz glass furnace tube which has excellent heat resistance even under high temperature conditions in heat treatment of a semiconductor wafer and does not substantially contaminate the wafer. It is to provide members such as tools. Yet another object is to provide an effective and practical method of manufacturing such a member.

〔課題を解決するための手段〕[Means for solving the problem]

本発明者らは、熱膨張係数の極めて小さい石英ガラス
の特性に着目して上記技術的課題を克服する方法につい
て多くの実験を行い、特に徐冷点が50℃以上の差を有す
る粘度差の比較的大きい石英ガラスを積層状に加熱融着
一体化した部材が上記課題を効果的に満たし得ることを
見出して本発明に至った。
The present inventors have focused on the characteristics of quartz glass having a very small coefficient of thermal expansion and conducted many experiments on a method of overcoming the above technical problem, and in particular, the annealing point has a viscosity difference of 50 ° C. or more. The present inventors have found that a member obtained by heat-sealing and integrating relatively large quartz glass in a laminated shape can effectively satisfy the above-mentioned problems, and have reached the present invention.

すなわち、本発明は、粘度の異なる二種類の石英ガラ
スを積層状に加熱融着して成る多層構造の石英ガラス材
料であって、該粘度が徐冷点として50℃以上の差異を有
する二種類の石英ガラスが、複合層状に溶融一体化され
て成る耐衝撃性の改善された半導体熱処理用石英ガラス
部材、及びそのような粘度の異なる二種類の積層状石英
ガラスを鉛直状に保持して、その下部から上方に加熱域
を移動させながら、溶融部を下方に延伸することを特徴
とする半導体熱処理用に有用な材料の効果的製造方法を
提供する。
That is, the present invention relates to a quartz glass material having a multilayer structure obtained by heating and fusing two kinds of quartz glass having different viscosities in a laminated manner, wherein the viscosity has a difference of 50 ° C. or more as an annealing point. Quartz glass is a quartz glass member for semiconductor heat treatment with improved impact resistance, which is melt-integrated into a composite layer, and holding such two kinds of laminated quartz glass having different viscosities vertically, The present invention provides an effective method for producing a material useful for semiconductor heat treatment, characterized by extending a molten portion downward while moving a heating region upward from a lower portion thereof.

本発明における石英ガラスの粘度差に関連する上記徐
冷点とは、ASTM C336(Test Method for Anealing Poin
t and Strain Point of Gl−ass by Fiber Elongatio
n)に規定される方法により、そのファイバー エロン
ゲーションを測定することによって求めることができる
ものであり、ガラスの粘度が、1013.0ポイズとなる温度
℃である。
The annealing point related to the viscosity difference of quartz glass in the present invention refers to ASTM C336 (Test Method for Anealing Poin).
t and Strain Point of Gl-ass by Fiber Elongatio
It can be determined by measuring the fiber elongation according to the method specified in n), and is a temperature at which the viscosity of the glass becomes 10 13.0 poise.

この徐冷点の差は、その測定内容から理解されるよう
に、二種の石英ガラスの高温粘度差を表示する一手段で
あって、本発明は、その徐冷点の差が50℃以上あるとき
は、両ガラス層の加熱融着によりその融着面に沿って制
御された歪が効果的に発生すること、それにより複合部
材に応力付与層が形成され、得られた複合石英ガラス部
材の機械的強度が大幅に向上するという技術的発見に基
づくものである。
The difference between the annealing points is, as understood from the measurement contents, a means for indicating the difference in the high-temperature viscosity between the two types of quartz glass. In some cases, a controlled strain is effectively generated along the fusion surface due to the heat fusion of the two glass layers, thereby forming a stress applying layer on the composite member and obtaining the obtained composite quartz glass member. Is based on a technical discovery that the mechanical strength of the steel is greatly improved.

従って、本発明に係る半導体ウエハー熱処理用石英ガ
ラス部材は、耐熱性を有する高粘度石英ガラス層と、そ
れより徐冷点が50℃以上低い低粘度、高純度の合成石英
ガラス層とを組み合わせて、その接合面を融着一体化し
て提供される複合層状石英ガラス部材であって、耐熱性
と耐衝撃性の優れた極めて実用的なものである。
Therefore, the quartz glass member for semiconductor wafer heat treatment according to the present invention is a combination of a high-viscosity quartz glass layer having heat resistance and a low-viscosity, high-purity synthetic quartz glass layer whose annealing point is 50 ° C. or lower. A composite layered quartz glass member provided by fusing and integrating the joining surfaces thereof, which is extremely practical with excellent heat resistance and impact resistance.

この徐冷点の差が、50℃未満では、積層石英ガラス部
材の機械的強度の向上に顕著な効果が認められず、効果
的応力付与層が形成されない。その理由は明らかではな
いが、実用的見地から好ましい徐冷点の差は、60〜90℃
である。
If the difference between the annealing points is less than 50 ° C., no remarkable effect is observed on the improvement of the mechanical strength of the laminated quartz glass member, and no effective stress applying layer is formed. Although the reason is not clear, the difference of the annealing point preferable from a practical point of view is 60 to 90 ° C.
It is.

本発明に係る石英ガラス部材においては、粘度の異な
る二種類の石英ガラスのうち高い方の石英ガラス材料
は、実用的には、例えば、1,280℃における粘度が、10
12.4ポイズ以上のものが好適であり、その粘度の徐冷点
は約1,215℃である。そのような材料は、通常、天然石
英ガラスによって提供されるが、その変性物、あるいは
合成石英ガラスから誘導され、変性されたものであって
もよい。また、これと組み合わされる徐冷点の低い石英
ガラスは、可及的高度に精製されたけい素化合物を出発
原料として合成した高純度石英ガラスが好ましく、その
ような合成石英ガラス材料は、いずれの合成方法によっ
て製造されたものでも好都合に用いられる。合成石英ガ
ラス及びその変性物は、通常、1,280℃における粘度が
約1011.3ポイズ〜1012.0ポイズで、徐冷点が1,120℃〜
1,160℃のものである。
In the quartz glass member according to the present invention, of the two kinds of quartz glass having different viscosities, the higher quartz glass material is practically, for example, having a viscosity at 1,280 ° C. of 10%.
Suitable are those having a viscosity of 12.4 poises or more, and the annealing point of the viscosity is about 1,215 ° C. Such materials are typically provided by natural quartz glass, but may be modified or derived from synthetic quartz glass and modified. Further, the quartz glass having a low annealing point combined with this is preferably a high-purity quartz glass synthesized using a silicon compound that has been refined as highly as possible as a starting material. Those produced by synthetic methods are also advantageously used. Synthetic quartz glass and its modified products usually have a viscosity at 1,280 ° C. of about 10 11.3 poise to 10 12.0 poise, and a slow cooling point of 1,120 ° C.
1,160 ° C.

本発明においては、上記高い徐冷点の材料と低い徐冷
点の材料とを、その徐冷点の差が50℃以上となるように
選択して組み合わされる。選択される粘度の異なる二種
類の石英ガラスを組み合わせて形成される部材は、平板
状のものでもよいが、好ましくは、円筒状又は円柱状部
材であって、その加熱融着面が部材の中心軸に対して同
心円状の曲面に形成されたものが、機械的強度、特に耐
衝撃性の一層大きな向上効果が得られる。
In the present invention, the material having the high annealing point and the material having the low annealing point are selected and combined so that the difference between the annealing points is 50 ° C. or more. The member formed by combining two types of quartz glass having different viscosities selected may be a plate-shaped member, but is preferably a cylindrical or columnar member, and the heat-fused surface thereof is located at the center of the member. When formed on a curved surface concentric with the axis, a greater effect of improving mechanical strength, especially impact resistance, can be obtained.

かかる円筒状及び円柱状部材の形成においては、組合
せ融着される二種類の石英ガラスは、形成させる部材の
種類、例えば、炉芯管や各種治具等の使用対象物ないし
目的に応じて、徐冷点の高い方を外層、あるいは内側層
に適用される。また、この耐衝撃性の向上効果は、半円
筒や半円柱のような形状体においても同様に達成され
る。
In the formation of such cylindrical and columnar members, the two types of quartz glass that are combined and fused together are, depending on the type of member to be formed, for example, a target object or purpose such as a furnace core tube or various jigs, The higher cooling point is applied to the outer layer or inner layer. Further, the effect of improving the impact resistance is similarly achieved in a shape such as a half cylinder or a half cylinder.

例えば、炉芯管用の場合には、予め成形された内層用
高純度合成石英ガラス管と該石英ガラス管より50℃以上
高い徐冷点を有する、好ましくは、1,280℃における粘
度が、1012.4ポイズ以上の外層用石英ガラス管が組み合
わされ、ボートでは、外層用高純度合成石英ガラス管
と、それより50℃以上高い徐冷点を有する内側挿入用の
同様な耐熱性石英ガラス棒とを重合させ、それぞれの重
合状体を鉛直状に保持して、下部から上方に融着用加熱
域を移動させながら、溶融部を下方に延伸することによ
り複合部材が効果的に製造される。
For example, in the case of a furnace core tube, it has a high-purity synthetic quartz glass tube for the inner layer formed in advance and an annealing point higher than the quartz glass tube by 50 ° C. or more, and preferably has a viscosity at 1,280 ° C. of 10 12.4 poise. The above quartz glass tube for the outer layer is combined, and in the boat, a high-purity synthetic quartz glass tube for the outer layer is polymerized with a similar heat-resistant quartz glass rod for insertion into the inside having a slow cooling point higher by 50 ° C or more. The composite member is effectively manufactured by holding each polymer in a vertical shape and extending the fusion zone downward while moving the heating zone for fusion upward from the bottom.

この融着用外部加熱域の重合部材に対する相対的上方
への移動は、外層用管が軟化し融着し得る適切な溶融状
態が得られればよく、外層用管の素材条件や大きさ,肉
厚その他の条件及び加熱炉のキャパシティ等によって選
択される。この加熱域の上方への移動は、加熱炉を上昇
させてもよいし、重合状管を下降させてもよい。本発明
においては、この加熱域の相対的上昇移動と平行して、
その溶融部を下方に延伸させることが重要であって、適
度の延伸により融着面への気泡の形成を効果的に抑制す
ることができる。その延伸速度は、重合間隙によっては
無視し得る程度の場合もあるが、通常は上記加熱域の移
動速度の1.5倍以下である。また、気泡を融着面に残さ
ないようにするには、内層用管又は棒状体の送り込み下
降速度を外層管のそれより若干大きくすることが有利で
ある。
The movement of the external heating zone relative to the polymerization member in the upward direction is only required to obtain an appropriate molten state in which the outer tube is softened and fused, and the material conditions, size, and thickness of the outer tube are required. It is selected depending on other conditions, the capacity of the heating furnace, and the like. The upward movement of the heating zone may raise the heating furnace or lower the polymerization tube. In the present invention, in parallel with the relative upward movement of this heating zone,
It is important to stretch the melted portion downward, and the formation of bubbles on the fusion surface can be effectively suppressed by appropriate stretching. The stretching speed may be negligible depending on the polymerization gap, but is usually 1.5 times or less the moving speed of the heating zone. In order to prevent air bubbles from remaining on the fusion surface, it is advantageous to make the inner layer tube or the rod-like body lower in feeding speed slightly than that of the outer layer tube.

本発明の方法においては、重合される両石英ガラス部
材の間隙は小さいほど好ましく、また一体化操作の間、
その間隙を減圧状態にし、あるいは外層用管体及び/又
は内層用ガラス体に50Hz以上の周波数の振動を与えるこ
とにより、融着接合面の気泡を効果的に排除することが
できる。
In the method of the present invention, the gap between the quartz glass members to be polymerized is preferably smaller, and during the integration operation,
By setting the gap in a reduced pressure state or by applying a vibration having a frequency of 50 Hz or more to the outer layer tube and / or the inner layer glass body, bubbles on the fusion bonding surface can be effectively eliminated.

次に、本発明を添付図面により、更に具体的に説明す
る。
Next, the present invention will be described more specifically with reference to the accompanying drawings.

第1図は、本発明の方法の一実施状態を説明するため
の縦断面図で、第2図の図(a)及び図(b)は、それ
ぞれ本発明に係る複合石英ガラス管及び複合石英ガラス
棒の模式的輪切り断面図である。
FIG. 1 is a longitudinal sectional view for explaining one embodiment of the method of the present invention, and FIGS. 2 (a) and (b) of FIG. 2 show a composite quartz glass tube and a composite quartz according to the present invention, respectively. FIG. 2 is a schematic cross-sectional view of a glass rod.

第1図に描かれるように、高純度石英ガラス管Aの内
側に、それより徐冷点が50℃以上高い耐熱性石英ガラス
棒Bを挿入,重合させ、これを鉛直に立てて、該ガラス
管Aとガラス棒Bの上端部を、それぞれ上下に移動し得
る別個の軸方向移動式チャック1及び2に把持、固定す
る。次に、上記のそれぞれ固定された重合状ガラスの下
端部を誘導加熱炉3で加熱し密封状に溶融一体化した
後、その融着部に、別に準備した石英ガラス引出し棒4
の一端を融着結合する。該引出し棒4は、その下方部で
所望の引取り速度で下方に引っ張り延伸することのでき
るローラ治具5に取り付けられる。更に、複合棒状体の
内側のガラス棒Bと外側の管Aの上端部には、両部材の
間隙を減圧チャンバクランプ治具6が、管Aの上端開口
周縁を全面的に覆って取り付けられ、その内部は、融着
一体化操作の間、真空装置(図示せず)により所定の減
圧に保たれる。
As shown in FIG. 1, a heat-resistant quartz glass rod B whose annealing point is higher by 50 ° C. or more than that is inserted into a high-purity quartz glass tube A and polymerized. The upper ends of the tube A and the glass rod B are gripped and fixed to separate axially movable chucks 1 and 2 which can move up and down, respectively. Next, the lower end of each of the above-mentioned fixed polymer glass is heated in an induction heating furnace 3 to be melted and integrated in a sealed manner.
Is fusion bonded at one end. The drawer rod 4 is attached to a roller jig 5 that can be pulled downward at a desired take-up speed at a lower portion thereof. Further, a decompression chamber clamp jig 6 is attached to the upper end portions of the inner glass rod B and the outer tube A of the composite rod-like body so as to entirely cover the periphery of the upper end opening of the tube A so as to cover the gap between the two members. The inside thereof is maintained at a predetermined reduced pressure by a vacuum device (not shown) during the fusion-integration operation.

次に、移動式チャック1及び2に固定され、鉛直に保
持された複合棒状体は、これをゆっくり下方に移動させ
て、例えば、1,800℃〜2,000℃あるいはそれ以上の温度
に加熱された誘導加熱炉3内の加熱域を通過させ、下部
から上方へ順次溶融一体化させながら、同時に下方の引
出し棒4をローラ治具5によって引き取り、その場合、
通常、移動式チャック1及び2の送り込み速度より若干
早い引取り速度で下方に引き取って延伸し、気泡のない
所望の複合石英ガラス棒8に形成される。
Next, the composite rod-shaped body fixed to the movable chucks 1 and 2 and held vertically is moved slowly downward, for example, by induction heating at a temperature of 1,800 ° C. to 2,000 ° C. or more. While passing through the heating area in the furnace 3 and sequentially melting and integrating from the lower part to the upper part, the lower drawer rod 4 is simultaneously taken up by the roller jig 5.
Usually, it is drawn downward at a take-up speed slightly higher than the feeding speed of the movable chucks 1 and 2, and is stretched to form a desired composite quartz glass rod 8 without bubbles.

その操作の間、例えば、減圧チャンバクランプ治具6
を利用して両部材の間隙を減圧に保持したり、振動治具
7により石英ガラス棒A及び/又は管Bに50Hz以上の周
波数の振動を与えてガラス融着面への気泡の形成を一層
効果的に排除することができる。
During the operation, for example, the decompression chamber clamp jig 6
The gap between the two members is maintained at a reduced pressure by utilizing the method described above, or the vibrating jig 7 is applied to the quartz glass rod A and / or the tube B at a frequency of 50 Hz or more to further form bubbles on the glass fusion surface. Can be effectively eliminated.

第2図は、本発明に係る石英ガラス部材の模式的輪切
り断面図で、図(a)は、第1図の方法で得られた複合
ガラス棒の断面図、図(b)は、炉芯管用複合管の断面
図である。図において、Aは相対的に徐冷的の低い高純
度石英ガラス管層であり、Bはそれより徐冷点が50℃以
上高い石英ガラス棒である。またCは同様に徐冷点が50
℃以上高い石英ガラス管層である。
FIG. 2 is a schematic cross-sectional view of a quartz glass member according to the present invention. FIG. 2 (a) is a cross-sectional view of a composite glass rod obtained by the method of FIG. 1, and FIG. 2 (b) is a furnace core. It is sectional drawing of a compound pipe for pipes. In the figure, A is a relatively low-cooled high-purity quartz glass tube layer, and B is a quartz glass rod whose annealing point is higher by 50 ° C. or more. C also has an annealing point of 50
It is a quartz glass tube layer which is higher than ℃.

〔作 用〕 本発明に係る半導体熱処理用複合石英ガラス部材は、
容易に製作をすることができ、改善された高い耐衝撃強
度を有するので、従来のものに比べて取扱いが遥かに容
易で、高い実用性を有する。
[Operation] The composite quartz glass member for semiconductor heat treatment according to the present invention is:
Because it can be easily manufactured and has improved high impact strength, it is much easier to handle and more practical than conventional ones.

〔実施例〕〔Example〕

次に、具体例により本発明の特徴を更に詳細に説明す
る。なお、以下の例における耐衝撃強度は、次の破壊試
験による測定値によって評価した。
Next, the features of the present invention will be described in more detail with reference to specific examples. In addition, the impact resistance in the following examples was evaluated by the measured value by the following destructive test.

破損試験: 直径110.0mm,肉厚3.0mm及び長さ200.0mmの円筒形のガ
ラス管部材を、厚さ20mmの防震ラバーの上に倒して置
き、その鉛直上方から、重さ66.9g,直径25.4mmの剛球を
自然落下させて、そのガラス管が破壊する最小の落下距
離を測定する。従って、この破損試験法では、各ガラス
管の耐衝撃強度の相対的比較がその破壊落下距離で対比
される。
Breakage test: A cylindrical glass tube member with a diameter of 110.0 mm, a wall thickness of 3.0 mm and a length of 200.0 mm was placed on a 20 mm thick earthquake-proof rubber and placed. From above vertically, the weight was 66.9 g and the diameter was 25.4. The minimum fall distance at which the glass tube breaks is measured by letting a hard ball of mm fall naturally. Therefore, in this failure test method, a relative comparison of the impact strength of each glass tube is compared with its breaking distance.

実施例 1及び比較例 1 1120℃の徐冷点を有する石英ガラス管と1190℃の徐冷
点を有する石英ガラス管とを前者を内層(厚さ1.2mm)
とし後者を外層(厚さ1.8mm)として加熱溶融し、一体
化して形成された直径110.0mm,肉厚3.0mm及び長さ200.0
mmの円筒形のガラス管を、上記破損試験法により測定し
た破損落下距離は623mmであった。
Example 1 and Comparative Example 1 An inner layer (1.2 mm thick) of a quartz glass tube having an annealing point of 1120 ° C. and a quartz glass tube having an annealing point of 1190 ° C.
The latter was heated and melted as an outer layer (1.8 mm thick), and was integrally formed with a diameter of 110.0 mm, a wall thickness of 3.0 mm, and a length of 200.0 mm.
The breakage distance of the cylindrical glass tube having a diameter of 623 mm was measured by the above-described fracture test method and was 623 mm.

比較のために、1120℃の徐冷点を有する規定形状の石
英ガラス管について測定した破損落下距離は485mmであ
った。
For comparison, the breakage distance measured for a quartz glass tube having a prescribed shape having an annealing point of 1120 ° C. was 485 mm.

以上より、本発明に係る特定の積層状複合石英ガラス
部材は、改善された高い耐衝撃強度を有することが理解
されよう。
From the above, it can be seen that the specific laminated composite quartz glass member according to the present invention has improved high impact strength.

実施例 2〜3及び比較例 2〜3 第1表に示す徐冷点を有する各種石英ガラスの組合せ
を用い、実施例1と同様な肉厚割合の溶融一体化された
積層石英ガラス管を作成してそれぞれの剛球落下距離を
測定した。それらの結果を第1表にまとめて示す。
Examples 2 to 3 and Comparative Examples 2 to 3 Using a combination of various types of quartz glass having the annealing point shown in Table 1, a laminated quartz glass tube having the same thickness ratio as in Example 1 and being melted and integrated was prepared. Then, each hard ball falling distance was measured. The results are summarized in Table 1.

なお、参考のために、実施例1のそれらを併記した。 For reference, those of Example 1 are also shown.

第 1 表 内層徐冷点 外層徐冷点 その差 落下距離 実施例2 1160℃ 1245℃ 85℃ 658mm 〃 3 1190〃 1245〃 55〃 605〃 比較例2 1145〃 1160〃 15〃 508〃 〃 3 1145〃 1190〃 45〃 524〃 実施例1 1120〃 1190〃 70〃 623〃 第1表から明らかなように、溶融一体化された内層と
外層の石英ガラスの徐冷点の差が、50℃未満では落下距
離が小さく、50℃を超えると衝撃強度が顕著に向上し、
例えば、100mmあるいは、それ以上の衝撃強度の改善が
得られることが判る。
Table 1 Inner layer gradual cooling point Outer layer gradual cooling point The difference Fall distance Example 2 1160 ℃ 1245 ℃ 85 ℃ 658 mm 〃 3 1190 〃 1245 〃 55 605 〃 Comparative example 2 1145 〃 1160 〃 15 508 〃 3 3 1145 表1190〃 45〃 524〃 Example 1 1120〃 1190〃 70〃 623〃 As is clear from Table 1, if the difference between the annealing points of the fused and fused inner and outer layers of quartz glass is less than 50 ° C, it drops. When the distance is small and exceeds 50 ° C, the impact strength is significantly improved,
For example, it is understood that the impact strength can be improved by 100 mm or more.

実施例 4 ゾルーゲル法によって合成した多孔質石英ガラス母材
を管状に成形し、焼結加熱して外径100mm,肉厚5mm及び
長さ2,000mmの高純度合成石英ガラス管を製造した。
Example 4 A porous quartz glass preform synthesized by a sol-gel method was formed into a tube, and sintered and heated to produce a high-purity synthetic quartz glass tube having an outer diameter of 100 mm, a wall thickness of 5 mm, and a length of 2,000 mm.

また、天然水晶塊を誘導加熱炉で溶融して、電気溶融
法によりモリブデン成形治具を用いて棒状に押し出し、
外径85mm,肉厚18mm及び長さ1,500mmの天然石英ガラス棒
を製造した。それぞれの管及び棒の徐冷点は、合成石英
ガラス管が1,120℃で、天然石英ガラス棒は、1,245℃lo
gであった。
In addition, the natural crystal ingot is melted in an induction heating furnace, and extruded into a rod shape using a molybdenum molding jig by an electric melting method.
A natural quartz glass rod with an outer diameter of 85 mm, a wall thickness of 18 mm and a length of 1,500 mm was manufactured. The annealing point of each tube and rod is 1,120 ° C for synthetic quartz glass tube and 1,245 ° C for natural quartz glass rod.
g.

上記管に棒を挿入した重合状体の下端を揃えてそれぞ
れの上部を上下に移動可能なチャックに固定し、前記第
1図に示した方法に準じて、一体化された複合棒状体を
製造した。
The lower end of the polymer in which the rod is inserted into the tube is aligned, and the upper part thereof is fixed to a vertically movable chuck, and an integrated composite rod is manufactured according to the method shown in FIG. did.

一体化操業条件: 加熱域の温度…2,000℃ 振動治具の周波数…60Hz 管固定チャックの下降速度…0.3cm/min 棒固定チャックの下降速度…18.0cm/min ローラ治具の下降速度…18.5cm/min このようにして、中心軸に対して精度の優れた直径が
11mmの複合状石英ガラス棒体を得た。その断面を偏光顕
微鏡で観察したところ、約2.3mmの極めて均一な外層が
確認された。
Integrated operating conditions: Heating zone temperature: 2,000 ° C Vibration jig frequency: 60 Hz Lowering speed of fixed pipe chuck: 0.3 cm / min Lowering speed of fixed rod chuck: 18.0 cm / min Lowering speed of roller jig: 18.5 cm / min In this way, an accurate diameter with respect to the central axis
An 11 mm composite quartz glass rod was obtained. When the cross section was observed with a polarizing microscope, an extremely uniform outer layer of about 2.3 mm was confirmed.

同様な一体化を、間隙の異なるものについて行ったと
ころ、その間隙が内層用棒の直径の約20%以内であれ
ば、偏肉の不都合現象の発生等の支障もなく、高精度石
英ガラス棒を容易に形成し得ることが判った。
When the same integration was performed for different gaps, if the gap was within about 20% of the diameter of the inner layer rod, there was no problem such as inconvenient phenomenon of uneven wall thickness, etc. Was easily formed.

実施例 5 天然水晶粉を酸素−水素炎により溶融ガラス化してベ
ルヌーイ法により、外径200mm,肉厚15mm,長さ2,000mmの
外層用管を作成した。その徐冷点は、約1,200℃であっ
た。これとは別に、スート法によって製造した多孔質ガ
ラス母材を無水窒素ガス雰囲気中で長時間にわたって加
熱脱水処理した後、焼結ガラス化して、外径160mm,肉厚
8mm,長さ2,000mmの内層用高純度石英ガラス管を作成し
た。その管は徐冷点は、1,145℃であった。
Example 5 Natural quartz powder was melt-vitrified by an oxygen-hydrogen flame, and an outer layer tube having an outer diameter of 200 mm, a wall thickness of 15 mm, and a length of 2,000 mm was prepared by the Bernoulli method. Its annealing point was about 1200 ° C. Separately, the porous glass base material manufactured by the soot method is heated and dehydrated for a long time in an anhydrous nitrogen gas atmosphere, and then sintered and vitrified to an outer diameter of 160 mm and a thickness of 160 mm.
A high-purity quartz glass tube for the inner layer of 8 mm and length of 2,000 mm was prepared. The annealing point of the tube was 1,145 ° C.

両ガラス管を重合させ、実施例4と実質的同様に操作
して複合管を製造した。
Both glass tubes were polymerized and operated in substantially the same manner as in Example 4 to produce a composite tube.

一体化操作においては、減圧チャンバークランプ治具
内を0.5kg/cm2以下に減圧状態に保持しながら、重合状
の管体を僅かに延伸しながら溶融一体化を行った。
In the integration operation, while the inside of the reduced-pressure chamber clamp jig was maintained at a reduced pressure of 0.5 kg / cm 2 or less, the melt-integration was performed while slightly stretching the polymerized tubular body.

その結果、外層管と内層管の融着界面に全く気泡のな
い高精度の積層構造を持った合成石英ガラス棒体が得ら
れた。
As a result, a synthetic quartz glass rod having a high-precision laminated structure with no bubbles at the fusion interface between the outer tube and the inner tube was obtained.

上記操作において、減圧チャンバークランプ治具によ
る減圧を行わず、50Hz以上の振動を与えないで延伸一体
化を行った場合には、極めて僅かではあるが微細な波紋
状の泡が観察されたが、実用上の不利益は認められなか
った。
In the above operation, without performing decompression by the decompression chamber clamp jig, when performing stretching integration without giving a vibration of 50 Hz or more, very slight but fine ripple-like bubbles were observed, No practical disadvantage was noted.

〔発明の効果〕〔The invention's effect〕

本発明の石英ガラス部材は、高い耐衝撃性と耐熱性を
有するので、特に半導体ウエハーの熱処理用の炉心管や
治具等の部材として好適に用いることができ、一寸した
衝撃等により破損する恐れがが小さく、従って、取扱い
操作性に優れ、その寿命は従来のものに比べて遥かに延
長されるから、その工業的価値は極めて高い。
Since the quartz glass member of the present invention has high impact resistance and heat resistance, it can be suitably used particularly as a member for a furnace tube or a jig for heat treatment of a semiconductor wafer, and may be damaged by a small impact or the like. Is small, the handling operability is excellent, and the service life is much longer than that of the conventional one, so that its industrial value is extremely high.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明の方法の一実施状態を説明するための
縦断面図で、第2図は、本発明の方法による石英ガラス
管及び石英ガラス棒の模式的輪切り断面図である。 図中の符号: A……高純度石英ガラス管 B……耐熱性石英ガラス棒 C……耐熱性石英ガラス管 1,2……軸方向移動式チャック 3……誘導加熱炉 4……引出し棒 5……ローラ治具 6……減圧チャンバクランプ治具 7……振動治具 8……複合石英ガラス棒
FIG. 1 is a longitudinal sectional view for explaining one embodiment of the method of the present invention, and FIG. 2 is a schematic sectional view of a quartz glass tube and a quartz glass rod according to the method of the present invention. Symbols in the figure: A: High-purity quartz glass tube B: Heat-resistant quartz glass rod C: Heat-resistant quartz glass tube 1,2: Axial movable chuck 3: Induction heating furnace 4: Drawer rod 5 Roller jig 6 Decompression chamber clamp jig 7 Vibration jig 8 Composite quartz glass rod

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小飯田 浩志 福島県郡山市田村町金屋字川久保88 信 越石英株式会社石英技術研究所内 (72)発明者 木村 博至 福井県武生市北府2―13―60 信越石英 株式会社武生工場内 (56)参考文献 実開 昭62−14722(JP,U) 実開 昭56−99846(JP,U) 特公 昭47−823(JP,B1) 作花、境野、高橋「ガラスハンドブッ ク」(1975−9−30)朝倉書店P.637 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Hiroshi Koida 88 Kawakubo, Kanaya, Tamura-cho, Koriyama-shi, Fukushima Prefecture Inside the Quartz Research Laboratory, Shin-Etsu Quartz Co., Ltd. (72) Inventor Hiroshi Kimura 2-13 Kitafu, Takefu-shi, Fukui Prefecture ―60 Shin-Etsu Quartz Inside the Takefu Plant (56) References: Shokai Sho 62-14722 (JP, U) Shokai Sho 56-99846 (JP, U) JP-B Showa 47-823 (JP, B1) Sakaino, Takahashi "Glass Handbook" (1975-9-30) 637

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】粘度の異なる二種類の石英ガラスを積層状
に加熱融着して成る多層構造の石英ガラス材料であっ
て、該粘度が徐冷点として50℃以上の差異を有する二種
類の石英ガラスが、複合層状に溶融一体化されて成る耐
衝撃性の改善された半導体熱処理用石英ガラス部材。
A quartz glass material having a multilayer structure obtained by heating and fusing two kinds of quartz glass having different viscosities in a laminated manner, wherein the two kinds of quartz glass have a difference of 50 ° C. or more as an annealing point. A quartz glass member for semiconductor heat treatment having improved impact resistance, wherein quartz glass is melt-integrated into a composite layer.
【請求項2】内側の合成石英ガラス層と、該内側層の合
成石英ガラスより50℃以上高い徐冷点を有する外側の石
英ガラス層とから成る複合管である請求項1記載の石英
ガラス部材。
2. A quartz glass member according to claim 1, which is a composite tube comprising an inner synthetic quartz glass layer and an outer quartz glass layer having an annealing point higher by at least 50 ° C. than the synthetic quartz glass of the inner layer. .
【請求項3】外側の合成石英ガラス層と、該外側層の合
成石英ガラスより50℃以上高い徐冷点を有する石英ガラ
ス円柱体層とから成る複合棒状体である請求項1記載の
石英ガラス部材。
3. The quartz glass according to claim 1, wherein said quartz glass is a composite rod comprising an outer synthetic quartz glass layer and a quartz glass columnar layer having an annealing point higher by at least 50 ° C. than said synthetic quartz glass of said outer layer. Element.
【請求項4】高純度合成石英ガラス管を、該石英ガラス
管より50℃以上高い徐冷点を有する石英ガラスの管の内
側に挿入し、両重合管を鉛直状に保持して、その下部か
ら上方に加熱域を移動させながら、溶融部を下方に延伸
することを特徴とする耐衝撃性の改善された複合管半導
体熱処理用石英ガラス部材の製造方法。
4. A high-purity synthetic quartz glass tube is inserted inside a quartz glass tube having an annealing point higher than that of the quartz glass tube by 50 ° C. or more, and both polymerization tubes are held in a vertical state. A method for producing a quartz glass member for heat treatment of a composite tube semiconductor having improved impact resistance, characterized in that a molten portion is extended downward while moving a heating region upward from the above.
【請求項5】高純度合成石英ガラス管の内側に、該合成
石英ガラス管より50℃以上高い徐冷点を有する石英ガラ
スの棒を挿入し、これを鉛直状に保持して、その下部か
ら上方に加熱域を移動させながら、溶融部を下方に延伸
することを特徴とする耐衝撃性の改善された複合棒状体
半導体熱処理用石英ガラス部材の製造方法。
5. A quartz glass rod having an annealing point higher than that of the synthetic quartz glass tube by 50 ° C. or more is inserted inside the high-purity synthetic quartz glass tube, and the rod is held vertically, and from the lower part thereof. A method for producing a quartz glass member for heat treatment of a composite rod-like semiconductor having improved impact resistance, characterized in that a molten portion is extended downward while moving a heating region upward.
JP2120740A 1989-06-13 1990-05-10 Quartz glass member for semiconductor heat treatment and method of manufacturing the same Expired - Fee Related JP2610056B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1-149859 1989-06-13
JP14985989 1989-06-13

Publications (2)

Publication Number Publication Date
JPH0387020A JPH0387020A (en) 1991-04-11
JP2610056B2 true JP2610056B2 (en) 1997-05-14

Family

ID=15484212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2120740A Expired - Fee Related JP2610056B2 (en) 1989-06-13 1990-05-10 Quartz glass member for semiconductor heat treatment and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2610056B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4079204B2 (en) * 1998-11-09 2008-04-23 信越石英株式会社 Quartz glass tube for optical fiber preform and manufacturing method thereof
JP3646912B2 (en) * 1998-12-01 2005-05-11 東芝セラミックス株式会社 Heater encapsulated heater

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6015336Y2 (en) * 1979-12-27 1985-05-14 東芝セラミツクス株式会社 Pull-out rod for semiconductor diffusion furnace
JPH0739227Y2 (en) * 1985-07-12 1995-09-06 信越石英株式会社 Multi-layered quartz glass furnace core tube

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
作花、境野、高橋「ガラスハンドブック」(1975−9−30)朝倉書店P.637

Also Published As

Publication number Publication date
JPH0387020A (en) 1991-04-11

Similar Documents

Publication Publication Date Title
JP5038435B2 (en) Synthetic quartz glass hollow cylinder manufacturing method and thick hollow cylinder by the manufacturing method
WO2007063996A1 (en) Quartz glass crucible, process for producing the same, and use
JP5908912B2 (en) Tempered glass enclosure and method of strengthening the same
JPH08208242A (en) Production of quartz glass
US8393179B2 (en) Method for producing a semifinished product from synthetic quartz glass
JP6861860B2 (en) Automated sharpening method for large outer diameter preforms and resulting glass preforms
JP2018083751A (en) Upward collapse process and apparatus for manufacturing glass preform
TW201441165A (en) Method of making a glass forming apparatus with reduced weight
JP5114409B2 (en) Welding method for joining components made of high silica material and apparatus for carrying out the method
JP2610056B2 (en) Quartz glass member for semiconductor heat treatment and method of manufacturing the same
CN105399312A (en) Manufacturing method of large-size optical quartz glass
JP2810941B2 (en) Method for producing polygonal columnar silica glass rod
EP2351714B1 (en) Method for manufacturing optical fiber preform
JPH08151220A (en) Method for molding quartz glass
JP3797567B2 (en) Manufacturing method of optical fiber preform
JP3434945B2 (en) Method for producing hollow silica glass preform for fiber
JP3258175B2 (en) Method for producing non-doped or doped silica glass body
JP4441649B2 (en) Manufacturing method of large quartz glass body
JPH09202632A (en) Production of cylindrical quartz glass
JP3327364B2 (en) Method for producing silica glass processed product
US3880634A (en) Method and apparatus for producing tubing from short glasses
US5364427A (en) Manufacture of optical fiber using sol-gel
KR20010073057A (en) Method of producing glass article and glass base material for optical fiber
JP3836298B2 (en) Method for manufacturing preform for optical fiber
JPH0729798B2 (en) Method for manufacturing composite quartz glass tube for semiconductor heat treatment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080213

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees