JPH104978A - シロイヌナズナの根毛形成開始を制御するcpc遺伝子及びそれを導入した植物 - Google Patents

シロイヌナズナの根毛形成開始を制御するcpc遺伝子及びそれを導入した植物

Info

Publication number
JPH104978A
JPH104978A JP9028877A JP2887797A JPH104978A JP H104978 A JPH104978 A JP H104978A JP 9028877 A JP9028877 A JP 9028877A JP 2887797 A JP2887797 A JP 2887797A JP H104978 A JPH104978 A JP H104978A
Authority
JP
Japan
Prior art keywords
gene
plant
arabidopsis thaliana
amino acid
cpc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9028877A
Other languages
English (en)
Other versions
JP4051719B2 (ja
Inventor
Kiyotaka Okada
清孝 岡田
Takuji Wada
拓治 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEIBUTSU BUNSHI KOGAKU KENKYUS
SEIBUTSU BUNSHI KOGAKU KENKYUSHO KK
Original Assignee
SEIBUTSU BUNSHI KOGAKU KENKYUS
SEIBUTSU BUNSHI KOGAKU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEIBUTSU BUNSHI KOGAKU KENKYUS, SEIBUTSU BUNSHI KOGAKU KENKYUSHO KK filed Critical SEIBUTSU BUNSHI KOGAKU KENKYUS
Priority to JP02887797A priority Critical patent/JP4051719B2/ja
Priority to CA002199582A priority patent/CA2199582A1/en
Priority to US08/814,030 priority patent/US5831060A/en
Priority to DE69721892T priority patent/DE69721892T2/de
Priority to EP97301700A priority patent/EP0803572B1/en
Publication of JPH104978A publication Critical patent/JPH104978A/ja
Application granted granted Critical
Publication of JP4051719B2 publication Critical patent/JP4051719B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Botany (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

(57)【要約】 【解決手段】 配列番号1で表されるアミノ酸配列、又
は配列番号1で表されるアミノ酸配列と実質的に同一な
アミノ酸配列をコードするCPC遺伝子、及び該遺伝子
を導入した植物。 【効果】 根毛数の増加した新規な植物を提供する。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、植物の根毛の形成
を促進する新規な遺伝子、及びそれを導入したトランス
ジェニック植物に関する。
【0002】
【従来の技術】植物の根毛に関する突然変異体として
は、根毛の数が多くなっている ttg(transparent test
a glabra)、 gl2(glabrous2 )(Galway,M.E.ら(199
4) Dev.Biol. 166 740-754、Rerie,W.G.ら(1994) Gnes
& Development 8 1388-1399 )、根毛の形が異常になっ
ているrhd1、rhd2、rhd3、rhd4などが知られている(Sc
hiefelbein,J. & Somerville,C.(1990) Plant Cell 2 2
35-243)。また、根毛の数が少なくなっている突然変異
体として、rhd6が知られているが、これはオーキシン等
の植物ホルモンによってその変異が相補されるものであ
り(Masucci,J.D. &Schiefelbein,J.W.(1994) Plant Ph
ysiol. 106 1335-1346 )、植物ホルモンによって相補
されない突然変異体、即ち、根毛をつくるシグナル伝達
系そのものが異常となっている突然変異体は、従来全く
知られていなかった。
【0003】
【発明が解決しようとする課題】根毛をつくるシグナル
伝達系の異常により根毛の数が少なくなった突然変異体
を分離できれば、その異常が生じた部位を調べることに
より、根毛形成に関与する遺伝子を特定することができ
る。
【0004】本発明は、このような技術的背景に基づき
なされたものであり、その目的は、植物の根毛の形成を
促進する新規な遺伝子を単離し、これを導入したトラン
スジェニック植物を提供することにある。
【0005】
【課題を解決するための手段】本発明者は、上記課題を
解決するため鋭意検討を重ねた結果、根毛の数が少なく
なった突然変異シロイヌナズナを分離し、該植物よりそ
の突然変異に関与する遺伝子をクローニングし、更に、
これを野性型のシロイヌナズナに導入し、発現させるこ
とに成功し、これらの知見に基づき本発明を完成した。
【0006】即ち、本発明は、配列番号1で表されるア
ミノ酸配列、又は配列番号1で表されるアミノ酸配列と
実質的に同一なアミノ酸配列をコードする新規な遺伝子
である。また、本発明は、上記記載の遺伝子を導入した
植物である。
【0007】以下、本発明を詳細に説明する。本発明の
遺伝子は、配列番号1で表されるアミノ酸配列、又は配
列番号1で表されるアミノ酸配列と実質的に同一なアミ
ノ酸配列を有する。ここで、「配列番号1で表されるア
ミノ酸配列と実質的に同一なアミノ酸配列」とは、配列
番号1で表されるアミノ酸配列の幾つかのアミノ酸残基
について、欠失、置換、付加等の変化が生じた配列であ
って、配列番号1で表されるアミノ酸配列と同一な作用
効果、即ち、植物の根毛形成促進効果を有するアミノ酸
配列をいう。幾つかのアミノ酸残基について欠失、置
換、付加等の変化を起こさせることは、本願の出願時に
おいて常用されている技術、例えば、部位特異的変異誘
発法(Nucleic AcidResearch, Vol.10, No.20, p6487-6
500 (1982) )により行うことができる。
【0008】本発明の遺伝子は、根毛の形成を促進する
という機能を有する。これは、この遺伝子が破壊された
突然変異体が、根毛数の減少という性質を示すことから
わかる。根毛が少なくなる突然変異体としては、従来の
技術で述べたようにrhd6などが既に知られているが、本
発明の遺伝子に起因する突然変異体は、植物ホルモンに
よっては相補されないという点でrhd6とは異なってい
る。従って、この突然変異体は、従来全く知られていな
かったものである。なお、本発明者は、この突然変異体
の根毛が出たり出なかったりすることから、その名称を
「caprice (日本語で「気紛れ」という意味)」とし、
この突然変異体に関与する遺伝子を「CPC」とした。
【0009】CPC遺伝子は、例えば、以下のような方
法によりクローニングすることができる。まず、シロイ
ヌナズナから単離したゲノムDNAを適当な制限酵素で
切断し、断片化されたDNAを適当なベクターにつな
ぎ、この組換えベタクーで宿主となる微生物を形質転換
し、ゲノムDNAライブラリーを作成する。DNAの単
離は、塩化セシウム及びエチジウムブロマイドなどを用
いた常法に従って行うことができる。制限酵素は、特別
なものを用いる必要はなく、例えば、Sau3AIなどを用い
ることができる。ベクターも特別のものを用いる必要は
なく、例えば、λDASH IIなどを用いることができる。
宿主とする微生物は、用いたベクターに応じて決めれば
よく、例えば、λ DASH IIをベクターとした場合は、大
腸菌XL-1 Blue MRA(P2) などを用いることができる。
【0010】次に、上記のゲノムDNAライブラリーに
ついてスクリーニングを行う。プローブとしては、突然
変異体caprice のT−DNA近傍付近のDNAを使用す
る。caprice は、T−DNAの挿入によりCPC遺伝子
が破壊されているのだから、T−DNAの近傍付近のD
NAには、CPC遺伝子の一部が含まれているからであ
る。
【0011】上記のプローブにより選抜された陽性クロ
ーンから、ベクターを取り出し、これから得られたDN
A断片をプローブとしてcDNAライブラリーのスクリ
ーニングを行う。cDNAライブラリーは、常法に従っ
て作成することができる。即ち、植物体より全RNAを
単離し、これからオリゴ(dT)等を用いてmRNAを
単離し、得られたmRNAから逆転写酵素を用いてcD
NAを合成する。このcDNAを適当なベクターにつな
ぎ、この組換えベクターで宿主となる微生物を形質転換
する。このスクリーニングにより選抜される陽性クロー
ン中に含まれる組換えベクターが本発明のCPC遺伝子
を含む。
【0012】CPC遺伝子を植物中で発現させること
は、CPC遺伝子を適当な植物発現ベクターに挿入し、
この組換えベクターを植物に導入することにより行うこ
とができる。ここで用いる植物発現ベクターとしては、
植物中で機能し得るプロモーターとマーカー遺伝子を有
するものであればどのようなものでもよいが、広範な種
類の植物中で機能し得るカリフラワーモザイク・ウイル
スの35Sプロモーターを有するベクターが好ましい。
このようなベクターとしては、実施例で使用したpMAT13
7-Hmを挙げることができるが、これ以外にもpBI121(CL
ONTECH社製)などを例示することができる。ベクターを
植物に導入することは、アグロバクテリウム菌を用いて
行うのが好ましいが、これに限定されることなく、エレ
クトロポレーション法、パーティクルガンを用いる方法
によっても行うことができる。CPC遺伝子を発現させ
る植物については、特に制限はないが、バラ、タバコ、
トマト、イネ、トウモロコシ、ペテュニア、アブラナな
どを好ましい植物として例示することができる。
【0013】本発明のCPC遺伝子は、以下の機能を有
する。 1)植物の根毛形成を促進するはたらきを持つ。従っ
て、CPC遺伝子を導入し、過剰発現させれば、通常の
植物より根毛の多い植物を作出することができる。この
ような植物は、水分吸収能が高いので、通常の植物より
も乾燥に強いと考えられる。
【0014】2)葉や茎のトライコームを減少させるは
たらきを持つ。従って、CPC遺伝子をバラのような刺
を持つ植物に導入し、過剰発現させれば、刺の少ない植
物を作出することができる。 3)植物の開花時期を早めるはたらきを持つ。従って、
CPC遺伝子を導入し、過剰発現させれば、花を早く咲
かせることが期待できる。
【0015】4)葉中のアントシアニンの蓄積量を減少
させるはたらきを持つ。即ち、シロイヌナズナを16℃く
らいの低い温度で生育させると葉などにアントシアニン
色素が蓄積して赤紫色に着色する。ところが、CPC遺
伝子を過剰発現させた植物体では、アントシアニンが蓄
積しにくくなり、16℃で生育させても葉の色が緑色のま
まである。一般に花の赤い色などはアントシアニン系の
色素によって着色されているので、花に色のついた植物
体に、CPC遺伝子を導入し、過剰発現させれば、花の
色を変えることが期待できる。
【0016】
【発明の実施の形態】
【0017】
【実施例】
〔実施例1〕 トランスジェニック植物の作出 シロイヌナズナ(品種:Wassilewskija 〔WS〕)の種
子を滅菌した後、寒天培地に播き培養を行った。播種か
ら2〜4日は、休眠を打破し発芽をそろえ、かつ早く花
を咲かせるため、遮光した状態で4℃で培養し、その後
は、22℃、連続光の下で培養した。滅菌は、種子を1.5m
l のエッペンチューブに入れ、そこに10%のハイター
(花王)、0.02% のTriton X-100を含む滅菌蒸留水を0.
5ml 加え、ボルテックスで攪拌した後、3〜5分室温で
放置し、次いで、種子を滅菌蒸留水で5回洗うことによ
り行った。寒天培地は、シロイヌナズナ用の栄養塩溶液
〔蒸留水または脱イオン水985ml 、1M KNO3 5ml 、1M M
gSO4 2ml 、1M Ca(NO3)2 2ml、 20mM Fe-EDTA 2.5ml 、
微量要素液 1ml、K-PO4緩衝液液(pH5.5) 2.5ml 〕(白
石英秋ら、(1991) 現代化学 増刊 20 植物バイオテク
ノロジーII、38頁)を蒸留水で1/2 に希釈したものに、
寒天末(ナカライ製、特級)を1.5 %の濃度になるよう
に加え、オートクレーブ後シャーレに注いで固化させた
ものを用いた。なお、この濃度の寒天培地を用いれば、
シロイヌナズナの根は寒天表面を這って成長し、培地中
に入り込むことがないので、後述する根の形態観察が容
易になる。光源としては、市販の40kwの白色蛍光灯2本
と植物育成用の蛍光灯(ナショナル、ホモルクス)1本
を用い、約30cm離して、光を照射した。この光源の明る
さは、約3000lux である。
【0018】播種から3週間後に40個体のシロイヌナズ
ナにアグロバクテリウム菌を接種した。アグロバクテリ
ウム菌の接種は、シロイヌナズナの花茎に傷をつけて、
アグロバクテリウム菌を感染させるin planta 法を改良
した方法(Chang ら(1994)、Plant J.,5 551-558)によ
り行った。アグロバクテリウム菌としては、Velten,J.
らより入手したAgrobacterium tumefaciens C58C1Rif株
(Velten,J. and Schell,J (1985) Nucl.Acids Res.13,
6981-6998 )を用いた。この菌株には、中間系ベクター
のpGV3850HPTが入っており、ライトボーダーとレフトボ
ーダーの間には植物の選択マーカーとしてハイグロマイ
シントランスフェラーゼ遺伝子がカリフラワーモザイク
ウイルス35Sプロモーターの下流におかれている。
【0019】アグロバクテリウム菌の接種後、シロイヌ
ナズナをバーミュキュライトとパーライトを1:1で混
合した培養土に移植した。移植から1カ月半から2カ月
後に、種子(T2種子)を収穫した。得られた種子を前
記と同様に滅菌し、ハイグロマシン含有培地(1Xガン
ボーグB5培地用混合塩、1%ショ糖、0.8%寒天、10mg/l
ハイグロマイシンB)に播いて培養し、ハイグロマイシ
ンに耐性を示す個体だけを選び出し、培養土に移植し
た。培養土は前記と同様のものを用いた。移植から1カ
月半から2カ月後に自家受粉により得られた種子(T3
種子)を収穫した。
【0020】〔実施例2〕 根の突然変異体のスクリー
ニング 実施例1で得られたT3種子を滅菌した後、寒天培地に
播き、培養を行った。滅菌の方法、及び寒天培地は上記
と同様のものを使用した。なお、根の形態観察を容易に
するため、寒天培地は、透明なプラスチックシャーレ
(栄研器材株式会社、2号角シャーレ〔14cm×10cm〕)
に入れた。
【0021】根の形態は、実態顕微鏡OLYMPUS SZH-IDDL
によって透過光で観察した。約300ラインのトランス
ジェニックシロイヌナズナの根の形態を観察し、それら
の中から根毛が少なくなっている一系統の突然変異体を
単離した。この突然変異体の根の形態を図1に示す。右
側がこの突然変異体であり、左側が野性型である。図1
に示すようにこの突然変異体は野性型に比べ、根毛の本
数が明らかに少なくなっているが、その長さは野性型と
変わらない。
【0022】〔実施例3〕 caprice の遺伝学
的検討 caprice の変異がどのようなものであるかを調べため
に、シロイヌナズナの野性型のWS株と戻し交雑を行っ
た。caprice とWS株との交雑は、岡田らの記述に従っ
て行った。即ち、雄しべのやくが開裂していないcapric
e のつぼみをピンセット(A.Dumonte Fils社製、DUMOXE
L 5 番)で開き、雌しべ以外のものを削除し、雌親とし
た。ピンセット及び指先は、花粉の混入を防ぐため、予
め95%のエタノールで消毒した。この処理から約2日
後にめしべの先端の柱頭毛に花粉がついていないことを
確認してから、花が展開したWS株から採取した花粉
を、caprice の柱頭につけた。この戻し交雑の結果、14
個体のF1世代が得られた。これらの表現型はすべて野
性型であった。
【0023】次に、上記14個体について自家受粉を行
い、F2世代を得た。F2世代の表現型は、257 個体が
野性型で、67個体がcaprice 型であった。野性型:capr
ice 型の比が3:1であることから、 capriceは劣性の
1遺伝子の変異によって起こったと考えられる。
【0024】〔実施例4〕 トランスジニックシロイヌ
ナズナのゲノムDNAの単離 シロイヌナズナのゲノムDNAの単離法は、Doyle とDo
yle ((1990)Isolation of plant DNA from fresh tiss
ue Focus 12,13-15 )の記述に従った。
【0025】発芽後3〜4週間のシロイヌナズナ(capr
ice )の展開したロゼッタ葉を2〜3枚、ピンセットで
1.5ml のエッペンチューブにとり、200ml のCTABバ
ッファー〔 3% セチルメチルアンモニウムブロミド、1.
4M NaCl 、 0.2% 2−メルカプトエタノール、 20mM E
DTA 100mM Tris-HCl(pH 8.0)〕を加え、pelletpe
stle (Kontes社製)で粉砕した。さらに300ml のCT
ABバッファーを加え、60℃で30分保温した。その後ク
ロロホルムを加えて、上清を回収して、イソプロパノー
ル沈殿を行った。RNase 処理、フェノール処理、エタ
ノール沈殿を行った後、最終的に10〜25mlのTris−ED
TA(10mM Tris-HCl(pH8.0)、EDTA-Na2 (pH8.0))
に溶かした。
【0026】〔実施例5〕 トランスジェニックシロイ
ヌナズナのゲノムDNAのサザン解析 実施例4で得られたcaprice シロイヌナズナのゲノムD
NAをサザンブロッティングにより解析した。サザン解
析は、Current Protocol(Ausbelら(1987))の方法に従
った。
【0027】caprice より得られたDNA 0.5〜1μg
をHindIII で切断し、アガロース電気泳動を行った。泳
動後、ゲルを0.25 M塩酸に浸し、10分間振盪した後、変
性溶液(1.5M NaCl 、0.5M NaOH )で30分間、1回、中
和溶液(1.5M NaCl 、0.5M Tris-HCl pH7.2 、1mM ED
TA)で20分間、2回振盪した。振盪後、ゲルの上に、
Hybond N(Amersham社製)を置き、UVstratalinker 2
400 (Stratagene社製)によりUVを照射して、DNA
を固定した。
【0028】一方、pGV3850HPTのレフトボーダ領域を切
り出し、Random primer labellingkit (宝酒造社製)
を使って〔a-32P 〕dCTPで標識してプローブを作成
し、このプローブを含むハイブリダイゼーション溶液
(5XSSC 、 0.1% N−ラウロイルスクロシン、0.02% S
DS、 1% ブロッキング試薬(Boehringer社製))に上
記 Hybond N を一晩浸し、ハイブリダイゼーションを行
った。その結果、後述する図3と同様に4.9kb の位置に
一本だけバンドが現れた。
【0029】〔実施例6〕 T−DNA近傍のシロイヌ
ナズナのゲノムDNAの単離 実施例5より、caprice のゲノムDNAに挿入されてい
るT−DNAは一箇所に一本だけであると考えられるの
で、inverse PCR法でT−DNA近傍のゲノムDNA
の分離を試みた。inverse PCR法は、Dengらの方法
((1992) Cell 71791-801)に従った。
【0030】実施例4で得られたcaprice のDNAを、
HindIII (宝酒造製)で切断し、1%のアガロースゲル
に泳動した後、4kb〜6kbに相当する部分のゲルを切り
出し、DNAを抽出した。このDNAにDNAライゲー
ス(宝酒造製)を加え、セルフ・ライゲーションを行っ
た後、レフト・ボーダーを外向きに増幅させる下記のプ
ライマー(LB1、LB2)を用いPCRを行った。
【0031】LB1:CAC GCC ATC GAT GTA ATA ATT GT
C ATT GTC ATT AGA TTG T LB2:GAG CTA TTG GCA CAC GAA GAA TGG T
【0032】PCRは、GeneAmp PCR system 9600 (Pe
rkin Elmer社製)を用い、94℃×30秒、60℃×30秒、72
℃×30秒の反応を35サイクル行った。この結果、約2kb
の断片が増幅された。
【0033】次に、この断片をプローブとして、capric
e 及び野性型WS株のそれぞれから単離し、HindIII で
切断したDNAについてサザンブロッテイングを行っ
た。サザンブロッテイングは実施例5と同様にして行っ
た。この結果を図2に示す。図中のwtが野性型WSで
あり、1〜11がcaprice である。図2が示すように、ca
price ではレフト・ボーダーをプローブとした時と同様
に4.9kb の位置に、野性型WS株では約11kbの位置にバ
ンドが検出された。
【0034】このように、両系統でバンドの位置が異な
るのは、ゲノムDNAに挿入されるレフト・ボーダー内
にHindIII 切断部位があるからである。図3に示すよう
に、レフト・ボーダーが挿入されていない野性型の場
合、ゲノムDNA内に元々存在する2箇所の切断部位の
みで切断されるが、レフト・ボーダーが挿入されている
caprice の場合、レフト・ボーダー内の切断部位でも切
断されるため、より短い断片が検出される。
【0035】〔実施例7〕 CPC遺伝子のクローニン
グ WS株の地上部を集め、液体窒素で凍らせながら乳鉢で
組織をつぶし、塩化セシウムとエチジウムブロマイドを
使って、DNAを単離した。単離したDNAをSau3AI
(宝酒造製)で部分分解し、ショ糖密度勾配遠心により
15〜20kbの断片が入った画分を集め、このゲノムDNA
とBamHI (宝酒造製)で切断したλDASH II とのライゲ
ーションを行った。得られた組換えベクターは、Gigapa
ck II Packaging Extract (Stratagene社製)によりin
vitroパッケージングをした。パッケージングをしたフ
ァージ約10万個を、大腸菌XL1-Blue MRA(P2)を含むLB
プレート(脱イオン水 1 L 、バクトトリプトン 10g、
バクトイースト抽出物 5g 、NaCl 10g、寒天 1.2% )に
まき、シロイヌナズナのゲノムライブラリーを作成し、
実施例6で単離された約2kbのDNA断片をプローブと
して、スクリーニングを行った。この結果、4種類の陽
性クローンを単離した。これらのファージクローンを、
EcoRI とXbaIで切断し、前記した約2kbのDNA断片を
プローブとしてサザンブロットを行った。プローブがハ
イブリダイズした断片の中からEcoRI で切断した4.4kb
、XbaIで切断した7.3kb と5kbの3種類の断片をプラ
スミドベクターBluescript SK+(Stratagene社製)にク
ローニングした。
【0036】次に、Current Protocolの記載に従って、
シロイヌナズナの根から全RNAを単離した。シロイヌ
ナズナの根の組織2〜4g を液体窒素で凍らせながら乳
鉢中でつぶし、グアニジンチオシナネートを含んだバッ
ファー中に攪拌し、超遠心(22000 rpm ×16時間)を行
うことによってRNAを沈殿させ、組織再懸濁液(5mM
EDTA、 0.5% サルコシル、 5% 2−メルカプトエタ
ノール)に懸濁して回収した。得られた全RNAからOl
igotex-dT30[Super](日本ロッシュ)を用いてpoly (A)
+ RNAを分離した。全RNAに対して0.5 〜1% の範
囲でpoly (A)+RNAを回収できた。回収した根のpoly
(A)+ RNA( 5μg )に3'末端にXhoI切断部位のつい
てオリゴdTプライマーをアニールさせて、逆転写酵素
(Strata Script reverse transcriptase, Stratagene
社製)を用いて、2本鎖のcDNAを合成した。この2
本鎖cDNAの5'末端にはEcoRI 、3'末端にはXhoIの部
位がついているので、EcoRI とXhoIで切断したZAPII ベ
クター(Stratagene社製)にクローニングした。得られ
た組換えベクターは、Gigapack II Packaging Extract
(Stratagene社製)によりin vitroパッケージングをし
た。パッケージングをしたファージ約30万個を、大腸菌
XL1-Blue MRF' を含むLBプレートにまき、シロイヌナ
ズナのcDNAライブラリーを作成し、前記のXbaIで切
断した5kbの断片をプローブとしてスクリーニングを行
った。この結果、4個の陽性クローンを分離した。得ら
れたクローンに含まれるcDNAの中から最も長いcD
NAの塩基配列を決定した。シークエンス反応は、Dye
primer cycle sequencing FS kit及びDye terminator c
ycle sequencing FS ready reaction kit (Perkin ele
mer 社製)を用いて行い、蛍光自動シークエンサー(AB
I, Model 370A )により塩基配列を決定した。決定した
配列を配列番号2に示す。このcDNAの全長は584
bpであり、一番長いOFRを翻訳すると94アミノ酸で分
子量は11kDであった。配列番号2が示すように、翻訳開
始点の上流には2つの終止コドンが存在した。
【0037】〔実施例8〕 CPC遺伝子を過剰発現さ
せた植物の作成 pMAT137-Hm(Matsuoka,K.and Nakamura,K.(1991)Proc.N
atl.Acad.Sci.USA 88,834-838 、名古屋大学農学部応用
生物化学科の松岡健博士から分与)を制限酵素XbaI(宝
酒造社製)とKpnI(宝酒造社製)で切断した。このベク
ターには、カリフラワーモザイク・ウイルスの35Sプ
ロモーターが3つtandemに連結されており、その下流に
マルチクローニングサイトがあって任意の遺伝子をクロ
ーニングできるようになっている。また、薬剤耐性遺伝
子としてハイグロマイシントランスフェラーゼ遺伝子が
別の35Sプロモーターと連結されていて、大腸菌、ア
グロバクテリウム菌、植物で薬剤耐性遺伝子として働く
ことができる。
【0038】Bluescript SK+ベクター(Stratagene社
製)にクローニングされたCPC遺伝子を上記と同様に
制限酵素XbaI(宝酒造社製)とKpnI(宝酒造社製)で切
断し、DNALigation Kit Ver.2(宝酒造社製)を使っ
て、pMAT137-Hmとライゲーション反応を行った。このプ
ラスミド(以下、「pMAT137-Hm+CPC」という)をGene P
ulser (Biorad社製)によって大腸菌JM109 (宝酒造社
製)に導入し、50mg/lの濃度のハイグロマイシンB(和
光純薬社製)を含んだLB培地(1%バクトトリプトン、
0.5%バクトイーストイクストラクト、1%NaCl、1.2%
寒天末)で形質転換された大腸菌を選抜した。
【0039】形質転換された大腸菌よりDNA自動分離
装置PI100 Σ(倉敷紡績社製)でプラスミドを抽出し
た。このプラスミドpMAT137-Hm+CPCをGene Pulser (Bi
orad社製)でAgrobacterium tumefaciens C58C1Rif株に
導入した。
【0040】シロイヌナズナ(学名Arabidopsis thalia
na)WS株を、vacum infiltration法(Bechtold,Nら(1
993)C.R.Acad.Sci.Paris,Life Sciences 316,1194-119
9)によってLB培地で液体振とう培養したアグロバク
テリウム菌で形質転換した。形質転換植物体を培養土に
植えかえ、種子を収穫してハイグロマイシンの入った培
地(1XガンボーグB5培地用混合塩(和光純薬社
製)、1%ショ糖、0.8%寒天末、10mg/ml ハイグロマイシ
ンB(和光純薬社製))で薬剤耐性の組み換え体の選抜
を行った。その結果、2個体の形質転換体を得た。この
植物体を培養土に植え換えて生育させ、種子を収穫し
た。
【0041】収穫した種子のうちプラスミドpMAT137-Hm
+CPCがゲノム中に挿入された植物体の根毛数(根毛1mm
あたりの本数)を計測した。根毛数の計測は、実体顕微
鏡で観察して行い、各系統ごとに20個体ずつ計測した。
各系統の根毛数の平均値±標準誤差を表1に示す。ま
た、シロイヌナズナの根の実体顕微鏡写真を図4に示
す。図4中、Aが野性型、Bが突然変異体「caprice
」、CがCPC遺伝子過剰発現植物である。
【0042】
【表1】
【0043】表1が示すように、プラスミドpMAT137-Hm
+CPCがゲノム中に挿入された植物体では、野性型に比べ
て2〜3倍根毛の数が多くなっていた(系統♯1で野性
型の3.1 倍、系統♯2で2.3 倍までに増加してい
た。)。つまり、CPC遺伝子をシロイヌナズナで過剰
発現させると根毛の数が増大し、逆にCPC遺伝子がつ
ぶれた突然変異体「caprice 」では根毛の数が減少す
る。
【0044】pMAT137-Hm+CPCがゲノム中に挿入された植
物体では葉及び茎のトライコームの数が減少していた。
トライコームとは、葉や茎などの地上部の表皮細胞の一
端が伸長したものであり、葉のトライコームは先端が3
つに分枝している。CPC遺伝子を過剰発現させた植物
の葉の写真を図4Bに、茎の写真を図5Bに示す。ま
た、野性型の葉の写真を図4Aに、茎の写真を図5Aに
示す。以上のことをまとめると、CPC遺伝子を過剰発
現させた植物では根毛(地上部)の毛の数は増加する
が、葉や茎(地上部)の毛の数は減少する。
【0045】シロイヌナズナでは、既に根毛の数が多く
なった突然変異体として ttg、gl2が同定されている(
Galawayら,1994 ; Massuciら,1996 )。これら2つの
突然変異体は元々葉のトライコームの突然変異体として
分離されたものである(Koorneefら,1982 ;Hulskamp
ら,1984,図5)。CPC遺伝子過剰発現植物の根毛とト
ライコームの表現型は、ttg 及びgl2 突然変異体と同じ
である。
【0046】〔実施例9〕根毛の二重突然変異体の作製 caprice とgl2 、caprice とttg をそれぞれ交配し、ca
price とgl2 の二重突然変異体及びcaprice とttg の二
重突然変異体を作製した。
【0047】caprice とgl2 の二重突然変異体の根毛に
関する表現型は、gl2 と類似したものであった(表
1)。このことから、CPC遺伝子は gl2 に関係する
遺伝子よりも上流で働いていることが示唆された。
【0048】caprice とttg の二重突然変異体の根毛に
関する表現型は、それぞれの突然変異体の中間型であっ
た(表1)。このことから、CPC遺伝子とttg に関係
する遺伝子は、なんらかの形で相互作用をし、根毛形成
に関与していることが示唆された。
【0049】
【発明の効果】本発明は、植物の根毛形成を促進する新
規な遺伝子であるCPC遺伝子を提供する。この遺伝子
を他の植物に導入して発現させることにより、当該植物
の根毛の形成を促進し、葉及び茎のトライコームを減少
させることができる。
【0050】
【配列表】
配列番号1 配列の長さ:94 配列の型 :アミノ酸 トポロジー:不明 配列の種類:アミノ酸 起源 生物名 :シロイヌナズナ 配列 Met Phe Arg Ser Asp Lys Ala Glu Lys Met Asp Lys Arg Arg Arg Arg Gln Ser Lys Ala Lys Ala Ser Cys Ser Glu Glu Val Ser Ser Ile Glu Trp Glu Ala Val Lys Met Ser Glu Glu Glu Glu Asp Leu Ile Ser Arg Met Tyr Lys Leu Val Gly Asp Arg Trp Glu Leu Ile Ala Gly Arg Ile Pro Gly Arg Thr Pro Glu Glu Ile Glu Arg Tyr Trp Leu Met Lys His Gly Val Val Phe Ala Asn Arg Arg Arg Asp Phe Phe Arg Lys
【0051】配列番号2 配列の長さ:584 配列の型 :核酸 鎖の数 :2本鎖 トポロジー:直鎖状 配列の種類:cDNA 起源 生物名 :シロイヌナズナ 配列 ATG TTT CGT TCA GAC AAG GCG GAA AAA ATG GAT AAA CGA CGA CGG AGA CAG AGC AAA GCC AAG GCT TCT TGT TCC GAA GAG GTG AGT AGT ATC GAA TGG GAA GCT GTG AAG ATG TCA GAA GAA GAA GAA GAT CTC ATT TCT CGG ATG TAT AAA CTC GTT GGC GAC AGG TGG GAG TTG ATC GCC GGA AGG ATC CCG GGA CGG ACG CCG GAG GAG ATA GAG AGA TAT TGG CTT ATG AAA CAC GGC GTC GTT TTT GCC AAC AGA CGA AGA GAC TTT TTT AGG AAA
【図面の簡単な説明】
【図1】caprice の根の写真(生物の形態写真)
【図2】caprice 及び野性型のサザンブロッティングを
表す図
【図3】caprice 及び野性型のHindIII の切断部位を示
す図
【図4】CPC遺伝子過剰発現植物の根の写真(生物の
形態写真)
【図5】CPC遺伝子過剰発現植物の葉の写真(生物の
形態写真)
【図6】CPC遺伝子過剰発現植物の茎の写真(生物の
形態写真)
【図7】ttg 、gl1 、gl2 の葉の写真(生物の形態写
真)
─────────────────────────────────────────────────────
【手続補正書】
【提出日】平成9年2月17日
【手続補正1】
【補正対象書類名】図面
【補正対象項目名】全図
【補正方法】変更
【補正内容】
【図1】
【図2】
【図3】
【図4】
【図5】
【図6】
【図7】
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C12R 1:19)

Claims (2)

    【特許請求の範囲】
  1. 【請求項1】 配列番号1で表されるアミノ酸配列、又
    は配列番号1で表されるアミノ酸配列と実質的に同一な
    アミノ酸配列をコードするCPC遺伝子。
  2. 【請求項2】 請求項1記載のCPC遺伝子を導入した
    植物。
JP02887797A 1996-04-26 1997-02-13 シロイヌナズナの根毛形成開始を制御するcpc遺伝子及びそれを導入した植物 Expired - Fee Related JP4051719B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP02887797A JP4051719B2 (ja) 1996-04-26 1997-02-13 シロイヌナズナの根毛形成開始を制御するcpc遺伝子及びそれを導入した植物
CA002199582A CA2199582A1 (en) 1996-04-26 1997-03-10 Cpc gene for regulating initiation of root hair formation for arabidopsis (thaliana), and transgenic (arabidopsis) plant overexpressing the cpc gene
US08/814,030 US5831060A (en) 1996-04-26 1997-03-10 CPC gene for regulating initiation of root hair formation for arabidopsis (thaliana) and transgenic (arabidopsis), plant overexpressing the CPC gene
DE69721892T DE69721892T2 (de) 1996-04-26 1997-03-13 CPC-Gen zur Regulierung der Initiation von der Wurzelhaarbildung bei Arabidopsis (thaliana), und diese überexprimierende transgene (Arabidopsis) Pflanzen
EP97301700A EP0803572B1 (en) 1996-04-26 1997-03-13 Cpc gene for regulating initiation of root hair formation for arabidopsis (thaliana), and transgenic (arabidopsis) plant overexpressing the cpc gene

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-107409 1996-04-26
JP10740996 1996-04-26
JP02887797A JP4051719B2 (ja) 1996-04-26 1997-02-13 シロイヌナズナの根毛形成開始を制御するcpc遺伝子及びそれを導入した植物

Publications (2)

Publication Number Publication Date
JPH104978A true JPH104978A (ja) 1998-01-13
JP4051719B2 JP4051719B2 (ja) 2008-02-27

Family

ID=26367025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02887797A Expired - Fee Related JP4051719B2 (ja) 1996-04-26 1997-02-13 シロイヌナズナの根毛形成開始を制御するcpc遺伝子及びそれを導入した植物

Country Status (5)

Country Link
US (1) US5831060A (ja)
EP (1) EP0803572B1 (ja)
JP (1) JP4051719B2 (ja)
CA (1) CA2199582A1 (ja)
DE (1) DE69721892T2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7446242B2 (en) 2002-04-08 2008-11-04 Toyo Boseki Kabushiki Kaisha Plants with improved morphogenesis and method of constructing the same

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7868229B2 (en) 1999-03-23 2011-01-11 Mendel Biotechnology, Inc. Early flowering in genetically modified plants
US7345217B2 (en) * 1998-09-22 2008-03-18 Mendel Biotechnology, Inc. Polynucleotides and polypeptides in plants
US7858848B2 (en) 1999-11-17 2010-12-28 Mendel Biotechnology Inc. Transcription factors for increasing yield
US7193129B2 (en) * 2001-04-18 2007-03-20 Mendel Biotechnology, Inc. Stress-related polynucleotides and polypeptides in plants
US7223904B2 (en) * 1999-02-18 2007-05-29 Mendel Biotechnology, Inc. Plant gene sequences II
US8633353B2 (en) 1999-03-23 2014-01-21 Mendel Biotechnology, Inc. Plants with improved water deficit and cold tolerance
EP1229781B1 (en) * 1999-11-17 2013-01-02 Mendel Biotechnology, Inc. Seed trait genes
EP1330517B1 (en) 2000-10-30 2008-09-10 Exelixis Plant Sciences, Inc. Identification and characterization of an anthocyanin mutant (ant1) in tomato
US7939715B2 (en) * 2000-11-16 2011-05-10 Mendel Biotechnology, Inc. Plants with improved yield and stress tolerance
US7304207B2 (en) * 2001-10-29 2007-12-04 Exelixis, Inc. Identification and characterization of an Anthocyanin mutant (ANT1) in tomato
US8426678B2 (en) 2002-09-18 2013-04-23 Mendel Biotechnology, Inc. Polynucleotides and polypeptides in plants
US20040006797A1 (en) * 2002-04-05 2004-01-08 Lifang Shi MYB transcription factors and uses for crop improvement
EP1618186A2 (en) * 2003-04-25 2006-01-25 Exelixis Plant Sciences, Inc. Genes upregulated in a tomato plant having an increased anthocyanin content phenotype
CN101679981A (zh) * 2006-10-12 2010-03-24 独立行政法人理化学研究所 突变植物及其生产方法
GB0709835D0 (en) * 2007-05-22 2007-07-04 Plant Bioscience Ltd Composition and method for modulating plant root hair development
CN109112124B (zh) * 2018-09-26 2021-05-21 华中农业大学 一种调控番茄腺毛形成的基因及克隆方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2196005T3 (es) * 1992-03-27 2003-12-16 Int Flower Dev Pty Ltd Secuencias geneticas que codifican enzimas de la ruta flavonoide con actividad flavonoide -3`-hidroxilasa y sus usos.
WO1994010831A1 (en) * 1992-11-06 1994-05-26 Washington University Induction of dwarfing and early flowering using group 3 lea proteins

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7446242B2 (en) 2002-04-08 2008-11-04 Toyo Boseki Kabushiki Kaisha Plants with improved morphogenesis and method of constructing the same
EP2064943A2 (en) 2002-04-08 2009-06-03 Toyo Boseki Kabushiki Kaisha Plants with improved morphogenesis and method of constructing the same
US8053629B2 (en) 2002-04-08 2011-11-08 Toyo Boseki Kabushiki Kaisha Plants with improved morphogenesis and method of constructing the same
US8455713B2 (en) 2002-04-08 2013-06-04 Toyo Boseki Kabushiki Kaisha Plants with improved morphogenesis and method of constructing the same

Also Published As

Publication number Publication date
US5831060A (en) 1998-11-03
EP0803572B1 (en) 2003-05-14
JP4051719B2 (ja) 2008-02-27
EP0803572A3 (en) 1997-11-26
DE69721892T2 (de) 2004-03-11
CA2199582A1 (en) 1997-10-26
EP0803572A2 (en) 1997-10-29
DE69721892D1 (de) 2003-06-18

Similar Documents

Publication Publication Date Title
Nesi et al. The TT8 gene encodes a basic helix-loop-helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques
JP4051719B2 (ja) シロイヌナズナの根毛形成開始を制御するcpc遺伝子及びそれを導入した植物
CN108623665B (zh) GhHUB2蛋白在调控棉花纤维长度和强度中的应用
CN109705202B (zh) 一种培育抗灰斑病植物的方法
JP4741994B2 (ja) 蛍光タンパク質の園芸植物への応用
CN109112146B (zh) 控制甘蓝型油菜角果长和粒重性状的基因qSLWA9的克隆与育种应用
CN108948169B (zh) 一种促进棉花纤维绿色色素合成的蛋白质、基因及其编码序列和应用
Xiao et al. An Agrobacterium-mediated transient expression method contributes to functional analysis of a transcription factor and potential application of gene editing in Chenopodium quinoa
CN112010955B (zh) 小麦抗赤霉病相关蛋白TaRBL及其编码基因与应用
CN109666069B (zh) 一种植物开花时间性状相关蛋白AtJAZ5及其编码基因和应用
CN112175973A (zh) 水稻类病斑控制基因spl36及其应用
US7750208B2 (en) Anther-specific expression promoter in plant and application thereof
CN111499709B (zh) 水稻穗粒数相关的rgn1蛋白及其编码基因与应用
CN112195185B (zh) 一种番茄叶型调控基因及应用
CN109912706B (zh) 一种水稻弱势早衰相关基因、蛋白质、分子标记及应用
CN109750008B (zh) 陆地棉光信号途径调节因子GhCOP1及其应用
WO2005026363A1 (ja) 突然変異の検出法と誘発法
CN107384953B (zh) 拟南芥糖基转移酶ugt84a2在调节植物开花时间中的应用
JP4228072B2 (ja) アビジンをコードする人工合成遺伝子
CA2301257A1 (en) The ire gene regulating the root-hair growth in arabidopsis
US20230081195A1 (en) Methods of controlling grain size and weight
JP2001057886A (ja) 遺伝子の発現量を増大させる新規dna断片
KR20230139656A (ko) 반수체 식물을 유도하는 pPLAⅡγ 유전자 및 이의 용도
JP3931997B2 (ja) 植物プロモーター
CN115011607A (zh) 芝麻育性调控基因及其表达载体和应用

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees