JPH1048277A - Polarized light source device and electric field sensor using it - Google Patents

Polarized light source device and electric field sensor using it

Info

Publication number
JPH1048277A
JPH1048277A JP8206887A JP20688796A JPH1048277A JP H1048277 A JPH1048277 A JP H1048277A JP 8206887 A JP8206887 A JP 8206887A JP 20688796 A JP20688796 A JP 20688796A JP H1048277 A JPH1048277 A JP H1048277A
Authority
JP
Japan
Prior art keywords
polarized light
light source
light sources
source device
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8206887A
Other languages
Japanese (ja)
Other versions
JP3577617B2 (en
Inventor
Yoshikazu Toba
良和 鳥羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP20688796A priority Critical patent/JP3577617B2/en
Publication of JPH1048277A publication Critical patent/JPH1048277A/en
Application granted granted Critical
Publication of JP3577617B2 publication Critical patent/JP3577617B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a highly reliable polarized light source device incorporated with two light sources which can be used sufficiently without causing any interference even under such a condition that the temperature dependencies of the light sources are allowed with respect to the wavelengths of the light rays emitted from the light sources and emit two kinds of linearly polarized light rays. SOLUTION: A polarized light source device is provided with two light sources 1 and 2 which emit two kinds of linearly polarized light rays perpendicular to each other, temperature control means 21 and 22 which respectively control the temperatures of the light sources 1 and 2, and a photocoupler 9 which synthesizes the linearly polarized light rays from the light sources 1 and 2 so that the planes of polarization of the light rays can become perpendicular to each other. The light sources 1 and 2 are respectively coupled with the photocoupler 9 through relatively short polarization plane maintaining optical fibers 7. The light sources 1 and 2 emit the two kinds of linearly polarized light rays differently from each other while the temperatures of the light sources 1 and 2 are controlled by means of the control means 21 and 22.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、二つの直線偏光の
偏波面が互いに垂直を成すように合成して出射する偏光
光源装置,並びに空間を伝搬する電磁波の電界強度を測
定するための偏光光源装置を用いた電界センサであっ
て、主としてEMC(電磁環境問題/electoro
magnetic compatibility)分野
で電波や電磁ノイズの特性測定用の計測器として用いら
れると共に、放送電波等の特定周波数の信号電波を検出
するアンテナとしても機能する電界センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polarized light source device for combining and emitting two linearly polarized light beams so that their planes of polarization are perpendicular to each other, and a polarized light source for measuring the electric field strength of electromagnetic waves propagating in space. An electric field sensor using a device, mainly an EMC (Electromagnetic Environment / Electro
The present invention relates to an electric field sensor that is used as a measuring instrument for measuring characteristics of radio waves and electromagnetic noise in the field of magnetic compatibility, and also functions as an antenna that detects a signal radio wave of a specific frequency such as a broadcast radio wave.

【0002】[0002]

【従来の技術】一般に、コンピュータ等の情報機器や通
信機器,ロボット等のFA機器,或いは自動車や鉄道等
の制御器等の多くの電気機器は、外部からの電磁ノイズ
によって常に誤動作等の悪影響を受ける危険性を持つこ
とが知られている。
2. Description of the Related Art Generally, many electric devices such as information devices such as computers, communication devices, FA devices such as robots, and controllers such as automobiles and railways always suffer from adverse effects such as malfunction due to external electromagnetic noise. Known to be at risk.

【0003】そこで、最近のEMC分野においては、外
部の電磁環境や悪影響を及ぼすような電磁ノイズの大き
さ、或いは電気機器自体が発生するノイズ等を正確に測
定することが重要となっている。
Therefore, in the recent field of EMC, it is important to accurately measure the external electromagnetic environment, the magnitude of electromagnetic noise that has an adverse effect, or the noise generated by the electric equipment itself.

【0004】従来、上述した電磁ノイズを測定するため
には、以下に説明するような三つの技術的手法が適用さ
れている。
Conventionally, the following three technical methods have been applied to measure the above-mentioned electromagnetic noise.

【0005】第1の手法は、通常のアンテナを用いて電
磁ノイズを受信し、同軸ケーブルで測定器まで導くもの
である。又、第2の手法は、電磁ノイズをアンテナを用
いて受信し、その受信信号を検波した後に光信号に変換
して光ファイバを介して測定器まで導くものである。更
に、第3の手法は、印加される電界強度に応じて透過光
の強度が変化するように構成された光学素子を用いて電
磁ノイズの電界強度変化を光強度変化に変換し、光学素
子と光源及び測定器に接続された光検出器との間を光フ
ァイバで接続するものである。
[0005] The first method is to receive electromagnetic noise using a normal antenna and guide it to a measuring instrument via a coaxial cable. The second technique is to receive electromagnetic noise using an antenna, detect the received signal, convert the signal into an optical signal, and lead the signal to a measuring instrument via an optical fiber. Further, the third method converts an electric field intensity change of electromagnetic noise into a light intensity change using an optical element configured to change the intensity of transmitted light according to an applied electric field intensity, and The optical fiber is connected between the light source and the photodetector connected to the measuring instrument.

【0006】このうち、第1の手法は最も一般的である
が、同軸ケーブル等の電気ケーブルの存在により電界分
布が乱れることがあったり、或いはケーブル途中からノ
イズ混入の危険がある等の問題があるため、現在では光
ファイバを用いた第2の手法及び第3の手法が主流とな
っている。
[0006] Of these, the first method is the most common, but there are problems that the electric field distribution may be disturbed due to the presence of an electric cable such as a coaxial cable, or that there is a danger of noise mixing in the middle of the cable. For this reason, the second method and the third method using an optical fiber are now mainstream.

【0007】又、第2の手法は、ダイオードで検波した
検波信号を増幅して発光ダイオードに加えて光信号に変
換して光ファイバで光検出器に導くものであるが、セン
サヘッドにおいて電気回路やバッテリを必要とするた
め、或る程度の大きさの金属部分が存在して形状も大き
くなってしまうという問題がある他、電界の検出感度が
低くて応答速度が遅いという欠点がある。
The second method is to amplify a detection signal detected by a diode, convert the signal into an optical signal in addition to a light emitting diode, and guide the signal to an optical detector by an optical fiber. And the need for a battery, there is a problem that a metal part of a certain size is present and the shape becomes large, and there is a drawback that the detection sensitivity of the electric field is low and the response speed is slow.

【0008】更に、第3の手法は、電界強度を透過光の
強度変化に変換する光学素子として電気光学効果を有す
る結晶を用いている。その素子構造としては、小型アン
テナを接続して光ファイバの出射光をレンズで平行光と
して結晶中を通過させ、結晶中の電界により偏光状態を
変化させて検光子を通した後、再び光ファイバに結合す
るバルク型素子と、結晶上に設けた光導波路により上述
した光学素子を構成するための導波路型素子とがある。
通常、導波路型素子の方がバルク型素子よりも10倍以
上検出感度が高くなっている。導波路型の電界センサ用
基板結晶には一般に電気光学定数の高いニオブ酸リチウ
ム単結晶が使用されている。
Further, the third technique uses a crystal having an electro-optical effect as an optical element for converting an electric field intensity into a change in intensity of transmitted light. The element structure is such that a small antenna is connected, the emitted light of the optical fiber is passed through the crystal as a parallel light by a lens, the polarization state is changed by the electric field in the crystal, the light is passed through the analyzer, and then the optical fiber is And a waveguide type element for constituting the above-mentioned optical element by an optical waveguide provided on a crystal.
Normally, the waveguide type device has a detection sensitivity 10 times or more higher than that of the bulk type device. In general, a single crystal of lithium niobate having a high electro-optic constant is used as a substrate crystal for a waveguide type electric field sensor.

【0009】図4は、従来の電界センサの基本構成を示
したものであり、図5はその電界センサに用いられるセ
ンサヘッドの細部構成を斜視図により示したものであ
る。
FIG. 4 shows a basic configuration of a conventional electric field sensor, and FIG. 5 is a perspective view showing a detailed configuration of a sensor head used in the electric field sensor.

【0010】ここでのセンサヘッド4は、c軸に垂直に
切り出したニオブ酸リチウム単結晶基板10上の所定箇
所ににそれぞれ一対の変調用電極14が設置され、これ
らの変調用電極14はアンテナ15に接続されている。
一対の変調用電極14の一方側及び他方側には入射光導
波路11から分岐した位相シフト光導波路12が結合さ
れ、他方側では位相シフト光導波路12が合流して出射
光導波路13が形成されている。入射光導波路11の入
射端には入射光用に偏波面保持ファイバ8が結合され、
出射光導波路13の出射端には出射光用にシングルモー
ドファイバ6が接続されている。
The sensor head 4 has a pair of modulation electrodes 14 at predetermined positions on a lithium niobate single crystal substrate 10 cut out perpendicularly to the c-axis. 15.
A phase shift optical waveguide 12 branched from the incident optical waveguide 11 is coupled to one side and the other side of the pair of modulation electrodes 14, and the output optical waveguide 13 is formed by merging the phase shift optical waveguide 12 on the other side. I have. The polarization maintaining fiber 8 is coupled to the incident end of the incident optical waveguide 11 for incident light.
A single mode fiber 6 is connected to the exit end of the exit optical waveguide 13 for exit light.

【0011】電界センサでは、光源3から偏波面保持フ
ァイバ8を通った光がセンサヘッド4に入射光として入
射される。センサヘッド4においては、入射光が入射光
導波路11に入射された後、二つの位相シフト光導波路
12によりエネルギーが分割されて一対の変調用電極1
4に伝送される。ここで、外部から電界が印加された場
合、アンテナ15により一対の変調用電極14に対して
電圧が誘起されて位相シフト光導波路12中には深さ方
向に互いに反対向きの電界成分が生じる。この結果、電
気光学効果により屈折率変化が生じて位相シフト光導波
路12を伝搬する光波間には印加電界の大きさに応じた
位相差が変化する。即ち、印加電界強度に応じて出射光
導波路13を経てシングルモードファイバ6に出射され
る出射光の強度は変化することになり、その光強度変化
を光検出器(受光器)17で測定することにより印加電
界の強度を測定できる。
In the electric field sensor, light passing through the polarization maintaining fiber 8 from the light source 3 is incident on the sensor head 4 as incident light. In the sensor head 4, after the incident light is incident on the incident optical waveguide 11, the energy is divided by the two phase-shifted optical waveguides 12, and a pair of the modulation electrodes 1 is formed.
4 is transmitted. Here, when an electric field is applied from the outside, a voltage is induced to the pair of modulation electrodes 14 by the antenna 15, and electric field components in the phase-shifted optical waveguide 12 are generated in opposite directions in the depth direction. As a result, the refractive index changes due to the electro-optic effect, and the phase difference between the light waves propagating in the phase shift optical waveguide 12 changes according to the magnitude of the applied electric field. That is, the intensity of the outgoing light emitted to the single mode fiber 6 via the outgoing optical waveguide 13 changes according to the applied electric field intensity, and the change in the light intensity is measured by the photodetector (light receiver) 17. Can measure the intensity of the applied electric field.

【0012】ところで、最近では経済性追求の必要か
ら、センサヘッド4用の入射光ファイバとして偏波面保
持ファイバ8ではなく、シングルモードファイバを用い
ることが求められ、そのために生じる動作上の不利を補
うために、光源には二つの直線偏光出射光源を組み合わ
せた構成が提案されている。
In recent years, it has been required to pursue economical efficiency and use a single-mode fiber instead of the polarization-maintaining fiber 8 as the incident optical fiber for the sensor head 4, thereby compensating for an operation disadvantage. Therefore, a configuration in which two linearly polarized light emission light sources are combined is proposed as a light source.

【0013】図6は、このような他の電界センサの基本
構成を示したものである。この電界センサでは、互いに
垂直な二つの直線偏光を出射する光源1,2を組み合わ
せて電源20に接続し、これらの光源1,2に偏波面を
保持する比較的短い偏波面保持ファイバ7を光結合器9
との間で結合し、更にセンサヘッド4に偏光子16を設
けて偏光子16及び光結合器9の間をシングルモードフ
ァイバ5で結合することによって、センサヘッド4の入
射光ファイバをシングルモードファイバ5としている。
FIG. 6 shows a basic configuration of such another electric field sensor. In this electric field sensor, light sources 1 and 2 emitting two linearly polarized light beams perpendicular to each other are combined and connected to a power supply 20, and a relatively short polarization maintaining fiber 7 for maintaining a polarization plane is used for the light sources 1 and 2. Combiner 9
And the sensor head 4 is provided with a polarizer 16 and the polarizer 16 and the optical coupler 9 are coupled with a single mode fiber 5 so that the incident optical fiber of the sensor head 4 is converted into a single mode fiber. 5 is assumed.

【0014】この構成の場合、二つの光源1,2からの
互いに垂直な二つの直線偏光の出射光は偏波面保持ファ
イバ7を通過してその偏波面が光結合器9で互いに直交
するように合成された後、シングルモードファイバ5内
を互いに垂直な偏波面の状態を保ちつつ通過して偏光子
16で偏光されてセンサヘッド4に入射する。このた
め、センサヘッド4の入射端ではシングルモードファイ
バ5の状態の如何に拘らず、偏波面が互いに垂直な二つ
の直線偏光の強度比に変わり無く、実質的に偏波面保持
ファイバを用いた場合と同等の効果が得られるようにな
っている。
In the case of this configuration, two linearly polarized light beams emitted from the two light sources 1 and 2, which are perpendicular to each other, pass through the polarization plane holding fiber 7 so that their polarization planes are orthogonal to each other by the optical coupler 9. After being combined, the light passes through the single mode fiber 5 while maintaining the state of the polarization planes perpendicular to each other, is polarized by the polarizer 16, and enters the sensor head 4. For this reason, regardless of the state of the single mode fiber 5 at the incident end of the sensor head 4, the polarization plane does not change to the intensity ratio of two linearly polarized light beams perpendicular to each other, and the polarization plane holding fiber is substantially used. The same effect can be obtained.

【0015】尚、ここでの光源1,2及び光結合器9
と、これらの間を結合した一対の偏波面保持ファイバ7
とは、出射光を二つの直線偏光の偏波面が互いに垂直を
成すように合成して出射するため、合わせて偏光光源装
置と呼ばれても良い。
The light sources 1 and 2 and the optical coupler 9 here
And a pair of polarization maintaining fibers 7 connected between them.
Means that the emitted light is combined and emitted so that the planes of polarization of the two linearly polarized light beams are perpendicular to each other, and may be collectively referred to as a polarized light source device.

【0016】このような電界センサに用いる光源1,2
には、所定の波長帯で一定の出力が得られ、しかも長寿
命が確保できる等の高い信頼性が求められるため、半導
体励起固体レーザが使用されている。半導体励起固体レ
ーザはこうした条件を満たす光源として注目されてい
る。
Light sources 1 and 2 used in such an electric field sensor
Since semiconductor lasers are required to have high reliability such as obtaining a constant output in a predetermined wavelength band and ensuring a long life, semiconductor-pumped solid-state lasers are used. Semiconductor-pumped solid-state lasers have attracted attention as light sources that satisfy these conditions.

【0017】[0017]

【発明が解決しようとする課題】上述した図6に示した
電界センサの場合、偏光光源装置における二つの光源と
して半導体励起固定レーザを使用しているが、半導体励
起固定レーザの出射光の波長はその光源の温度に依存し
て変動することが知られている。
In the case of the electric field sensor shown in FIG. 6, the semiconductor excitation fixed laser is used as the two light sources in the polarized light source device. It is known that it fluctuates depending on the temperature of the light source.

【0018】このような出射光の波長変動は、図4及び
図5に示した偏波面保持ファイバを用いた電界センサの
場合には、実用的に殆ど問題にならなかったにも拘ら
ず、二つの光源を用いた場合には二つの出射光相互の干
渉の問題があるため、電界センサが本来の機能を発揮し
ない場合も生じ得る。即ち、二つの光源の波長及びその
温度依存性が相等しければセンサヘッドの入射光は常に
相互に干渉し、或いは二つの光源の波長の温度依存性が
相違しても駆動温度範囲で波長が等しくなることがあれ
ばその温度では同様に干渉することになる。従って、こ
うした場合には電界センサの信頼性の低下を来すため、
半導体励起固定レーザをセンサヘッドの光源として用い
ることはできなくなってしまう。
Such a variation in the wavelength of the emitted light is not significant in the case of the electric field sensor using the polarization maintaining fiber shown in FIGS. When two light sources are used, there is a problem of mutual interference between the two emitted lights, so that the electric field sensor may not perform its original function. That is, if the wavelengths of the two light sources and their temperature dependencies are equal, the incident lights of the sensor head always interfere with each other, or the wavelengths are equal in the drive temperature range even if the temperature dependencies of the wavelengths of the two light sources are different. If so, interference will occur at that temperature as well. Therefore, in such a case, the reliability of the electric field sensor is reduced.
A semiconductor-excitation fixed laser cannot be used as a light source for the sensor head.

【0019】本発明は、このような問題点を解決すべく
なされたもので、その技術的課題は、光源からの出射光
の波長に関する光源温度依存性を許容した条件下でも干
渉を生じること無く、十分に使用可能な信頼性の高い二
つの直線偏光を出射する光源を含む偏光光源装置及びそ
れを用いた電界センサを提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve such a problem, and its technical problem is that interference does not occur even under conditions that allow the light source temperature dependence on the wavelength of the light emitted from the light source. Another object of the present invention is to provide a polarized light source device including a light source that emits two linearly polarized lights with high reliability that can be sufficiently used, and an electric field sensor using the same.

【0020】[0020]

【課題を解決するための手段】本発明によれば、互いに
垂直な二つの直線偏光を出射する二つの光源と、前記二
つの直線偏光を偏波面が互いに垂直になるように合成す
る光結合器とを備えた偏光光源装置において、前記二つ
の光源は、前記二つの直線偏光の波長を互いに異なるも
のとして出射する偏光光源装置が得られる。
According to the present invention, there are provided two light sources for emitting two linearly polarized light beams perpendicular to each other, and an optical coupler for combining the two linearly polarized light beams so that their polarization planes are perpendicular to each other. In the polarized light source device provided with the above, a polarized light source device is obtained in which the two light sources emit the two linearly polarized lights with different wavelengths.

【0021】又、本発明によれば、上記偏光光源装置に
おいて、二つの光源のうちの少なくとも一方は温度制御
手段を備えた偏光光源装置が得られる。
Further, according to the present invention, in the above-mentioned polarized light source device, a polarized light source device in which at least one of the two light sources has a temperature control means can be obtained.

【0022】更に、本発明によれば、上記何れかの偏光
光源装置において、二つの光源は半導体励起固体レーザ
である偏光光源装置が得られる。
Further, according to the present invention, in any of the above-mentioned polarized light source devices, a polarized light source device in which the two light sources are semiconductor-excited solid-state lasers is obtained.

【0023】一方、本発明によれば、上記何れか一つの
偏光光源装置と、アンテナ,該アンテナに接続されたセ
ンサヘッド,該センサヘッドにおける入力光伝送路とし
ての入射光ファイバ,該センサヘッドにおける出力光伝
送路としての出射光ファイバ,及び出射光ファイバに結
合された光検出器とを備えた電界センサが得られる。
On the other hand, according to the present invention, any one of the above polarized light source devices, an antenna, a sensor head connected to the antenna, an incident optical fiber as an input light transmission path in the sensor head, An electric field sensor including an output optical fiber as an output optical transmission line and a photodetector coupled to the output optical fiber is obtained.

【0024】[0024]

【発明の実施の形態】以下に実施例を挙げ、本発明の偏
光光源装置及びそれを用いた電界センサについて、図面
を参照して詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The polarized light source device of the present invention and an electric field sensor using the same will be described in detail with reference to the drawings.

【0025】図1は、本発明の一実施例に係る偏光光源
装置の基本構成を示したものであるが、この偏光光源装
置は図6に示した電界センサの局部構成と外観上は同じ
ものとなっている。
FIG. 1 shows the basic configuration of a polarized light source device according to an embodiment of the present invention. This polarized light source device has the same external appearance as the local configuration of the electric field sensor shown in FIG. It has become.

【0026】即ち、この偏光光源装置は、互いに垂直な
二つの直線偏光を出射する二つの光源1,2と、これら
の光源1,2からの二つの直線偏光を偏波面が互いに垂
直になるように合成する光結合器9とを備え、光源1及
び光結合器9の間と光源2及び光結合器9の間とがそれ
ぞれ比較的短い偏波面保持ファイバ7で結合されて成っ
ているが、ここでの光源1,2は二つの直線偏光の波長
を互いに異なるものとして出射するようになっている。
又、光源1,2は半導体励起YAGレーザで、その出射
光の波長は温度23℃でそれぞれ1.3190μm,
1.3195μmとなっており、出射光の強度はほぼ等
しいものとなっている。これらの光源1,2の波長の温
度依存性はそれぞれ6×10-6μm/℃で稼働温度範囲
(−20〜+60℃)で波長が互いに一致することがな
いように選定されている。
That is, in this polarized light source device, two light sources 1 and 2 that emit two linearly polarized lights perpendicular to each other and two linearly polarized lights from these light sources 1 and 2 are arranged so that the planes of polarization are perpendicular to each other. An optical coupler 9 is provided, and the light source 1 and the optical coupler 9 and the light source 2 and the optical coupler 9 are respectively coupled by a relatively short polarization maintaining fiber 7, Here, the light sources 1 and 2 emit the two linearly polarized lights with different wavelengths.
The light sources 1 and 2 are semiconductor-pumped YAG lasers, and the wavelength of the emitted light is 1.3190 μm at a temperature of 23 ° C., respectively.
1.3195 μm, and the emitted light intensities are almost equal. The temperature dependence of the wavelengths of these light sources 1 and 2 is selected to be 6 × 10 −6 μm / ° C. so that the wavelengths do not coincide with each other in the operating temperature range (−20 to + 60 ° C.).

【0027】この偏光光源装置において、光源1,2か
ら出射される互いに垂直な直線偏光は、それぞれ偏波面
保持ファイバ7を経てその状態が保持され、光結合器9
で偏波面が互いに垂直を成すように結合され、この後は
シングルモードファイバ5内を互いに垂直な偏波面を保
って伝搬する。
In this polarized light source device, the mutually perpendicular linearly polarized lights emitted from the light sources 1 and 2 are maintained in their respective states via the polarization plane maintaining fiber 7, and the optical coupler 9.
Then, the polarization planes are coupled so as to be perpendicular to each other, and thereafter, they propagate in the single mode fiber 5 while maintaining the polarization planes perpendicular to each other.

【0028】ところで、この偏光光源装置を光源として
搭載した電界センサは、図6に示した従来の電界センサ
と同等に構成される。但し、この電界センサの場合、稼
働温度範囲で干渉しないことが保証された波長が互いに
異なる二つの直線偏光を出射光として出射する光源1,
2を用いているため、十分な信頼性を有して本来の機能
を示すものとなる。又、この電界センサでは、偏光光源
装置(光結合器9)の出射側に結合されるシングルモー
ドファイバ5が十分長くてもこれを通った先で二つの直
線偏光の偏波面は互いに垂直のままで保たれるため、図
4及び図5で説明した偏波面保持ファイバ8を使用した
場合と同等な効果を奏する。
An electric field sensor equipped with this polarized light source device as a light source has the same configuration as the conventional electric field sensor shown in FIG. However, in the case of this electric field sensor, the light sources 1 and 2 emit two linearly polarized lights having different wavelengths, which are guaranteed not to interfere in the operating temperature range, as the emitted light.
2, the original function is exhibited with sufficient reliability. Further, in this electric field sensor, even if the single mode fiber 5 coupled to the output side of the polarized light source device (optical coupler 9) is sufficiently long, the polarization planes of the two linearly polarized light remain perpendicular to each other after passing through the single mode fiber. Therefore, the same effect as in the case where the polarization maintaining fiber 8 described with reference to FIGS. 4 and 5 is used can be obtained.

【0029】図2は、本発明の他の実施例に係る偏光光
源装置の基本構成を示したものである。
FIG. 2 shows a basic configuration of a polarized light source device according to another embodiment of the present invention.

【0030】この偏光光源装置は、一実施例の偏光光源
装置と比べ、外観上は光源1,2にそれぞれ温度制御手
段21,22を備えた点が相違している。ここでの光源
1,2は何れも半導体励起YAGレーザであり、それぞ
れの温度は温度制御手段21,22によって制御され
る。又、光源1,2の出射光の波長は温度23℃におい
てそれぞれ1.3190μm,1.3193μmであ
り、波長の温度依存性はそれぞれ6×10-6μm/℃と
なっており、それぞれの出射光の強度はほぼ等しいもの
となっている。
This polarized light source device is different from the polarized light source device of one embodiment in that the light sources 1 and 2 are provided with temperature control means 21 and 22, respectively, in appearance. Each of the light sources 1 and 2 is a semiconductor-excited YAG laser, and the temperature of each is controlled by temperature control means 21 and 22. The wavelengths of the light emitted from the light sources 1 and 2 are 1.3190 μm and 1.3193 μm at a temperature of 23 ° C., and the temperature dependence of the wavelength is 6 × 10 −6 μm / ° C., respectively. The intensity of the emitted light is almost equal.

【0031】この偏光光源装置において、仮に温度制御
手段21,22による温度制御が行われない場合、稼働
中に波長が一致する可能性があり、その場合には相互に
干渉が生じることになる。従って、温度制御手段21,
22によって光源1,2の温度をそれぞれ制御すること
により、このような事態を回避し、一定の波長の出射光
が得られるようになっている。温度制御手段21,22
は、ペルチェ素子等の熱電温度素子とするか、或いは熱
交換媒体を用いた加熱冷却庫としても良い。
In this polarized light source device, if the temperature control by the temperature control means 21 and 22 is not performed, there is a possibility that the wavelengths coincide during operation, and in this case, mutual interference occurs. Therefore, the temperature control means 21,
By controlling the temperatures of the light sources 1 and 2 with the use of the light source 22, such a situation is avoided, and emitted light of a certain wavelength can be obtained. Temperature control means 21, 22
May be a thermoelectric temperature element such as a Peltier element, or a heating and cooling storage using a heat exchange medium.

【0032】図3は、この偏光光源装置を光源として搭
載した電界センサの基本構成を示したものである。
FIG. 3 shows the basic configuration of an electric field sensor equipped with this polarized light source device as a light source.

【0033】この電界センサにおいても、偏光光源装置
以外の構成は図6に示した従来の電界センサと同等に構
成される。但し、この電界センサにおいても、稼働温度
範囲で干渉しないように、波長が互いに異なる二つの直
線偏光を出射光として出射する光源1,2の温度が温度
制御手段21,22によって制御されるため、一実施例
の偏光光源装置を備えた電界センサと同様に十分な信頼
性を有して本来の機能を示すものとなる。特に、ここで
電界センサは、温度制御手段21,22による光源1,
2の温度制御が行われるため、過酷な温度環境において
も十分な信頼性が要求される測定等に好適となる。
In this electric field sensor, the configuration other than the polarized light source device is the same as that of the conventional electric field sensor shown in FIG. However, also in this electric field sensor, the temperatures of the light sources 1 and 2 that emit two linearly polarized lights having different wavelengths as emission light are controlled by the temperature control means 21 and 22 so as not to interfere in the operating temperature range. As in the case of the electric field sensor provided with the polarized light source device of the embodiment, the original function is exhibited with sufficient reliability. In particular, the electric field sensor here is a light source 1 by the temperature control means 21 and 22.
Since the second temperature control is performed, the method is suitable for measurement and the like that require sufficient reliability even in a severe temperature environment.

【0034】尚、上述した図2に示す他の実施例に係る
偏光光源装置の構成を改良し、光源1,2の一方のみを
温度制御する構成(図示せず)としても、同様に干渉を
回避することができるので、このような偏光光源装置を
光源として備えた電界センサを構成しても同等な効果を
奏する。
It is to be noted that the configuration of the polarized light source device according to the other embodiment shown in FIG. 2 described above is improved, and a configuration (not shown) for controlling the temperature of only one of the light sources 1 and 2 similarly causes interference. Since it can be avoided, the same effect can be obtained even if an electric field sensor including such a polarized light source device as a light source is configured.

【0035】[0035]

【発明の効果】以上に説明したように、本発明の偏光光
源装置によれば、互いに垂直な二つの直線偏光を出射す
る光源を二つの直線偏光の波長が異なるものとして出射
するものとした上、光源の何れかに温度制御手段を設け
ているので、光源からの出射光の波長に関する光源温度
依存性を許容した条件下でも干渉を生じること無く、偏
光光源装置を用いた信頼性の高い電界センサを具現でき
るようになる。特に、この電界センサでは、偏光光源装
置(光結合器)の出射側に結合されるシングルモードフ
ァイバが十分長くてもこれを通った先で二つの直線偏光
の偏波面は互いに垂直のままで保たれるため、従来の偏
波面保持ファイバを使用した場合と同等な性能が確保さ
れるようになる。
As described above, according to the polarized light source device of the present invention, the light source that emits two linearly polarized light beams that are perpendicular to each other emits light having two different linearly polarized light wavelengths. Since the temperature control means is provided in any one of the light sources, even if the light source temperature dependence on the wavelength of the light emitted from the light source is allowed, no interference occurs, and a highly reliable electric field using the polarized light source device is used. A sensor can be realized. In particular, in this electric field sensor, even if the single mode fiber coupled to the exit side of the polarized light source device (optical coupler) is sufficiently long, the polarization planes of the two linearly polarized light beams are kept perpendicular to each other after passing through the single mode fiber. As a result, the same performance as in the case where the conventional polarization maintaining fiber is used is ensured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係る偏光光源装置の基本構
成を示したものである。
FIG. 1 shows a basic configuration of a polarized light source device according to one embodiment of the present invention.

【図2】本発明の他の実施例に係る偏光光源装置の基本
構成を示したものである。
FIG. 2 shows a basic configuration of a polarized light source device according to another embodiment of the present invention.

【図3】図2に示す偏光光源装置を光源として備えた電
界センサの基本構成を示したものである。
FIG. 3 shows a basic configuration of an electric field sensor provided with the polarized light source device shown in FIG. 2 as a light source.

【図4】従来の電界センサの基本構成を示したものであ
る。
FIG. 4 shows a basic configuration of a conventional electric field sensor.

【図5】図4に示す電界センサに用いられるセンサヘッ
ドの細部構成を示した斜視図である。
FIG. 5 is a perspective view showing a detailed configuration of a sensor head used in the electric field sensor shown in FIG.

【図6】図4に示す電界センサを改良した他の電界セン
サの基本構成を示したものである。
6 shows a basic configuration of another electric field sensor obtained by improving the electric field sensor shown in FIG.

【符号の説明】[Explanation of symbols]

1,2,3 光源 4 センサヘッド 5,6 シングルモードファイバ5 7,8 偏波面保持ファイバ 9 光結合器 10 ニオブ酸リチウム単結晶基板 11 入射光導波路 12 位相シフト光導波路 13 出射光導波路 14 変調用電極 15 アンテナ 16 偏光子 17 光検出器 20 電源 21,22 温度制御手段 1, 2, 3 Light source 4 Sensor head 5, 6 Single mode fiber 5 7, 8 Polarization maintaining fiber 9 Optical coupler 10 Lithium niobate single crystal substrate 11 Incident optical waveguide 12 Phase shift optical waveguide 13 Emitting optical waveguide 14 Modulation Electrode 15 Antenna 16 Polarizer 17 Photodetector 20 Power supply 21, 22 Temperature control means

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 互いに垂直な二つの直線偏光を出射する
二つの光源と、前記二つの直線偏光を偏波面が互いに垂
直になるように合成する光結合器とを備えた偏光光源装
置において、前記二つの光源は、前記二つの直線偏光の
波長を互いに異なるものとして出射することを特徴とす
る偏光光源装置。
1. A polarized light source device comprising: two light sources that emit two linearly polarized light beams perpendicular to each other; and an optical coupler that combines the two linearly polarized light beams so that their polarization planes are perpendicular to each other. A polarized light source device, wherein the two light sources emit the two linearly polarized lights with different wavelengths.
【請求項2】 請求項1記載の偏光光源装置において、
前記二つの光源のうちの少なくとも一方は温度制御手段
を備えたことを特徴とする偏光光源装置。
2. The polarized light source device according to claim 1,
At least one of the two light sources has a temperature control means.
【請求項3】 請求項1又は2記載の偏光光源装置にお
いて、前記二つの光源は半導体励起固体レーザであるこ
とを特徴とする偏光光源装置。
3. The polarized light source device according to claim 1, wherein said two light sources are semiconductor-pumped solid-state lasers.
【請求項4】 請求項1〜3の何れか一つに記載の偏光
光源装置と、アンテナ,該アンテナに接続されたセンサ
ヘッド,該センサヘッドにおける入力光伝送路としての
入射光ファイバ,該センサヘッドにおける出力光伝送路
としての出射光ファイバ,及び出射光ファイバに結合さ
れた光検出器とを備えたことを特徴とする電界センサ。
4. The polarized light source device according to claim 1, an antenna, a sensor head connected to the antenna, an incident optical fiber as an input light transmission path in the sensor head, and the sensor. An electric field sensor comprising: an output optical fiber as an output light transmission path in a head; and a photodetector coupled to the output optical fiber.
JP20688796A 1996-08-06 1996-08-06 Polarized light source device and electric field sensor using the same Expired - Lifetime JP3577617B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20688796A JP3577617B2 (en) 1996-08-06 1996-08-06 Polarized light source device and electric field sensor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20688796A JP3577617B2 (en) 1996-08-06 1996-08-06 Polarized light source device and electric field sensor using the same

Publications (2)

Publication Number Publication Date
JPH1048277A true JPH1048277A (en) 1998-02-20
JP3577617B2 JP3577617B2 (en) 2004-10-13

Family

ID=16530701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20688796A Expired - Lifetime JP3577617B2 (en) 1996-08-06 1996-08-06 Polarized light source device and electric field sensor using the same

Country Status (1)

Country Link
JP (1) JP3577617B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007316004A (en) * 2006-05-29 2007-12-06 Seikoh Giken Co Ltd Light source device for orthogonally polarized light, and electric field sensor using the same
JP2008157817A (en) * 2006-12-25 2008-07-10 Seikoh Giken Co Ltd Orthogonal polarization light source device and electric field sensor using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007316004A (en) * 2006-05-29 2007-12-06 Seikoh Giken Co Ltd Light source device for orthogonally polarized light, and electric field sensor using the same
JP2008157817A (en) * 2006-12-25 2008-07-10 Seikoh Giken Co Ltd Orthogonal polarization light source device and electric field sensor using the same

Also Published As

Publication number Publication date
JP3577617B2 (en) 2004-10-13

Similar Documents

Publication Publication Date Title
KR100288443B1 (en) Optical modulator using isolator and optical transmitter comprising it
CA2120850C (en) Optical fiber gyro
US20080231861A1 (en) Polarization Maintaining Optical Delay Circuit
JP5044100B2 (en) Electromagnetic wave measuring device, electromagnetic wave measuring probe, electromagnetic wave measuring probe array
JP3577617B2 (en) Polarized light source device and electric field sensor using the same
US7957005B2 (en) Fiber optic apparatus and method for sensing hazardous materials
JP2004212137A (en) Triaxial photoelectric field sensor
JPS62198768A (en) Optical fiber type voltage sensor
JP3505669B2 (en) Electric field sensor
JP3577616B2 (en) Electric field sensor
US20050213865A1 (en) Optical dividing device
JPH0989961A (en) Electric field detecting device
JP3632714B2 (en) Electromagnetic wave receiving system
JP3673611B2 (en) Electric field sensor
JP2007316004A (en) Light source device for orthogonally polarized light, and electric field sensor using the same
JP2014215140A (en) Electric field measuring apparatus
JP3627204B2 (en) Electric field sensor
EP4317993A1 (en) Current measurement device
JPS6159573B2 (en)
Esman et al. Passive elimination of polarization sensitivity of fiber-optic microwave modulators
JP2008157817A (en) Orthogonal polarization light source device and electric field sensor using the same
JP2002257887A (en) Reflection-type electric field sensor head and reflection-type electric field sensor
JP2001108719A (en) Light source device, and electric field sensor with the same
JP2005274375A (en) Polarization dispersion measuring method
JP3435584B2 (en) Electric field sensor head and electric field sensor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040630

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070723

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term