JP3577616B2 - Electric field sensor - Google Patents

Electric field sensor Download PDF

Info

Publication number
JP3577616B2
JP3577616B2 JP10694596A JP10694596A JP3577616B2 JP 3577616 B2 JP3577616 B2 JP 3577616B2 JP 10694596 A JP10694596 A JP 10694596A JP 10694596 A JP10694596 A JP 10694596A JP 3577616 B2 JP3577616 B2 JP 3577616B2
Authority
JP
Japan
Prior art keywords
electric field
light
field sensor
sensor head
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10694596A
Other languages
Japanese (ja)
Other versions
JPH09292425A (en
Inventor
良和 鳥羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP10694596A priority Critical patent/JP3577616B2/en
Publication of JPH09292425A publication Critical patent/JPH09292425A/en
Application granted granted Critical
Publication of JP3577616B2 publication Critical patent/JP3577616B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はEMC分野で電波や電極ノイズの特性測定に用いる計測器に関し、特に、空間を伝搬する電磁波の電界強度を測定するための電界センサ、及び放送電波等特定の周波数の信号電波を検出するアンテナとしても機能する電界センサに関するものである。
【0002】
【従来の技術】
コンピュータ等の情報機器や通信機器、ロボット等のFA機器、自動車、鉄道等の制御器など多くの電気機器は、互いに外部からの電磁ノイズによって誤動作などの影響を受ける危険を常にもっている。EMC分野においては、外部の電磁環境や影響を及ぼすようなノイズの大きさ、また自らが発生するノイズ等を正確に測定することが重要となっている。
【0003】
従来、上述のような電磁ノイズの測定には以下の三つの方法がよく知られている。すなわち、通常のアンテナを用いて受信し、同軸ケーブルで測定器まで導く第1の方法、アンテナを用いて受信した信号を検波して、光信号に変換し光ファイバーで測定器まで導く第2の方法、および印加される電界強度に応じて透過光の強度が変化するように構成された光学素子を用いて電界強度変化を光強度変化に変換し、上記光学素子と光源および測定器に接続された光検出器間を光ファイバーで接続する第3の方法である。
【0004】
これらの中で、アンテナを用いる前記第1の方法が最も一般的であるが、同軸ケーブル等の電気ケーブルの存在により電界分布が乱れてしまったり、ケーブル途中からのノイズ混入の恐れがあるなどの問題があったため、光ファイバーを用いた前記第2及び前記第3の方法が提案されている。これら方法のうち、前記第2の方法は、ダイオードで検波した信号を増幅して発光ダイオードに加えて光信号に変換して光ファイバーで光検出器に導くものであるが、センサヘッド部に電気回路やバッテリを必要とするため、ある大きさの金属部分が存在し、かつ、形状も大きくなってしまう。また、電界の検出感度が低く応答速度が遅いという欠点がある。
【0005】
一方、前記第3の方法は電界強度を透過光の強度変化に変換する光学素子として電気光学効果を有する結晶を用いている。その素子構造としては、アンテナを接続し、光ファイバーの出射光をレンズで平行光として結晶中を通過させ、結晶中の電界により偏光状態を変化させ、検光子をとおした後再び光ファイバーに結合するバルク素子と結晶上に設けた光導波路により前記光学素子を構成する導波路型素子がある。通常、導波路型の方がバルク型よりも10倍以上検出感度が高い。また、導波路型の電界センサ用基板結晶には電気光学定数の高いニオブ酸リチウム単結晶が一般に使われている。
【0006】
図3に従来の電界センサの構成を示す。図4に図3の電界センサに用いるセンサヘッドの構成を示す。c軸に垂直に切り出したニオブ酸リチウム単結晶基板10上には入射光導波路11、そこから分岐して結合した位相シフト光導波路12、および上記2本の位相シフト光導波路12が合流して結合した出射光導波路13が形成されている。入射光導波路11の入射端には、入射光用に偏波面保持ファイバー8が結合され、出射光導波路13の出射端には、出射光用にシングルモードファイバー6が接続されている。また、位相シフト光導波路12上には一対の変調用電極14が設置され、アンテナ15に接続されている。
【0007】
光源3から偏波面保持ファイバー8を通過した光は、入射光導波路11に入射した後、二つの位相シフト光導波路12にエネルギーが分割される。電界が印加された場合、アンテナ15により変調用電極14に電圧が誘起されて位相シフト光導波路12中にほ深さ方向に互いに反対向きの電界成分が生じる。この結果、電気光学効果により屈折率変化が生じて位相シフト光導波路12を伝搬する光波間には印加電界の大きさに応じた位相差が変化する。すなわち、印加電界に応じてシングルモード光ファイバー8に出射する出射光の強度は変化することになり、その光強度変化を光検出器17で測定することにより印加電界を測定できる。
【0008】
【発明が解決しようとする課題】
しかしながら、上記した従来の電界センサでは、入射光ファイバーとして使われる偏波面保持ファイバーは、シングルモードファイバーに較べてはるかに高価である。このため、とくに光源とセンサヘッドの間の距離が長い電界センサの場合には、高いコストを甘受せざるを得なく、その打開策が求められていた。
【0009】
入射光ファイバーを、偏波面保持ファイバーからシングルモードファイバーに替えることが、問題解決の糸口になるべく予測されたことは当然である。しかしながら、光源から、シングルモードファイバーをとおってセンサヘッドに進行する入射光の偏波面は変動する。このため、センサヘッドの出射光レベルは、シングルモードファイバーの状態如何に依存するため不安定となり、電界強度の測定や信号電波を検出する電界センサとしての機能は著しく低下することになる。
【0010】
本発明の課題は、かかる問題点を解消し、シングルモードファイバーをセンサヘッドの入射光ファイバーとすることにより、低廉化、小型化が図れ、本来の機能を十分に有する電界センサを提供することである。
【0011】
【課題を解決するための手段】
本発明によれば、光源、センサヘッド、受光器、前記センサヘッドの入力光伝送路としての入射光ファイバー系、出力光伝送路としての出射光ファイバー、およびアンテナから構成される電界センサにおいて、前記光源は、該光源の出射光が直線偏光でかつ互いに直交する二つの光源からなり、該二つの光源は単一の電源を共有し、前記入射光ファイバー系は、前記二つの光源の出射光をそれぞれ偏波保持ファイバーを経由して結合する光結合器と、該光結合器と前記センサヘッドを接続するシングルモードファイバーからなり、前記出射光ファイバーはシングルモードファイバーから構成されることを特徴とする電界センサが得られる。
【0012】
さらに、本発明によれば、前記センサヘッドは偏光子を具備し、前記シングルモードファイバーは前記光結合器と該偏光子を結合する構成としたことを特徴とする電界センサが得られる。
【0013】
さらに、本発明によれば、前記二つの光源は半導体励起固体レーザであることを特徴とする電界センサが得られる。
【0014】
さらに、本発明によれば、前記半導体励起固体レーザは半導体励起YAGレーザであることを特徴とする電界センサが得られる。
【0015】
【発明の実施の形態】
以下に本発明の一実施の形態について図面を参照して詳細に説明する。図1は、本発明の一実施の形態による電界センサの構成を示した図である。電源20を共有する光源1および光源2は、出射光波長が1.3μmで、強度がほぼ等しい直線偏光を出射する半導体励起YAGレーザである。それぞれの直線偏光の偏波面は、互いに垂直をなすように光結合器9で結合される。さらに、これらの光は、シングルモードファイバー5内を互いに垂直な偏波面を保ちつつ伝搬し、センサヘッド4に入射する。このため、センサヘッド4の入射端における、偏波面が互いに垂直な二つの直線偏光の強度比は先の光結合器9の地点と変化なく、出射光レベルは常に一定となり、電界センサとしての機能を果たすことができる。
【0016】
本実施の形態では、図4に示した光導波路素子から構成され、入射光ファイバーをシングルモードファイバーとしたセンサヘッド4が用いられる。この場合、センサヘッド4にはTE波およびTM波の二つの直線偏光が入射する。光導波路素子からなるセンサヘッドの消光比が高いために、電界強度の測定においては、TM波の影響は実質的に無視することができ、通常、実用的な測定が可能である。尚、図1では、入射光ファイバー系を伝搬する光の偏波面を矢印を付して示す。
【0017】
このように、光源1および光源2と光結合器9の間のごく短い部分に偏波保持ファイバー7を使うものの、システムとしての電界センサで圧倒的に長い距離を占める光結合器9とセンサヘッド4の間を、従来の偏波保持ファイバーに替えて、低廉なシングルモードファイバー5とした。それでいて、センサヘッド4の出射光レべルは変動することはなく、安定にその機能を果たす。
【0018】
さらに、光源1および光源2が単一の電源20を共有するため、電界センサの小型化および低廉化が図られ、センサヘッド4の周辺部を簡単な構成にでき、光源1および光源2を半導体励起YAGレーザとしたことによって信頼性が高められる。
【0019】
図2は、本発明の他の実施の形態による電界センサの構成を示した図である。本実施の形態は、上記した実施の形態を基本とし、センサヘッド4が偏光子16を具備した構成をなしている。すなわち、電源20を共有する光源1および光源2からの直線偏光の偏波面は互いに垂直をなして光結合器9で結合され、シングルモードファイバー5内を垂直な偏波面を保ちつつ伝搬し、偏光子16によって特定の偏波面の光(TE波)のみをセンサヘッド4に入射する。このため入射光の偏波面に依存するセンサヘッド4の特性を無視することが可能となり、電界のさらに高分解能で測定することが可能となる。尚、図2では、入射光ファイバー系を伝搬する光の偏波面を矢印を付して示す。
【0020】
したがって、電界の高分解能測定が可能となり、上記した実施の形態と同様に、光結合器9とセンサヘッド4の間を低廉なシングルモードファイバー5にすることができ、電源を共有した光源1および光源2を半導体励起YAGレーザとしたことにより、小型化と信頼性の向上が図られる。
【0021】
【発明の効果】
以上説明したように、本発明によれば、従来必須と考えられた偏波面保持ファイバーを、所要の機能を満たしつつシングルモードファイバーに置き換え、これに用いる二つの半導体励起固体レーザ光源を単一の電源を共有した構成としたことにより、電界センサの低廉化および小型化を可能とし、高い信頼性の電界センサが得られる。
【図面の簡単な説明】
【図1】本発明の一実施の形態による電界センサの構成を示した図である。
【図2】本発明の他の実施の形態による電界センサの構成を示した図である。
【図3】従来の電界センサの構成を示した図である。
【図4】図3のセンサヘッドの構成を示した図である。
【符号の説明】
1,2 光源
4 センサヘッド
5,6 シングルモードファイバー
7 偏波面保持ファイバー
9 光結合器
10 ニオブ酸リチウム単結晶基板
11 入射光導波路
12 位相シフト光導波路
13 出射光導波路
14 変調用電極
15 アンテナ
16 偏光子
17 光検出器
20 電源
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a measuring instrument used for measuring characteristics of radio waves and electrode noise in the EMC field, and in particular, an electric field sensor for measuring the electric field strength of an electromagnetic wave propagating in a space, and detecting a signal radio wave of a specific frequency such as a broadcast radio wave. The present invention relates to an electric field sensor that also functions as an antenna.
[0002]
[Prior art]
Many electrical devices, such as information devices such as computers, communication devices, FA devices such as robots, and controllers such as automobiles and railways, are always in danger of being affected by malfunctions due to external electromagnetic noise. In the field of EMC, it is important to accurately measure the external electromagnetic environment, the magnitude of noise that influences the noise, and the noise generated by itself.
[0003]
Conventionally, the following three methods are well known for measuring the above-described electromagnetic noise. That is, a first method in which a signal is received using a normal antenna and guided to a measuring device by a coaxial cable, and a second method in which a signal received by using an antenna is detected, converted into an optical signal, and guided to a measuring device by an optical fiber. , And an optical element configured to change the intensity of transmitted light in accordance with the applied electric field strength, to convert the electric field strength change into a light intensity change, and connected to the optical element and a light source and a measuring instrument. This is a third method of connecting optical detectors with an optical fiber.
[0004]
Among these, the first method using an antenna is the most common. However, the electric field distribution may be disturbed by the presence of an electric cable such as a coaxial cable, or noise may be mixed in the middle of the cable. Because of the problem, the second and third methods using an optical fiber have been proposed. Among these methods, the second method is to amplify a signal detected by a diode, convert the signal into an optical signal in addition to a light emitting diode, and guide the signal to an optical detector by an optical fiber. And a battery, a metal part of a certain size is present, and the shape becomes large. In addition, there is a drawback that the electric field detection sensitivity is low and the response speed is slow.
[0005]
On the other hand, the third method uses a crystal having an electro-optical effect as an optical element for converting an electric field intensity into a change in intensity of transmitted light. The element structure is as follows: an antenna is connected, the light emitted from the optical fiber is passed through the crystal as parallel light by a lens, the polarization state is changed by the electric field in the crystal, and after passing through the analyzer, the bulk is coupled to the optical fiber again. There is a waveguide type element that constitutes the optical element by an element and an optical waveguide provided on a crystal. Usually, the waveguide type has a detection sensitivity 10 times or more higher than the bulk type. In addition, a single crystal of lithium niobate having a high electro-optic constant is generally used as a substrate crystal for a waveguide type electric field sensor.
[0006]
FIG. 3 shows a configuration of a conventional electric field sensor. FIG. 4 shows a configuration of a sensor head used for the electric field sensor of FIG. On a lithium niobate single crystal substrate 10 cut out perpendicular to the c-axis, an incident optical waveguide 11, a phase-shifted optical waveguide 12 branched and coupled therefrom, and the two phase-shifted optical waveguides 12 merge and combine. Outgoing optical waveguide 13 is formed. A polarization plane maintaining fiber 8 is coupled to an incident end of the incident optical waveguide 11 for incident light, and a single mode fiber 6 is connected to an exit end of the exiting optical waveguide 13 for exiting light. Further, a pair of modulation electrodes 14 is provided on the phase shift optical waveguide 12 and connected to the antenna 15.
[0007]
The light that has passed through the polarization maintaining fiber 8 from the light source 3 enters the incident optical waveguide 11, where the energy is split into two phase-shifted optical waveguides 12. When an electric field is applied, a voltage is induced on the modulating electrode 14 by the antenna 15, and electric field components in the phase-shifted optical waveguide 12 are generated in opposite directions in the depth direction. As a result, the refractive index changes due to the electro-optic effect, and the phase difference between the light waves propagating through the phase shift optical waveguide 12 changes according to the magnitude of the applied electric field. That is, the intensity of the outgoing light emitted to the single mode optical fiber 8 changes according to the applied electric field, and the applied electric field can be measured by measuring the change in the light intensity with the photodetector 17.
[0008]
[Problems to be solved by the invention]
However, in the above-mentioned conventional electric field sensor, the polarization maintaining fiber used as the incident optical fiber is much more expensive than the single mode fiber. For this reason, especially in the case of an electric field sensor in which the distance between the light source and the sensor head is long, high costs have to be accepted and a measure to overcome the cost has been required.
[0009]
Replacing the input optical fiber from a polarization maintaining fiber with a single mode fiber was naturally expected to be a clue to solving the problem. However, the plane of polarization of the incident light traveling from the light source to the sensor head through the single mode fiber fluctuates. For this reason, the output light level of the sensor head becomes unstable because it depends on the state of the single mode fiber, and the function as an electric field sensor for measuring electric field strength and detecting signal radio waves is significantly reduced.
[0010]
It is an object of the present invention to provide an electric field sensor which solves the above-mentioned problems and which can be reduced in cost and size by using a single mode fiber as an incident optical fiber of a sensor head and which has sufficient original functions. .
[0011]
[Means for Solving the Problems]
According to the present invention, a light source, a sensor head, a light receiver, an incident optical fiber system as an input light transmission path of the sensor head, an output optical fiber as an output light transmission path, and an electric field sensor including an antenna, wherein the light source is The light emitted from the light source is composed of two light sources that are linearly polarized and orthogonal to each other, the two light sources share a single power source, and the incident optical fiber system polarizes the light emitted from the two light sources, respectively. An electric field sensor comprising: an optical coupler that couples via a holding fiber; and a single mode fiber that connects the optical coupler and the sensor head, and the output optical fiber is composed of a single mode fiber. Can be
[0012]
Further, according to the present invention, there is provided an electric field sensor, wherein the sensor head includes a polarizer, and the single mode fiber is configured to couple the optical coupler with the polarizer.
[0013]
Further, according to the present invention, there is provided an electric field sensor, wherein the two light sources are semiconductor-pumped solid-state lasers.
[0014]
Further, according to the present invention, there is provided an electric field sensor, wherein the semiconductor-pumped solid-state laser is a semiconductor-pumped YAG laser.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a diagram showing a configuration of an electric field sensor according to one embodiment of the present invention. The light source 1 and the light source 2 that share the power supply 20 are semiconductor-pumped YAG lasers that emit linearly polarized light having an emission light wavelength of 1.3 μm and almost equal intensity. The polarization planes of the respective linearly polarized lights are coupled by the optical coupler 9 so as to be perpendicular to each other. Further, these lights propagate in the single mode fiber 5 while maintaining polarization planes perpendicular to each other, and enter the sensor head 4. For this reason, the intensity ratio of the two linearly polarized lights whose polarization planes are perpendicular to each other at the incident end of the sensor head 4 does not change from the point of the optical coupler 9, the output light level is always constant, and the function as the electric field sensor is obtained. Can be fulfilled.
[0016]
In the present embodiment, a sensor head 4 composed of the optical waveguide element shown in FIG. 4 and using a single mode fiber as the incident optical fiber is used. In this case, two linearly polarized lights of a TE wave and a TM wave enter the sensor head 4. Since the extinction ratio of the sensor head including the optical waveguide element is high, the influence of the TM wave can be substantially neglected in the measurement of the electric field strength, and practical measurement can be usually performed. In FIG. 1, the polarization plane of light propagating through the incident optical fiber system is indicated by an arrow.
[0017]
As described above, although the polarization maintaining fiber 7 is used for a very short portion between the light sources 1 and 2 and the optical coupler 9, the optical coupler 9 and the sensor head occupying an overwhelmingly long distance in the electric field sensor as a system. A low-cost single-mode fiber 5 was used in place of the conventional polarization maintaining fiber. Nevertheless, the output light level of the sensor head 4 does not fluctuate and performs its function stably.
[0018]
Further, since the light source 1 and the light source 2 share a single power supply 20, the size and cost of the electric field sensor can be reduced, the peripheral portion of the sensor head 4 can be made simple, and the light source 1 and the light source 2 can be made of semiconductor. The use of the pumped YAG laser enhances reliability.
[0019]
FIG. 2 is a diagram showing a configuration of an electric field sensor according to another embodiment of the present invention. This embodiment is based on the above-described embodiment, and has a configuration in which the sensor head 4 includes the polarizer 16. That is, the planes of polarization of linearly polarized light from the light source 1 and the light source 2 sharing the power supply 20 are perpendicular to each other and coupled by the optical coupler 9, and propagate in the single-mode fiber 5 while maintaining the plane of perpendicular polarization. Only the light (TE wave) of a specific polarization plane is incident on the sensor head 4 by the probe 16. For this reason, it is possible to ignore the characteristics of the sensor head 4 depending on the polarization plane of the incident light, and it is possible to measure the electric field with higher resolution. In FIG. 2, the polarization plane of the light propagating through the incident optical fiber system is indicated by an arrow.
[0020]
Therefore, high-resolution measurement of an electric field becomes possible, and a low-cost single-mode fiber 5 can be provided between the optical coupler 9 and the sensor head 4 in the same manner as in the above-described embodiment. By using a semiconductor-pumped YAG laser as the light source 2, miniaturization and improvement in reliability can be achieved.
[0021]
【The invention's effect】
As described above, according to the present invention, the polarization-maintaining fiber conventionally considered essential is replaced with a single-mode fiber while satisfying the required functions, and the two semiconductor-pumped solid-state laser light sources used for this are replaced with a single semiconductor fiber. Since the power supply is shared, the electric field sensor can be reduced in cost and size, and a highly reliable electric field sensor can be obtained.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of an electric field sensor according to an embodiment of the present invention.
FIG. 2 is a diagram showing a configuration of an electric field sensor according to another embodiment of the present invention.
FIG. 3 is a diagram showing a configuration of a conventional electric field sensor.
FIG. 4 is a diagram showing a configuration of the sensor head of FIG. 3;
[Explanation of symbols]
Reference numerals 1, 2 Light source 4 Sensor head 5, 6 Single mode fiber 7 Polarization maintaining fiber 9 Optical coupler 10 Lithium niobate single crystal substrate 11 Incident optical waveguide 12 Phase shift optical waveguide 13 Outgoing optical waveguide 14 Modulating electrode 15 Antenna 16 Polarization Child 17 Photodetector 20 Power supply

Claims (4)

光源、センサヘッド、受光器、前記センサヘッドの入力光伝送路としての入射光ファイバー系、出力光伝送路としての出射光ファイバー、およびアンテナから構成される電界センサにおいて、前記光源は、該光源の出射光が直線偏光でかつ互いに直交する二つの光源からなり、該二つの光源は単一の電源を共有し、前記入射光ファイバー系は、前記二つの光源の出射光をそれぞれ偏波保持ファイバーを経由して結合する光結合器と、該光結合器と前記センサヘッドを接続するシングルモードファイバーからなり、前記出射光ファイバーはシングルモードファイバーから構成されることを特徴とする電界センサ。In an electric field sensor including a light source, a sensor head, a light receiver, an input optical fiber system as an input light transmission path of the sensor head, an output optical fiber as an output light transmission path, and an antenna, the light source is an output light of the light source. Consists of two light sources that are linearly polarized and orthogonal to each other, the two light sources share a single power supply, and the incident optical fiber system outputs the light emitted from the two light sources via polarization maintaining fibers, respectively. An electric field sensor comprising: an optical coupler to be coupled; and a single mode fiber connecting the optical coupler to the sensor head, and the output optical fiber is composed of a single mode fiber. 前記センサヘッドは偏光子を具備し、前記シングルモードファイバーは前記光結合器と該偏光子を結合する構成としたことを特徴とする請求項1記載の電界センサ。2. The electric field sensor according to claim 1, wherein the sensor head includes a polarizer, and the single mode fiber is configured to couple the optical coupler and the polarizer. 前記二つの光源は半導体励起固体レーザであることを特徴とする請求項1又は2記載の電界センサ。3. The electric field sensor according to claim 1, wherein the two light sources are semiconductor-pumped solid-state lasers. 前記半導体励起固体レーザは半導体励起YAGレーザであることを特徴とする請求項3記載の電界センサ。The electric field sensor according to claim 3, wherein the semiconductor-pumped solid-state laser is a semiconductor-pumped YAG laser.
JP10694596A 1996-04-26 1996-04-26 Electric field sensor Expired - Lifetime JP3577616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10694596A JP3577616B2 (en) 1996-04-26 1996-04-26 Electric field sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10694596A JP3577616B2 (en) 1996-04-26 1996-04-26 Electric field sensor

Publications (2)

Publication Number Publication Date
JPH09292425A JPH09292425A (en) 1997-11-11
JP3577616B2 true JP3577616B2 (en) 2004-10-13

Family

ID=14446521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10694596A Expired - Lifetime JP3577616B2 (en) 1996-04-26 1996-04-26 Electric field sensor

Country Status (1)

Country Link
JP (1) JP3577616B2 (en)

Also Published As

Publication number Publication date
JPH09292425A (en) 1997-11-11

Similar Documents

Publication Publication Date Title
CA2120850C (en) Optical fiber gyro
CN111337052B (en) Y waveguide parameter measuring instrument, measuring system and measuring method
CN113138302B (en) Optical current transformer
JP2007078633A (en) High sensitivity three-axis photoelectric field sensor
JP5044100B2 (en) Electromagnetic wave measuring device, electromagnetic wave measuring probe, electromagnetic wave measuring probe array
JP3720327B2 (en) 3-axis optical electric field sensor
JP3577616B2 (en) Electric field sensor
JPH0740048B2 (en) Optical fiber type voltage sensor
JP3505669B2 (en) Electric field sensor
JP3632714B2 (en) Electromagnetic wave receiving system
JP3577617B2 (en) Polarized light source device and electric field sensor using the same
JPH0989961A (en) Electric field detecting device
JP3673611B2 (en) Electric field sensor
JP2014215140A (en) Electric field measuring apparatus
JP3627204B2 (en) Electric field sensor
JPH09113557A (en) Operating point adjusting method for electric field sensor and electric field sensor
JPH0237545B2 (en) HIKARINYORUDENKAI * JIKAISOKUTEIKI
JPH0782036B2 (en) Optical fiber type voltage sensor
JP3355502B2 (en) Electric field sensor
JP3355503B2 (en) Electric field sensor
JP3435584B2 (en) Electric field sensor head and electric field sensor
JP2001108719A (en) Light source device, and electric field sensor with the same
JP2002257887A (en) Reflection-type electric field sensor head and reflection-type electric field sensor
JP2562287Y2 (en) Electric field antenna
JP2007316004A (en) Light source device for orthogonally polarized light, and electric field sensor using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040630

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070723

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term