JP2007316004A - Light source device for orthogonally polarized light, and electric field sensor using the same - Google Patents

Light source device for orthogonally polarized light, and electric field sensor using the same Download PDF

Info

Publication number
JP2007316004A
JP2007316004A JP2006148211A JP2006148211A JP2007316004A JP 2007316004 A JP2007316004 A JP 2007316004A JP 2006148211 A JP2006148211 A JP 2006148211A JP 2006148211 A JP2006148211 A JP 2006148211A JP 2007316004 A JP2007316004 A JP 2007316004A
Authority
JP
Japan
Prior art keywords
light source
light
source device
polarized light
light sources
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006148211A
Other languages
Japanese (ja)
Inventor
Masatoshi Kizawa
正俊 鬼澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seikoh Giken Co Ltd
Original Assignee
Seikoh Giken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seikoh Giken Co Ltd filed Critical Seikoh Giken Co Ltd
Priority to JP2006148211A priority Critical patent/JP2007316004A/en
Publication of JP2007316004A publication Critical patent/JP2007316004A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-reliability light source for orthogonally polarized light that prevents beat noise with a light detector band, when the power is turned on, and to provide a high-reliability and stable electric field sensor that uses the same. <P>SOLUTION: In the light source for orthogonally polarized light, comprising two light sources 1, 2 for emitting linearly polarized beams with substantially equal strength values and different wavelength values from each other and an optical connector 5 for substantially orthogonalized two linearly polarized beams, emitted from the two light sources and then compositing the two beams, a means is provided for making the start-up times of the two light sources different from each other, by arranging a power supply circuit 7 for sequentially starting up the two light sources 1, 2 with time differences. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、2つの直線偏光を、その偏波面を互いに直交させて合成し出射する直交偏光光源装置、並びにその光源装置を用いた電磁波を測定または検出するための電界センサに関し、主としてEMC(電磁環境/electoromagnetic compatibility)分野で電波や電磁ノイズの計測器として用いられると共に、放送電波等の特定周波数の信号電波を検出するアンテナとしても機能する電界センサに関する。   The present invention relates to an orthogonally polarized light source device that synthesizes and emits two linearly polarized lights with their polarization planes orthogonal to each other, and an electric field sensor for measuring or detecting electromagnetic waves using the light source device, and mainly relates to EMC (electromagnetic wave). The present invention relates to an electric field sensor that is used as a measuring instrument for radio waves and electromagnetic noise in the field of the environment / electoromagnetic compatibility, and also functions as an antenna for detecting signal radio waves of a specific frequency such as broadcast radio waves.

一般に、コンピュータ等の情報機器や通信機器、ロボット等のFA機器、或いは自動車や鉄道等の制御機器等の多くの電気機器は、外部からの電磁ノイズによって常に誤動作等の悪影響を受ける危険性を持つことが知られている。   In general, many electric devices such as information devices such as computers and communication devices, FA devices such as robots, and control devices such as automobiles and railways are always at risk of being adversely affected by external electromagnetic noise. It is known.

そこで、最近のEMC分野においては、外部の電磁環境や悪影響を及ぼすような電磁ノイズの大きさ、或いは電気機器自体が発生するノイズ等を正確に測定することが重要となっている。   Therefore, in the recent EMC field, it is important to accurately measure the magnitude of electromagnetic noise that adversely affects the external electromagnetic environment or the noise generated by the electrical equipment itself.

従来、上述した電磁ノイズを測定するためには、以下に説明するような三つの技術的手法が適用されている。   Conventionally, in order to measure the electromagnetic noise described above, three technical methods as described below are applied.

第1の手法は、通常のアンテナを用いて電磁ノイズを受信し、同軸ケーブルで測定器まで導くものである。又、第2の手法は、電磁ノイズをアンテナを用いて受信し、その受信信号を検波した後に光信号に変換して光ファイバを介して測定器まで導くものである。更に、第3の手法は、印加される電界強度に応じて透過光の強度が変化するように構成された光学素子を用いて電磁ノイズの電界強度変化を光強度変化に変換し、光学素子と光源及び測定器に接続された光検出器との間を光ファイバで接続するものである。   The first technique is to receive electromagnetic noise using a normal antenna and guide it to a measuring instrument using a coaxial cable. In the second method, electromagnetic noise is received using an antenna, the received signal is detected, converted to an optical signal, and guided to a measuring instrument via an optical fiber. Further, the third method converts an electric field strength change of electromagnetic noise into a light intensity change by using an optical element configured to change the intensity of transmitted light according to the applied electric field strength, The light source and the photodetector connected to the measuring device are connected by an optical fiber.

このうち、第1の手法は最も一般的であるが、同軸ケーブル等の電気ケーブルの存在により電界分布が乱れることがあったり、或いはケーブル途中からノイズ混入の危険がある等の問題があるため、現在では光ファイバを用いた第2の手法及び第3の手法が主流となっている。   Of these, the first method is the most common, but there is a problem that the electric field distribution may be disturbed due to the presence of an electric cable such as a coaxial cable, or there is a risk of noise mixing in the middle of the cable. At present, the second method and the third method using optical fibers are mainly used.

上記第2の手法は、ダイオードで検波した後、得られた電圧を周波数変化量に変換するV/F変換を行い、この信号で発光ダイオードを変調することで光信号に変換して光ファイバで光検出器に導くものであるが、センサヘッドにおいて電気回路やバッテリを必要とするため、或る程度の大きさの金属部分が存在して形状も大きくなってしまうという問題があり、また、電界の検出感度が低くて応答速度が遅いという欠点がある。   In the second method, after detecting with a diode, V / F conversion is performed to convert the obtained voltage into a frequency change amount, and the light-emitting diode is modulated with this signal to be converted into an optical signal, and the optical fiber is used. Although it is led to the photodetector, the sensor head requires an electric circuit and a battery, so there is a problem that a metal part of a certain size exists and the shape becomes large. The detection sensitivity is low and the response speed is slow.

上記第3の手法は、電界強度を透過光の強度変化に変換するセンサヘッドとして電気光学効果を有する結晶を用い、電極に接続された小型アンテナにより誘起された電圧で透過光を変調している。その素子構造としては、光ファイバの出射光をレンズで平行光として結晶中を通過させ、結晶中に誘起される電界により偏光状態を変化させて検光子を通した後、再び光ファイバに結合するバルク型素子と、結晶上に設けた光導波路により光学素子を構成する導波路型素子とがある。通常、導波路型素子の方がバルク型素子よりも10倍以上検出感度が高くなっている。導波路型素子の電界センサ用基板結晶には一般に電気光学定数の大きいニオブ酸リチウム単結晶が使用されている。   In the third method, a crystal having an electro-optic effect is used as a sensor head for converting electric field intensity into intensity change of transmitted light, and the transmitted light is modulated by a voltage induced by a small antenna connected to the electrode. . As the element structure, the light emitted from the optical fiber is passed through the crystal as parallel light by a lens, the polarization state is changed by the electric field induced in the crystal, passed through the analyzer, and then coupled to the optical fiber again. There are a bulk type element and a waveguide type element that constitutes an optical element by an optical waveguide provided on a crystal. Usually, the detection sensitivity of the waveguide type element is 10 times or more higher than that of the bulk type element. In general, a lithium niobate single crystal having a large electro-optic constant is used as a substrate crystal for an electric field sensor of a waveguide element.

図4は、従来の導波路型素子によるセンサヘッドを用いた電界センサの基本構成を示した図であり、図5はそのセンサヘッドの細部構成を示す斜視図である。   FIG. 4 is a diagram showing a basic configuration of an electric field sensor using a sensor head using a conventional waveguide element, and FIG. 5 is a perspective view showing a detailed configuration of the sensor head.

図5において、センサヘッド4では、c軸に直交に切り出したニオブ酸リチウム単結晶基板10上の所定箇所に一対の変調用電極14が設置され、これらの変調用電極14はアンテナ15(図4参照)に接続されている。一対の変調用電極14の下部の結晶表面にはそれぞれ入射光導波路11から分岐した位相シフト光導波路12が形成され、その出射側ではそれら2つの位相シフト光導波路12が合流して出射光導波路13が形成されている。入射光導波路11の入射端には入射光用に偏波面保持ファイバ21が結合され、出射光導波路13の出射端には出射光用にシングルモードファイバ22が接続されている。   In FIG. 5, in the sensor head 4, a pair of modulation electrodes 14 are installed at predetermined positions on the lithium niobate single crystal substrate 10 cut out perpendicular to the c-axis, and these modulation electrodes 14 are connected to the antenna 15 (FIG. 4). Connected). A phase shift optical waveguide 12 branched from the incident optical waveguide 11 is formed on each crystal surface below the pair of modulation electrodes 14, and the two phase shift optical waveguides 12 are merged on the output side to output the optical waveguide 13. Is formed. A polarization plane holding fiber 21 is coupled to the incident end of the incident optical waveguide 11 for incident light, and a single mode fiber 22 is connected to the outgoing end of the output optical waveguide 13 for outgoing light.

図4において、電界センサでは、電源3に接続された光源1から偏波面保持ファイバ21を通った光がセンサヘッド4に入射光として入射される。センサヘッド4においては、図5のように入射光が入射光導波路11に入射された後、2つの位相シフト光導波路12によりエネルギーが分割されて一対の変調用電極14の下を伝搬する。ここで、外部から電界が印加された場合、アンテナ15により一対の変調用電極14に対して電圧が誘起されて位相シフト光導波路12中には深さ方向に互いに反対向きの電界成分が生じる。この結果、電気光学効果により屈折率変化が生じて位相シフト光導波路12を伝搬する光波間には印加電界の大きさに応じた位相差が発生し、出射光導波路13に入射するとき干渉により上記位相差に応じた強度変化が発生する。即ち、印加電界強度に応じて出射光導波路13を経てシングルモードファイバ22に出射される出射光の強度は変化することになり、その光強度変化を光検出器6で電気信号に変換する。その電気信号の強度を測定することにより印加電界の強度を測定でき、また、その電気信号から電波信号を検出できる。   In FIG. 4, in the electric field sensor, light passing through the polarization plane holding fiber 21 from the light source 1 connected to the power source 3 is incident on the sensor head 4 as incident light. In the sensor head 4, after incident light is incident on the incident optical waveguide 11 as shown in FIG. 5, energy is divided by the two phase shift optical waveguides 12 and propagates under the pair of modulation electrodes 14. Here, when an electric field is applied from the outside, a voltage is induced to the pair of modulation electrodes 14 by the antenna 15, and electric field components opposite to each other in the depth direction are generated in the phase shift optical waveguide 12. As a result, a refractive index change occurs due to the electro-optic effect, and a phase difference corresponding to the magnitude of the applied electric field is generated between the light waves propagating through the phase-shifted optical waveguide 12. An intensity change corresponding to the phase difference occurs. That is, the intensity of the outgoing light emitted to the single mode fiber 22 through the outgoing optical waveguide 13 changes according to the applied electric field strength, and the light intensity change is converted into an electrical signal by the photodetector 6. By measuring the intensity of the electric signal, the intensity of the applied electric field can be measured, and a radio signal can be detected from the electric signal.

ところで、最近では経済性追求の必要から、センサヘッド4用の入射光ファイバとして偏波面保持ファイバ21ではなく、シングルモードファイバを用いることが求められ、そのため偏波面が光ファイバ透過中に変動することにより生じる動作上の不利を補うために、特許文献1に示されるように、光源に2つの直線偏光光源を組み合わせた構成が提案されている。   By the way, recently, in order to pursue economic efficiency, it is required to use a single-mode fiber as the incident optical fiber for the sensor head 4 instead of the polarization-maintaining fiber 21, so that the polarization plane fluctuates during transmission through the optical fiber. In order to compensate for the operational disadvantage caused by the above, as shown in Patent Document 1, a configuration in which two linearly polarized light sources are combined with a light source has been proposed.

図6は、このような従来の電界センサの基本構成を示した図である。この電界センサは、2つの直線偏光を出射する光源1,2を電源3に接続し、これらの光源1,2と光結合器5との間を偏波面を保持する比較的短い偏波面保持ファイバ23,24で結合し、更にセンサヘッド4と光結合器5の間をシングルモードファイバ25で結合することによって構成されている。   FIG. 6 is a diagram showing a basic configuration of such a conventional electric field sensor. This electric field sensor connects two light sources 1 and 2 that emit linearly polarized light to a power source 3, and a relatively short polarization plane holding fiber that holds a plane of polarization between the light sources 1 and 2 and the optical coupler 5. The sensor head 4 and the optical coupler 5 are further coupled by a single mode fiber 25.

この構成の場合、2つの光源1,2から出射した2つの直線偏光は偏波面保持ファイバ23,24を通過してその偏波面が光結合器5で互いに直交するように合成された後、シングルモードファイバ25内を互いに偏波面が直交する関係を保ちつつ通過してセンサヘッド4に入射する。このため、センサヘッド4の入射端では、シングルモードファイバ25の状態の如何に拘らず、偏波面の直交関係がほぼ保たれるので、センサヘッド4に対して有効に働く偏光成分の強度はほぼ一定となり、実質的に偏波面保持ファイバを用いた場合と同等の効果が得られるようになっている。   In the case of this configuration, the two linearly polarized lights emitted from the two light sources 1 and 2 pass through the polarization-maintaining fibers 23 and 24 and are synthesized by the optical coupler 5 so that the polarization planes are orthogonal to each other. The light passes through the mode fiber 25 while maintaining a relationship in which the planes of polarization are orthogonal to each other and enters the sensor head 4. For this reason, at the incident end of the sensor head 4, the orthogonal relationship of the planes of polarization is substantially maintained regardless of the state of the single mode fiber 25. Thus, the same effect as that obtained when a polarization maintaining fiber is used is obtained.

尚、ここでの光源1,2及び光結合器5と、これらの間を結合した一対の偏波面保持ファイバ23,24とを合わせて直交偏光光源装置と呼ぶ。   The light sources 1 and 2 and the optical coupler 5 here and the pair of polarization plane holding fibers 23 and 24 coupled between them are collectively referred to as an orthogonal polarization light source device.

特許第3627204号Japanese Patent No. 3627204

上述した図6に示した電界センサの場合、直交偏光光源装置における2つの光源の波長の差が大きいと上述の偏光直交関係が劣化し、逆に波長差が小さくなると干渉によりその波長差に対応した周波数のノイズ、すなわちビート雑音と呼ばれる雑音が光信号に発生することが知られている。   In the case of the electric field sensor shown in FIG. 6 described above, if the wavelength difference between the two light sources in the orthogonal polarization light source device is large, the above-described polarization orthogonal relationship is deteriorated. Conversely, if the wavelength difference is small, the wavelength difference is accommodated by interference. It is known that noise of a certain frequency, that is, noise called beat noise is generated in an optical signal.

このビート雑音は強度が極めて大きく、しばしば光検出器を含めた後段に接続される機器を破壊する。通常、これらを避ける為に使用する光源の波長差をある程度大きくし、ビート雑音発生の周波数を光検出器の帯域より十分高い周波数に選定する。   This beat noise is extremely strong, and often destroys equipment connected to the subsequent stage including the photodetector. Usually, in order to avoid these, the wavelength difference of the light source used is increased to some extent, and the frequency of beat noise generation is selected to be sufficiently higher than the band of the photodetector.

ただし、光源の波長差が大きすぎると上述のように互いの偏波面の直交性が保たれなくなる為、波長差は5nm以下程度の近接した状態にされる。   However, if the wavelength difference of the light source is too large, the orthogonality of the polarization planes cannot be maintained as described above, so that the wavelength difference is in the proximity of about 5 nm or less.

しかしながら、実際には光源は電源投入時、波長が安定するまでは、周囲温度や、光源固有の特性に依存して立ち上るので、その立ち上がり方に差が生ずる。図7は光源を半導体レーザとした場合の電源投入後の光源の波長変化の様子の一例を示す図である。図7に示すように、波長を近接させた状態では立ち上がり時に2つの光源の波長が近接し、または一致するような状態が存在し、同一波長となること、若しくは、必要以上に波長が近接することにより光検出器の帯域内にビート雑音が発生することは回避できない。すなわち、従来は安定した状態での2つの光源の波長を近接した状態に保持するときには、その立ち上げ時に発生するビート雑音によって光検出器を含め、後段に接続される機器の破壊を招く危険があった。   However, in reality, when the light source is turned on, the light source rises depending on the ambient temperature and the characteristics specific to the light source until the wavelength is stabilized, and therefore, the rise method varies. FIG. 7 is a diagram illustrating an example of a change in the wavelength of the light source after power-on when the light source is a semiconductor laser. As shown in FIG. 7, in the state where the wavelengths are close to each other, there is a state where the wavelengths of the two light sources are close to or coincide with each other at the time of start-up, so that they are the same wavelength, or the wavelengths are closer than necessary. Therefore, it is unavoidable that beat noise is generated in the band of the photodetector. In other words, conventionally, when the wavelengths of two light sources in a stable state are kept close to each other, there is a risk that the beat noise generated at the start-up will cause destruction of equipment connected to the subsequent stage including the photodetector. there were.

そこで、本発明の課題は、電源投入時の光検出器帯域内のビート雑音を発生させない、信頼性の高い直交偏光光源装置、及びそれを用いた安定した信頼性の高い電界センサを提供することにある。   Accordingly, an object of the present invention is to provide a highly reliable orthogonally polarized light source device that does not generate beat noise in the photodetector band when the power is turned on, and a stable and highly reliable electric field sensor using the same. It is in.

上記課題を解決する為に、本発明の直交偏光光源装置は、強度がほぼ等しく、かつ互いに異なる波長の直線偏光を出射する2つの光源と、前記2つの光源から出射した2つの直線偏光を偏波面を互いにほぼ直交させて合成する光結合器とからなる直交偏光光源装置において、前記2つの光源の起動時間を互いに異ならしめる手段を設けている。   In order to solve the above-described problems, the orthogonally polarized light source device of the present invention has two light sources that emit linearly polarized light having substantially the same intensity and different wavelengths, and two linearly polarized light emitted from the two light sources. In the orthogonal polarization light source device comprising an optical coupler that synthesizes wavefronts substantially orthogonal to each other, means for making the activation times of the two light sources different from each other is provided.

また、起動時間に差をつけて前記2つの光源を順次起動する電源回路を設けてもよい。   Further, a power supply circuit that sequentially activates the two light sources with a difference in activation time may be provided.

また、前記2つの光源は半導体レーザであってもよい。   The two light sources may be semiconductor lasers.

また、上記2つの光源のうち、波長が長い光源を先に起動してもよい。   Of the two light sources, a light source having a long wavelength may be activated first.

また、本発明による電界センサは上記の本発明による直交偏光光源装置と、光検出器と、アンテナと、該アンテナに誘起された電圧により透過光を変調するセンサヘッドと、該センサヘッドに前記直交偏光光源装置からの出射光を供給する入射光ファイバと、前記センサヘッドにより変調された光を前記光検出器に導く出射光ファイバとを備えている。   An electric field sensor according to the present invention includes the orthogonally polarized light source device according to the present invention, a photodetector, an antenna, a sensor head that modulates transmitted light by a voltage induced in the antenna, and the orthogonal to the sensor head. An incident optical fiber that supplies outgoing light from the polarized light source device, and an outgoing optical fiber that guides light modulated by the sensor head to the photodetector.

本発明では、その立ち上がり時に2つの直線偏光光源の波長が近接することがないように起動時間に差をつけることにより、電源投入時の光検出器帯域内のビート雑音を発生させない、信頼性の高い直交偏光光源装置が得られ、それを用いた安定した信頼性の高い電界センサが得られる。   In the present invention, the start-up time is differentiated so that the wavelengths of the two linearly polarized light sources do not approach each other at the start-up, so that beat noise is not generated in the photodetector band when the power is turned on. A high orthogonal polarization light source device can be obtained, and a stable and highly reliable electric field sensor using the light source device can be obtained.

以下に、本発明の直交偏光光源装置、及びそれを用いた電界センサの実施の形態について、図面を参照して説明する。   Embodiments of an orthogonally polarized light source device and an electric field sensor using the same according to the present invention will be described below with reference to the drawings.

図1は、本発明による直交偏光光源装置の一実施の形態の基本構成を示す概略図である。図1を参照すると、本実施の形態の直交偏光光源装置は、出射光の強度がほぼ等しく、かつ互いに波長の異なる2つの直線偏光を出射する2つの光源1,2と、前記2つの光源の起動時間に差をつけて順次駆動する時間差起動電源回路7と、前記2つの直線偏光を偏波面が互いに直交するように合成する光結合器5および光源1,2の出射光をそれぞれ光結合器5に導く比較的短い偏波面保持ファイバ23,24とからなっている。また、本実施の形態においては、光源1,2としては半導体レーザを用いる。   FIG. 1 is a schematic diagram showing a basic configuration of an embodiment of an orthogonally polarized light source device according to the present invention. Referring to FIG. 1, the orthogonally polarized light source device of the present embodiment includes two light sources 1 and 2 that emit two linearly polarized lights having substantially the same intensity of emitted light and different wavelengths, and the two light sources. A time difference starting power supply circuit 7 that sequentially drives with a difference in starting time, an optical coupler 5 that combines the two linearly polarized lights so that their polarization planes are orthogonal to each other, and light emitted from the light sources 1 and 2 are optical couplers, respectively. 5 and relatively short polarization plane holding fibers 23 and 24 led to 5. In the present embodiment, semiconductor lasers are used as the light sources 1 and 2.

一般的に半導体レーザは、流す電流量が大きい程、波長は長波長側へ推移する為、起動時の電流が安定するまでの波長は図7に示したように短波長側から長波長側へ推移することになる。また、ビート雑音の発生周波数は、式(1)で表される。   In general, in semiconductor lasers, the larger the amount of current that flows, the longer the wavelength shifts to the longer wavelength side, so the wavelength until the current at start-up stabilizes from the shorter wavelength side to the longer wavelength side as shown in FIG. It will change. Also, the frequency of occurrence of beat noise is expressed by equation (1).

f=C/(λ1)−C/(λ2) ・・・・・・・・・(1)
f:ビート雑音周波数、C:光速、λ1:光源1の波長、λ2:光源2の波長、
(λ2>λ1)
f = C / (λ1) −C / (λ2) (1)
f: beat noise frequency, C: speed of light, λ1: wavelength of light source 1, λ2: wavelength of light source 2,
(Λ2> λ1)

本実施の形態において、光検出器の帯域は100k〜10GHzである。このとき光源1,2により発生するビート雑音が10GHz以上となるように設計することが必要となるが、光検出器の感度は10GHz以上にも存在するため、本実施の形態においては60GHz以上となるように設計するものとし、これに対応して光源1の波長を1550.0nm、光源2の波長を1550.5nmとした。このときのビート雑音周波数fは62.4GHzである。また、これらの光源1,2は、それぞれ起動後3秒以内に波長が安定する半導体レーザを使用している。   In the present embodiment, the band of the photodetector is 100 k to 10 GHz. At this time, it is necessary to design the beat noise generated by the light sources 1 and 2 to be 10 GHz or more. However, since the sensitivity of the photodetector exists at 10 GHz or more, in this embodiment, it is 60 GHz or more. Corresponding to this, the wavelength of the light source 1 was set to 1550.0 nm, and the wavelength of the light source 2 was set to 1550.5 nm. The beat noise frequency f at this time is 62.4 GHz. Each of the light sources 1 and 2 uses a semiconductor laser whose wavelength is stabilized within 3 seconds after activation.

図2は、本実施の形態において時間差起動電源回路7の電源を投入したときの光源波長の推移を示す図である。時間差起動電源回路7は電源投入時、最初に長波長側である光源2を駆動させる。光源2は発光し短波長側から長波長側へ波長を変動しながら3秒以内には定格の波長(1550.5nm)で安定する。   FIG. 2 is a diagram showing the transition of the light source wavelength when the time difference activation power supply circuit 7 is turned on in the present embodiment. When the power is turned on, the time difference activation power supply circuit 7 first drives the light source 2 on the long wavelength side. The light source 2 emits light and stabilizes at the rated wavelength (1550.5 nm) within 3 seconds while changing the wavelength from the short wavelength side to the long wavelength side.

そして、光源2の波長が安定後、数秒経た後、光源1が駆動され、定格の波長(1550.0nm)で安定する。このように動作させることにより、ビート雑音が観測されることは無かった。   After a few seconds after the wavelength of the light source 2 is stabilized, the light source 1 is driven and stabilized at the rated wavelength (1550.0 nm). By operating in this way, no beat noise was observed.

この直交偏光光源装置において、光源1,2から出射される直線偏光は、それぞれ偏波面保持ファイバ23,24を経て、その偏光状態が保持され、光結合器5で偏波面が互いに直交するように結合され、この後はシングルモードファイバ25内を互いに偏波面が直交した関係を保って伝搬する。   In this orthogonally polarized light source device, the linearly polarized light emitted from the light sources 1 and 2 passes through the polarization plane holding fibers 23 and 24, respectively, so that the polarization state is maintained, and the polarization planes are orthogonal to each other by the optical coupler 5. After that, the signals propagate through the single mode fiber 25 while maintaining the orthogonal polarization planes.

本実施の形態において、時間差起動電源回路7の起動時間差は、使用する半導体レーザなどの光源の立ち上がり特性によって決定することができ、半導体レーザの場合には、少なくとも長波長側の光源の波長が安定するまでの時間とすることができる。また、立ち上がり時に常に波長差が設定値以上となれば、それ以下の時間を設定してもよい。波長の長い光源2を先に起動し、かつ光源1と光源2の波長の立ち上がりの傾きが同じであれば、例えば上記起動時間差は10ms程度以上とすることも可能である。   In this embodiment, the start time difference of the time difference start power supply circuit 7 can be determined by the rising characteristics of a light source such as a semiconductor laser to be used. In the case of a semiconductor laser, at least the wavelength of the light source on the long wavelength side is stable. It can be time to do. If the wavelength difference is always greater than or equal to the set value at the time of start-up, a time shorter than that may be set. If the light source 2 having a long wavelength is activated first and the rising slopes of the wavelengths of the light source 1 and the light source 2 are the same, for example, the activation time difference may be about 10 ms or more.

また、本実施の形態における時間差起動電源回路7の起動時間差を設ける方法は、一般的な電気回路に使用される簡単な遅延回路を一方の光源の起動側の電源部に設置すればよい。   Moreover, the method of providing the starting time difference of the time difference starting power supply circuit 7 in the present embodiment may be a simple delay circuit used in a general electric circuit provided in the power supply unit on the starting side of one light source.

図3は、上記本実施の形態の直交偏光光源を光源として搭載した本発明による電界センサの実施の形態の基本構成を示したものである。本実施の形態の電界センサの基本的な構成は、光源の電源部を除いては図6に示した従来の電界センサと同じである。但し、本実施の形態の電界センサの場合、起動時にビート雑音が発生しない為、十分な安定性と信頼性を有している。また、本電界センサでは、立ち上がり時のビート雑音の影響がないため、従来の電界センサに比べて2つの光源の波長差を設計上小さく設定することが可能となる。このように設定した場合、2つの直線偏光の偏波面の直交状態は光ファイバ中で長く保たれるため、直交偏光光源装置の入射側に結合されるシングルモードファイバ25の長さを従来よりも長くすることが可能となる。   FIG. 3 shows a basic configuration of an embodiment of an electric field sensor according to the present invention in which the orthogonally polarized light source of the present embodiment is mounted as a light source. The basic configuration of the electric field sensor of the present embodiment is the same as that of the conventional electric field sensor shown in FIG. 6 except for the power source unit of the light source. However, the electric field sensor of this embodiment has sufficient stability and reliability because no beat noise is generated at the time of activation. Further, in this electric field sensor, since there is no influence of the beat noise at the time of start-up, the wavelength difference between the two light sources can be set smaller by design than the conventional electric field sensor. In such a setting, since the orthogonal state of the polarization planes of the two linearly polarized lights is kept long in the optical fiber, the length of the single mode fiber 25 coupled to the incident side of the orthogonally polarized light source device is made longer than the conventional one. It can be made longer.

以上に説明したように、本発明によれば、電源投入時の光検出器帯域内のビート雑音を発生させない、安定した信頼性の高い直交偏光光源装置が得られ、それを用いた安定した信頼性の高い電界センサが得られる。   As described above, according to the present invention, a stable and highly reliable orthogonally polarized light source device that does not generate beat noise in the photodetector band when the power is turned on is obtained, and stable and reliable using the device. A highly efficient electric field sensor can be obtained.

また、直交偏光光源として半導体レーザ以外の光源、例えば2つの固体レーザ光源を用いた場合にも立ち上がり時の不安定性により、その波長差が設定値以下になり得るので、発信波長が安定するまでの時間を上記の起動時間差として設定して本発明を用いることにより、安定した信頼性の高い直交偏光光源装置が得られる。   Also, when a light source other than a semiconductor laser, for example, two solid-state laser light sources, is used as an orthogonally polarized light source, the wavelength difference can be less than the set value due to instability at the time of startup, so that the transmission wavelength is stabilized. By using the present invention with the time set as the above-described start time difference, a stable and highly reliable orthogonally polarized light source device can be obtained.

なお、本発明の直交偏光光源装置において、2つの光源の起動時間を互いに異ならしめる手段としては、その電源部分に起動時間差を設ける以外にも、例えば2つの半導体レーザの電流駆動回路の一方に遅延回路を設けてもよく、その遅延回路を設置する場所や遅延回路の種類なども光源装置の目的、用途に応じて選択できるのはいうまでもない。   In the orthogonally polarized light source device of the present invention, as a means for making the activation times of the two light sources different from each other, for example, a delay in one of the current drive circuits of the two semiconductor lasers is provided in addition to providing the activation time difference in the power supply portion. It is needless to say that a circuit may be provided, and the location where the delay circuit is installed and the type of the delay circuit can be selected according to the purpose and application of the light source device.

また、2つの光源からの出射光を偏波面を互いに直交させて光結合器で合成する場合には、上記実施の形態では偏波面保持ファイバを用いて導いたが、光源から直接空間ビームで光結合器まで導いてもよい。   In addition, when the light emitted from the two light sources is combined by the optical coupler with the polarization planes orthogonal to each other, in the above embodiment, the light is guided using the polarization plane holding fiber. You may lead to the coupler.

本発明による直交偏光光源装置の一実施の形態の基本構成を示す概略図。BRIEF DESCRIPTION OF THE DRAWINGS Schematic which shows the basic composition of one Embodiment of the orthogonal polarization light source device by this invention. 時間差起動電源回路の電源を投入したときの光源波長の推移を示す図。The figure which shows transition of the light source wavelength when the power supply of a time difference starting power supply circuit is turned on. 本発明による電界センサの一実施の形態の基本構成を示す図。The figure which shows the basic composition of one Embodiment of the electric field sensor by this invention. 従来の導波路型素子によるセンサヘッドを用いた電界センサの基本構成を示す図。The figure which shows the basic composition of the electric field sensor using the sensor head by the conventional waveguide type element. 電界センサに用いられるセンサヘッドの細部構成を示す斜視図。The perspective view which shows the detailed structure of the sensor head used for an electric field sensor. 2つの直線偏光光源を組み合わせた従来の電界センサの基本構成を示す図。The figure which shows the basic composition of the conventional electric field sensor which combined two linearly polarized light sources. 従来の直交偏光光源装置において、光源を半導体レーザとした場合の電源投入後の光源の波長変化の様子の一例を示す図。The figure which shows an example of the mode of the wavelength change of the light source after power activation in the case of using the semiconductor laser as the light source in the conventional orthogonal polarization light source device.

符号の説明Explanation of symbols

1,2 光源
3 電源
4 センサヘッド
5 光結合器
6 光検出器
7 時間差起動電源回路
10 ニオブ酸リチウム単結晶基板
11 入射光導波路
12 位相シフト光導波路
13 出射光導波路
14 変調用電極
15 アンテナ
21,23,24 偏波面保持ファイバ
22,25,26 シングルモードファイバ
DESCRIPTION OF SYMBOLS 1, 2 Light source 3 Power supply 4 Sensor head 5 Optical coupler 6 Photo detector 7 Time difference starting power supply circuit 10 Lithium niobate single crystal substrate 11 Incident optical waveguide 12 Phase shift optical waveguide 13 Output optical waveguide 14 Modulating electrode 15 Antenna 21, 23, 24 Polarization plane maintaining fiber 22, 25, 26 Single mode fiber

Claims (5)

強度がほぼ等しく、かつ互いに異なる波長の直線偏光を出射する2つの光源と、前記2つの光源から出射した2つの直線偏光を偏波面を互いにほぼ直交させて合成する光結合器とからなる直交偏光光源装置において、前記2つの光源の起動時間を互いに異ならしめる手段を設けたことを特徴とする直交偏光光源装置。   Orthogonal polarized light comprising two light sources that emit linearly polarized light having substantially the same intensity and different wavelengths, and an optical coupler that combines the two linearly polarized light emitted from the two light sources with their polarization planes substantially orthogonal to each other. An orthogonally polarized light source device, characterized in that means for making the activation times of the two light sources different from each other is provided in the light source device. 起動時間に差をつけて前記2つの光源を順次起動する電源回路を設けたことを特徴とする請求項1記載の直交偏光光源装置。   2. The orthogonally polarized light source device according to claim 1, further comprising a power supply circuit that sequentially activates the two light sources with a difference in activation time. 前記2つの光源は半導体レーザであることを特徴とする請求項1または2記載の直交偏光光源装置。   The orthogonally polarized light source device according to claim 1 or 2, wherein the two light sources are semiconductor lasers. 前記2つの光源のうち、波長が長い光源を先に起動することを特徴とする請求項1から3の何れか1項に記載の直交偏光光源装置。   The orthogonally polarized light source device according to any one of claims 1 to 3, wherein a light source having a long wavelength is activated first among the two light sources. 請求項1から4の何れか1項に記載の直交偏光光源装置と、光検出器と、アンテナと、該アンテナに誘起された電圧により透過光を変調するセンサヘッドと、該センサヘッドに前記直交偏光光源装置からの出射光を供給する入射光ファイバと、前記センサヘッドにより変調された光を前記光検出器に導く出射光ファイバとを備えたことを特徴とする電界センサ。   5. The orthogonally polarized light source device according to claim 1, a photodetector, an antenna, a sensor head that modulates transmitted light by a voltage induced in the antenna, and the orthogonal to the sensor head An electric field sensor comprising: an incident optical fiber that supplies outgoing light from a polarized light source device; and an outgoing optical fiber that guides light modulated by the sensor head to the photodetector.
JP2006148211A 2006-05-29 2006-05-29 Light source device for orthogonally polarized light, and electric field sensor using the same Pending JP2007316004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006148211A JP2007316004A (en) 2006-05-29 2006-05-29 Light source device for orthogonally polarized light, and electric field sensor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006148211A JP2007316004A (en) 2006-05-29 2006-05-29 Light source device for orthogonally polarized light, and electric field sensor using the same

Publications (1)

Publication Number Publication Date
JP2007316004A true JP2007316004A (en) 2007-12-06

Family

ID=38849980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006148211A Pending JP2007316004A (en) 2006-05-29 2006-05-29 Light source device for orthogonally polarized light, and electric field sensor using the same

Country Status (1)

Country Link
JP (1) JP2007316004A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008157817A (en) * 2006-12-25 2008-07-10 Seikoh Giken Co Ltd Orthogonal polarization light source device and electric field sensor using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09149195A (en) * 1995-11-20 1997-06-06 Brother Ind Ltd Optical scanning method and device
JPH1048277A (en) * 1996-08-06 1998-02-20 Tokin Corp Polarized light source device and electric field sensor using it
JPH1062704A (en) * 1996-08-22 1998-03-06 Brother Ind Ltd Optical scanner
JPH10284778A (en) * 1997-04-04 1998-10-23 Toshiba Corp Laser oscillator
JP2004245731A (en) * 2003-02-14 2004-09-02 Nec Tokin Corp Photoelectric field sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09149195A (en) * 1995-11-20 1997-06-06 Brother Ind Ltd Optical scanning method and device
JPH1048277A (en) * 1996-08-06 1998-02-20 Tokin Corp Polarized light source device and electric field sensor using it
JPH1062704A (en) * 1996-08-22 1998-03-06 Brother Ind Ltd Optical scanner
JPH10284778A (en) * 1997-04-04 1998-10-23 Toshiba Corp Laser oscillator
JP2004245731A (en) * 2003-02-14 2004-09-02 Nec Tokin Corp Photoelectric field sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008157817A (en) * 2006-12-25 2008-07-10 Seikoh Giken Co Ltd Orthogonal polarization light source device and electric field sensor using the same

Similar Documents

Publication Publication Date Title
JP5290737B2 (en) Optical-microwave oscillator and pulse generator
CA2120850C (en) Optical fiber gyro
WO2010061906A1 (en) Electric field measuring device
ATE324689T1 (en) GENERATION OF ELECTRONIC CARRIER SIGNALS IN THE OPTICAL FIELD
CA2850921A1 (en) Light source device and wavelength conversion method
Pitris et al. Monolithically integrated all-optical SOA-based SR Flip-Flop on InP platform
US20080231861A1 (en) Polarization Maintaining Optical Delay Circuit
JP2007316004A (en) Light source device for orthogonally polarized light, and electric field sensor using the same
JP2007078633A (en) High sensitivity three-axis photoelectric field sensor
JP2004212137A (en) Triaxial photoelectric field sensor
JP2008157817A (en) Orthogonal polarization light source device and electric field sensor using the same
JP2011033501A (en) Electric field, magnetic field and voltage detector with feedback circuit
KR100559057B1 (en) Millimeter wave generator using fiber bragg grating
JP2006242861A (en) Electromagnetic wave measuring instrument, probe for measuring electromagnetic wave, and probe array for measuring electromagnetic wave
JP3577617B2 (en) Polarized light source device and electric field sensor using the same
JPWO2017164037A1 (en) Light source device
JP2014215140A (en) Electric field measuring apparatus
JP6100656B2 (en) Electro-optical converter
JP3577616B2 (en) Electric field sensor
JP3505669B2 (en) Electric field sensor
US20030114117A1 (en) Tunable RF signal generation
JP2004212138A (en) Electric field sensing device
Neumann Microwave Photonic Applications-From Chip Level to System Level
KR100491750B1 (en) Apparatus of All-Optical Memory based on EMILD structure
JPH10206475A (en) Electric field sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090513

A977 Report on retrieval

Effective date: 20111026

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A02 Decision of refusal

Effective date: 20120508

Free format text: JAPANESE INTERMEDIATE CODE: A02