JP2004245731A - Photoelectric field sensor - Google Patents

Photoelectric field sensor Download PDF

Info

Publication number
JP2004245731A
JP2004245731A JP2003037046A JP2003037046A JP2004245731A JP 2004245731 A JP2004245731 A JP 2004245731A JP 2003037046 A JP2003037046 A JP 2003037046A JP 2003037046 A JP2003037046 A JP 2003037046A JP 2004245731 A JP2004245731 A JP 2004245731A
Authority
JP
Japan
Prior art keywords
optical
electric field
field sensor
light source
sensor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003037046A
Other languages
Japanese (ja)
Inventor
Masakazu Endo
雅和 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2003037046A priority Critical patent/JP2004245731A/en
Publication of JP2004245731A publication Critical patent/JP2004245731A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a small photoelectric field sensor having isotropy in the electric field detection using a simple constitution. <P>SOLUTION: The photoelectric field sensor is comprises 3 axial photoelectric field sensors 50, each of which is provided in x, y, and z axial direction orthogonal to each other, arranged for detection of the electric fields of x, y, and z axial directions; a light attenuator 54; and an optical detector 55, wherein the 3 axal photoelectric field sensor 50 comprises a light source part comprising light sources 51a, 51b; a 1st polarization wave synthesizer 52a; a 4 port polarized wave demultiplexing light circulator 53; and a Mach-Zehnder interferometer comprising a 2nd polarized wave synthesizer 52b, polarization electrodes and a branching optical wave-guide on an electro-optical crystal substrate. Each modulated light, emitted from each 3 axis photoelectric field sensor modulated by each electric field in the direction of x, y, and z axis, is synthesized by 4 port polarized wave demultiplexing light circulator 53, and inputted to the optical detector 55. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、光を用いて電界の測定を行う光電界センサ装置に係り、特に空間の任意の方向に伝搬する電磁波の電界強度の測定に好適な光電界センサ装置に関する。
【0002】
【従来の技術】
電気光学効果を利用した干渉型光導波路を用いた光電界センサは、以下のような優れた特徴を持っている。即ち、金属部をほとんど持たないために被測定電界を乱さないこと、光ファイバで検出信号を伝送するので途中で誘導や電気的雑音の影響を受けないこと、結晶の電気光学効果を利用するので、高速応答が可能であり、かつその検出信号をそのまま少ない損失で伝送できること、センサ部に電源を必要としないこと、さらに、光導波路とアンテナ電極が一体で、また電源を有しないために小型化が容易なことなどである。このような特質のゆえに光電界センサは、EMC分野などの電界測定に用いられている。
【0003】
従来例としての3軸方向の電界を測定できる光電界センサを説明するにあたって、まず、そこに使用される1軸方向の電界を測定する光電界センサについて図6に基づいて説明する。
【0004】
図6(b)は、従来の反射型の1軸光電界センサの構造を示す斜視図である。光ファイバ16、17あるいは18から入射した光はLiNbO単結晶基板14上の光導波路15を経て、2本の分岐光導波路13aおよび13bに分岐される。そのとき、一方の分岐光導波路13aには金属電極10a、10bにより、電界が印加され、屈折率の変化が生じている。他方、分岐光導波路13bには電界による屈折率の変化はない。いずれの分岐光導波路を伝播する光も反射ミラー11によって反射され、分岐光導波路を逆方向に伝播し、再び合波されるが、2つの光路の屈折率の差異により生じた位相差のゆえに、合波後の光強度は変化する。その後、光ファイバ16、17あるいは18に結合して出射する。
【0005】
なお、金属電極10a、10bは分岐光導波路13a、13bに垂直な方向12の感度が高くなるように形成されている。
【0006】
続いて、3軸方向の電界を測定できる光電界センサ装置の従来例について説明する。
【0007】
図6(b)に示した反射型の1軸光電界センサを図6(a)に示すように配置すると、3軸方向の電界を測定することが可能な3軸光電界センサを構成することができる。すなわち、基板19a、19b、19cは、それぞれX、Y、Z方向の電界を検出するように配置される。その結果、光ファイバ16、17、18から入射した光はそれぞれX、Y、Z方向の電界により変調され、出射する。
【0008】
図5に、従来の3軸光電界センサ装置の構成をブロック図で示す。なお、図5おいて、実線で記された両方向の矢印は偏光方向を示し、破線で記された一方向の矢印は光の進行方向を示す。
【0009】
光源61a、61bより出射した光は偏波合成器62によって偏波状態を直交して合成され、さらに光カプラ63にて3波に分波する。その後、3波はそれぞれ偏波依存光サーキュレータ64a、64b、64cを通過して3軸光電界センサ60に入射する。この3軸光電界センサ60によって変調された光信号は再び偏波依存光サーキュレータ64a、64b、64cに戻り、それぞれの光検出器65a、65b、65cに導かれて電気信号に変換される。
【0010】
この光検出器65a、65b、65cから出力された、X、Y、Z方向各々の電気信号から被測定電界のX成分、Y成分、およびZ成分が得られるが、電界強度の大きさは、PC(パーソナルコンピュータ)などに取りこみまれた、X成分、Y成分、およびZ成分を計算によって合成することで得られる。
【0011】
この型の3軸光電界センサ装置は、次の特許文献1に開示されている。
【0012】
【特許文献1】
特開2002−257884号公報
【0013】
【発明が解決しようとする課題】
一般に、EMC分野などでの電界測定においては、伝播する電磁波による電界の大きさ(電界強度)が測定対象となり、電界ベクトルの方向は不要である場合が多い。このような測定において、従来の手法では、1台の光カプラと3台の偏波依存光サーキュレータ、および3台の光検出器を必要とし、さらに電界検出の等方性を得るために検出信号をPC上などで計算処理する必要があった。従って、EMC分野などでの電界測定用としては、小型化および価格低減を図るために光電界センサ装置を簡略化することが肝要である。
【0014】
そこで、本発明は、簡略な構成であって電界検出の等方性を有する小型の光電界センサ装置を提供することを課題とする。
【0015】
【課題を解決するための手段】
前記課題を解決するために、本発明は以下の構成を有する。すなわち、請求項1の発明は、光電界センサ装置に係り、一定強度の光を生成する光源部と、前記光源部からの光を3つに分波する分波手段と、電気光学結晶の基板上に変調電極と分岐光導波路とを設けてなるマッハツェンダ干渉計の3つを、それぞれ、直交するx、y、z軸方向の電界を検出するように配置してなる3軸光電界センサ素子と、前記3つのマッハツェンダ干渉計により変調された3つの信号光を合波させる合波手段と、合波された信号光を電気信号に変換して検波する光検出器とを備えることを特徴とする。
【0016】
請求項2の発明は、請求項1記載の光電界センサ装置に係り、前記分波手段は4ポート偏波分離光サーキュレータであり、前記マッハツェンダ干渉計のいずれか1つと前記4ポート偏波分離光サーキュレータとの間には光アッテネータが挿入され、前記マッハツェンダ干渉計の他の2つと前記4ポート偏波分離光サーキュレータとの間には偏波合成器が挿入されたことを特徴とする。
【0017】
請求項3の発明は、請求項1または2記載の光電界センサ装置に係り、前記光源部は互いに直交する直線偏光を発生する2つのレーザ光源と他の偏波合成器とからなることを特徴とする。
【0018】
請求項4の発明は、請求項1から3のいずれか記載の光電界センサ装置に係り、前記電気光学結晶はLiNbO単結晶であり、前記分岐光導波路は前記LiNbO単結晶の基板上にTiイオンを拡散して形成されたことを特徴とする。
【0019】
請求項5の発明は、請求項3記載の光電界センサ装置に係り、前記レーザ光源は半導体レーザ光源であることを特徴とする。
【0020】
請求項6の発明は、請求項3記載の光電界センサ装置に係り、前記レーザ光源は半導体レーザ励起のNd:YAGレーザ光源であることを特徴とする。
【0021】
【発明の実施の形態】
以下に、図面に基づいて、本発明の実施の形態を説明する。
【0022】
図4は、本発明の一実施の形態における3軸光電界センサの外観斜視図である。43は3心の偏波保持光ファイバ、42は非金属の保持ロッド、41はセンサヘッド部である。このセンサヘッド部の大きさはφ12×35mmであり、3軸方向の電界を測定する反射型マッハツェンダ干渉計から成る光変調部が収められている。
【0023】
図2に、上記センサヘッド部41を上面から見たときの断面図を示す。直角二等辺三角形の断面を有する三角柱の支持部材24の側面にx軸、y軸、およびz軸方向の電界を測定できるような角度で図3に示す1軸光電界センサが配置されている。
【0024】
この1軸光電界センサはいずれもLiNbO結晶基板32上に作製されたTi拡散光導波路を備え、そこに電圧を印加する金属電極35と、反射ミラー36と、偏波保持光ファイバ31を備えて構成されている。また、33は入出射光導波路、34aおよび34bは分岐光導波路である。
【0025】
図2に戻って、3軸光電界センサの説明を続ける。21はx軸方向の電界を測定する1軸光電界センサ、22はy軸方向の電界を測定する1軸光電界センサ、23はz軸方向の電界を測定する1軸光電界センサ、そして25はハウジングである。また、図示されていないが、それぞれの1軸光電界センサの分岐光導波路の方向と偏波保持光ファイバの引き出し方向は、紙面に垂直な方向である。このような構成により、3次元直交座標軸、x、y、z軸方向の電界測定が可能になる。
【0026】
次に、図1を参照して、本実施の形態の光電界センサ装置について説明する。図1において、50は本実施の形態の3軸光電界センサ、51aおよび51bはそれぞれ第1および第2の光源、52aおよび52bは第1および第2の偏波合成器、53は4ポート偏波分離光サーキュレータ、54は光アッテネータ、55はフォトダイオードとアンプからなる光検出器、56は偏波保持光ファイバである。なお、実線で記された両方向の矢印は偏光方向を示し、破線で記された一方向の矢印は光の進行方向を示す。
【0027】
このとき用いる光源の波長は、LiNbO基板上のTi拡散導波路における電気光学効果とロスを考慮して、1.2〜1.6μm程度の波長が選ばれる。また、RIN(相対雑音強度)特性の良い半導体レーザ励起Nd:YAGレーザや低消費電力の半導体レーザが光源として適している。
【0028】
半導体レーザ励起のNd:YAGレーザを光源に用いる場合には、1.32μmのレーザ波長が、そして半導体レーザを光源に用いる場合には、高出力が得られる1.48μmのレーザ波長が使いやすい。
【0029】
次に、この3軸光電界センサ装置の動作について説明する。
【0030】
第1および第2の光源51aおよび51bから出射した直交偏波の光は偏波保持光ファイバ56を経て偏波合成器52aのポート▲3▼およびポート▲2▼にそれぞれに入射され、偏波方向が直交するように合波されポート▲1▼から出射して、4ポート偏波分離光サーキュレータ53のポート▲1▼に入射される。
【0031】
この4ポート偏波分離光サーキュレータ53に入射された光は、縦・横それぞれの偏波に分解され、さらに偏波方向を45度回転されてポート▲4▼およびポート▲3▼より出射される。
【0032】
ポート▲3▼から出射された光は光アッテネータ54にて減衰された後、3軸光センサ50に入射される。
【0033】
また、ポート▲4▼より出射された光は偏波合成器52bにより縦・横それぞれの偏波に分解され3軸光センサ50に入射される。
【0034】
この様に3軸光センサ50に入射された3波は被測定電界による強度変調を受けて、再び偏波保持光ファイバ56に入射され、往路として伝播して来た経路をそのまま復路とする形で4ポート偏波分離光サーキュレータ53のポート▲4▼およびポート▲3▼に入射される。その際、ポート▲4▼およびポート▲3▼に戻る偏波状態は出射時の状態が保たれている。
【0035】
4ポート偏波分離光サーキュレータ53に入射された光は再び合波され3軸の合成変調信号となり、ポート▲2▼より出射後、偏波保持光ファイバ56を経由して光検出器(O/E変換器)55に入射される。
【0036】
このような無変調光と変調光の経路において、光アッテネータ54は第2の偏波合成器52bを通過する光と、第2の偏波合成器52bを通過しない光との間の挿入損失の差を補償することができる。また、x軸、y軸、z軸のいずれにも、同一構造の1軸光電界センサを用いたので、3次元のあらゆる方向に向いた被測定電界ベクトルの大きさ(電界強度)を、光電界センサヘッド部を回転することなく、測定することができる。すなわち容易に電界検出の等方性を確保できる。
【0037】
また、本実施の形態の光電界センサ装置は、EMC測定などにおいて重要である、空間の任意の方向に伝播する電磁波の電界強度の測定に特に好適である。
【0038】
【発明の効果】
上述のように、本発明によれば、従来例では、光カプラ1台、偏波依存光サーキュレータ3台、光検出器3台の計7台必要としていたブロック群を、4ポート偏波分離光サーキュレータ1台、光アッテネータ1台、光検出器を1台の計3台にすることができ、部品点数が減ったことで装置の小型化および低価格化が可能となった。さらにPC上での計算処理をすることなく、また光電界センサ装置のセンサヘッド部を回転することなく、電界強度の大きさ(等方性データ)を即座に取得することが可能となった。
【図面の簡単な説明】
【図1】本発明の一実施の形態における光電界センサ装置を示すブロック図。
【図2】本発明の一実施の形態における光電界センサのセンサヘッド部を上面から見たときの断面図。
【図3】本発明の一実施の形態における光電界センサ装置の構成要素であるx軸、y軸、z軸、各方向の電界を検出する1軸光電界センサを示す斜視図。
【図4】本発明の一実施の形態における3軸光電界センサの外観斜視図。
【図5】従来の3軸光電界センサ装置のブロック図。
【図6】従来の3軸光電界センサの構成を示す図。図6(a)は、3個の1軸光電界センサの配置を示す斜視図、図6(b)は、3軸光電界センサの構成要素である1軸光電界センサを示す斜視図。
【符号の説明】
21 x軸方向用1軸光電界センサ
22 y軸方向用1軸光電界センサ
23 z軸方向用1軸光電界センサ
24 支持部材
25 ハウジング
31,56 偏波保持光ファイバ
32 LiNbO結晶基板
33 入出射光導波路
34a,34b 分岐光導波路
35 金属電極
36 反射ミラー
41 センサヘッド部
42 非金属の保持ロッド
43 3心の偏波保持光ファイバ
50 3軸光電界センサ
51a,51b 光源
52a,52b 偏波合成器
53 4ポート偏波分離光サーキュレータ
54 光アッテネータ
55 光検出器
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an optical electric field sensor device for measuring an electric field using light, and more particularly to an optical electric field sensor device suitable for measuring the electric field intensity of an electromagnetic wave propagating in an arbitrary direction in space.
[0002]
[Prior art]
An optical electric field sensor using an interference optical waveguide utilizing the electro-optic effect has the following excellent features. That is, since the electric field to be measured is not disturbed because it has almost no metal part, the detection signal is transmitted through an optical fiber so that it is not affected by induction or electric noise on the way, and the electro-optic effect of the crystal is used. , High-speed response is possible and the detection signal can be transmitted as it is with little loss, no power supply is required for the sensor part, and the optical waveguide and antenna electrode are integrated and there is no power supply, so miniaturization is achieved. Is easy. Due to such characteristics, the optical electric field sensor is used for electric field measurement in the EMC field and the like.
[0003]
Before describing an optical electric field sensor capable of measuring an electric field in a three-axis direction as a conventional example, an optical electric field sensor for measuring an electric field in a uniaxial direction used therein will be described with reference to FIG.
[0004]
FIG. 6B is a perspective view showing the structure of a conventional reflection type uniaxial optical electric field sensor. Light incident from the optical fibers 16, 17, or 18 is branched into two branch optical waveguides 13a and 13b via an optical waveguide 15 on a LiNbO 3 single crystal substrate 14. At this time, an electric field is applied to one of the branch optical waveguides 13a by the metal electrodes 10a and 10b, and the refractive index changes. On the other hand, there is no change in the refractive index due to the electric field in the branch optical waveguide 13b. The light propagating through any of the branch optical waveguides is reflected by the reflecting mirror 11, propagates in the branch optical waveguide in the opposite direction, and is multiplexed again. The light intensity after multiplexing changes. Thereafter, the light is coupled to the optical fiber 16, 17 or 18 and emitted.
[0005]
The metal electrodes 10a and 10b are formed so that the sensitivity in the direction 12 perpendicular to the branch optical waveguides 13a and 13b is increased.
[0006]
Subsequently, a conventional example of an optical electric field sensor device capable of measuring electric fields in three axial directions will be described.
[0007]
When the reflection type one-axis optical electric field sensor shown in FIG. 6 (b) is arranged as shown in FIG. 6 (a), a three-axis optical electric field sensor capable of measuring electric fields in three axial directions is constructed. Can be. That is, the substrates 19a, 19b, and 19c are arranged so as to detect electric fields in the X, Y, and Z directions, respectively. As a result, the light incident from the optical fibers 16, 17, and 18 is modulated by the electric fields in the X, Y, and Z directions, and emitted.
[0008]
FIG. 5 is a block diagram showing a configuration of a conventional three-axis optical electric field sensor device. In FIG. 5, arrows in both directions indicated by solid lines indicate polarization directions, and arrows indicated in one direction indicated by broken lines indicate light traveling directions.
[0009]
The lights emitted from the light sources 61a and 61b are combined by the polarization combiner 62 so that the polarization states are orthogonal to each other, and further divided into three waves by the optical coupler 63. Thereafter, the three waves pass through the polarization-dependent optical circulators 64a, 64b, and 64c, respectively, and enter the three-axis optical electric field sensor 60. The optical signal modulated by the three-axis optical electric field sensor 60 returns to the polarization dependent optical circulators 64a, 64b, 64c again, is guided to the respective photodetectors 65a, 65b, 65c, and is converted into an electric signal.
[0010]
The X, Y, and Z components of the electric field to be measured can be obtained from the electric signals in the X, Y, and Z directions output from the photodetectors 65a, 65b, and 65c. It is obtained by synthesizing an X component, a Y component, and a Z component by calculation in a PC (personal computer) or the like.
[0011]
A three-axis optical electric field sensor device of this type is disclosed in Patent Document 1 below.
[0012]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2002-257784
[Problems to be solved by the invention]
In general, in electric field measurement in the EMC field and the like, the magnitude (electric field strength) of an electric field due to a propagating electromagnetic wave is a measurement target, and the direction of the electric field vector is often unnecessary. In such a measurement, the conventional method requires one optical coupler, three polarization-dependent optical circulators, and three photodetectors, and furthermore, a detection signal for obtaining the isotropy of the electric field detection. Needs to be calculated on a PC or the like. Therefore, for electric field measurement in the field of EMC and the like, it is important to simplify the optical electric field sensor device in order to reduce the size and cost.
[0014]
Therefore, an object of the present invention is to provide a small-sized optical electric field sensor device having a simple configuration and having isotropy of electric field detection.
[0015]
[Means for Solving the Problems]
In order to solve the above problems, the present invention has the following configurations. That is, the invention according to claim 1 relates to an optical electric field sensor device, a light source unit that generates light of a constant intensity, a demultiplexing unit that demultiplexes the light from the light source unit into three, and a substrate of an electro-optic crystal. A three-axis optical electric field sensor element in which three Mach-Zehnder interferometers each having a modulation electrode and a branch optical waveguide are arranged so as to detect electric fields in orthogonal x, y, and z-axis directions, respectively; Multiplexing means for multiplexing the three signal lights modulated by the three Mach-Zehnder interferometers, and a photodetector for converting the multiplexed signal light into an electric signal and detecting the electric signal. .
[0016]
The invention according to claim 2 relates to the optical electric field sensor device according to claim 1, wherein the demultiplexing means is a four-port polarization splitting optical circulator, and any one of the Mach-Zehnder interferometer and the four-port polarization splitting light. An optical attenuator is inserted between the circulator and a polarization combiner is inserted between the other two of the Mach-Zehnder interferometer and the four-port polarization-separating optical circulator.
[0017]
According to a third aspect of the present invention, there is provided the optical electric field sensor device according to the first or second aspect, wherein the light source unit includes two laser light sources that generate linearly polarized light orthogonal to each other and another polarization combiner. And
[0018]
The invention according to claim 4 relates to the optical electric field sensor device according to any one of claims 1 to 3, wherein the electro-optic crystal is a LiNbO 3 single crystal, and the branch optical waveguide is formed on a substrate of the LiNbO 3 single crystal. It is characterized by being formed by diffusing Ti ions.
[0019]
The invention according to claim 5 relates to the optical electric field sensor device according to claim 3, wherein the laser light source is a semiconductor laser light source.
[0020]
The invention of claim 6 relates to the optical electric field sensor device according to claim 3, wherein the laser light source is a semiconductor laser-excited Nd: YAG laser light source.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0022]
FIG. 4 is an external perspective view of the three-axis optical electric field sensor according to one embodiment of the present invention. 43 is a three-core polarization maintaining optical fiber, 42 is a non-metallic holding rod, and 41 is a sensor head. The size of this sensor head is φ12 × 35 mm, and accommodates a light modulation unit composed of a reflection type Mach-Zehnder interferometer for measuring electric fields in three axial directions.
[0023]
FIG. 2 is a sectional view of the sensor head section 41 when viewed from above. The uniaxial optical electric field sensor shown in FIG. 3 is arranged on the side surface of the support member 24 of a triangular prism having a cross section of a right isosceles triangle, so that electric fields in the x-axis, y-axis, and z-axis directions can be measured.
[0024]
Each of the uniaxial optical electric field sensors includes a Ti diffusion optical waveguide formed on a LiNbO 3 crystal substrate 32, and includes a metal electrode 35 for applying a voltage thereto, a reflection mirror 36, and a polarization maintaining optical fiber 31. It is configured. 33 is an incoming / outgoing optical waveguide, and 34a and 34b are branching optical waveguides.
[0025]
Returning to FIG. 2, description of the three-axis optical electric field sensor will be continued. Reference numeral 21 denotes a uniaxial optical electric field sensor that measures an electric field in the x-axis direction, 22 denotes a uniaxial optical electric field sensor that measures an electric field in the y-axis direction, 23 denotes a uniaxial optical electric field sensor that measures an electric field in the z-axis direction, and 25. Is a housing. Although not shown, the direction of the branch optical waveguide of each uniaxial optical electric field sensor and the direction in which the polarization maintaining optical fiber is drawn out are perpendicular to the plane of the drawing. With such a configuration, it is possible to measure electric fields in the three-dimensional orthogonal coordinate axes, x, y, and z axes.
[0026]
Next, an optical electric field sensor device according to the present embodiment will be described with reference to FIG. In FIG. 1, reference numeral 50 denotes a three-axis optical electric field sensor according to the present embodiment, 51a and 51b denote first and second light sources, 52a and 52b denote first and second polarization combiners, and 53 denotes a four-port polarizer. A wave separation optical circulator, 54 is an optical attenuator, 55 is a photodetector comprising a photodiode and an amplifier, and 56 is a polarization maintaining optical fiber. The double-headed arrows indicated by solid lines indicate polarization directions, and the one-directional arrows indicated by broken lines indicate light traveling directions.
[0027]
The wavelength of the light source used at this time is selected to be about 1.2 to 1.6 μm in consideration of the electro-optic effect and the loss in the Ti diffusion waveguide on the LiNbO 3 substrate. Further, a semiconductor laser pumped Nd: YAG laser having good RIN (relative noise intensity) characteristics and a semiconductor laser with low power consumption are suitable as the light source.
[0028]
When a semiconductor laser-pumped Nd: YAG laser is used as a light source, a laser wavelength of 1.32 μm is easily used, and when a semiconductor laser is used as a light source, a laser wavelength of 1.48 μm that provides a high output is easy to use.
[0029]
Next, the operation of the three-axis optical electric field sensor device will be described.
[0030]
The orthogonally polarized light emitted from the first and second light sources 51a and 51b is input to the port (3) and the port (2) of the polarization combiner 52a via the polarization maintaining optical fiber 56, respectively. The light beams are multiplexed so that the directions are orthogonal to each other, exit from the port (1), and enter the port (1) of the 4-port polarization split optical circulator 53.
[0031]
The light incident on the four-port polarization-separating optical circulator 53 is decomposed into vertical and horizontal polarizations, further rotated by 45 degrees in the polarization direction, and emitted from the port (4) and the port (3). .
[0032]
The light emitted from the port (3) is attenuated by the optical attenuator 54 and then enters the three-axis optical sensor 50.
[0033]
The light emitted from the port (4) is decomposed into vertical and horizontal polarized waves by the polarization combiner 52b, and is incident on the three-axis optical sensor 50.
[0034]
In this manner, the three waves incident on the three-axis optical sensor 50 are subjected to intensity modulation by the electric field to be measured, are again incident on the polarization maintaining optical fiber 56, and the path that has propagated as the outward path is used as the return path. At the port (4) and the port (3) of the four-port polarization-separating optical circulator 53. At that time, the state of polarization returning to the port (4) and the port (3) is maintained at the time of emission.
[0035]
The light that has entered the four-port polarization-separating optical circulator 53 is recombined to form a three-axis composite modulated signal. After exiting from the port (2), the light detector (O / O) passes through the polarization maintaining optical fiber 56. E converter) 55.
[0036]
In such a path of the unmodulated light and the modulated light, the optical attenuator 54 reduces the insertion loss between the light passing through the second polarization combiner 52b and the light not passing through the second polarization combiner 52b. The difference can be compensated. In addition, since the uniaxial optical electric field sensor having the same structure is used for each of the x-axis, the y-axis, and the z-axis, the magnitude (electric field intensity) of the electric field vector to be measured in all three-dimensional directions can be measured. Measurement can be performed without rotating the field sensor head. That is, the isotropy of electric field detection can be easily secured.
[0037]
Further, the optical electric field sensor device of the present embodiment is particularly suitable for measuring the electric field intensity of an electromagnetic wave propagating in an arbitrary direction in space, which is important in EMC measurement and the like.
[0038]
【The invention's effect】
As described above, according to the present invention, in the conventional example, one optical coupler, three polarization-dependent optical circulators, and three photodetectors, a total of seven blocks, are required. One circulator, one optical attenuator, and one photodetector can be used, for a total of three, and the reduction in the number of components has made it possible to reduce the size and cost of the device. Furthermore, the magnitude of the electric field intensity (isotropic data) can be immediately obtained without performing calculation processing on the PC and without rotating the sensor head of the optical electric field sensor device.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an optical electric field sensor device according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view of the sensor head of the optical electric field sensor according to the embodiment of the present invention when viewed from above.
FIG. 3 is a perspective view showing a uniaxial optical electric field sensor for detecting electric fields in x-axis, y-axis, and z-axis, which are components of the optical electric field sensor device according to one embodiment of the present invention.
FIG. 4 is an external perspective view of a three-axis optical electric field sensor according to one embodiment of the present invention.
FIG. 5 is a block diagram of a conventional three-axis optical electric field sensor device.
FIG. 6 is a diagram showing a configuration of a conventional three-axis optical electric field sensor. FIG. 6A is a perspective view showing an arrangement of three one-axis optical electric field sensors, and FIG. 6B is a perspective view showing a one-axis optical electric field sensor which is a component of the three-axis optical electric field sensor.
[Explanation of symbols]
21 Single-axis optical electric field sensor for x-axis direction 22 Single-axis optical electric field sensor for y-axis direction 23 Single-axis optical electric field sensor for z-axis direction 24 Support member 25 Housing 31, 56 Polarization maintaining optical fiber 32 LiNbO 3 crystal substrate 33 Outgoing optical waveguides 34a, 34b Branch optical waveguide 35 Metal electrode 36 Reflecting mirror 41 Sensor head 42 Non-metallic holding rod 43 Three-core polarization maintaining optical fiber 50 Three-axis optical electric field sensors 51a, 51b Light sources 52a, 52b Polarization combining Detector 53 4-port polarization splitting optical circulator 54 optical attenuator 55 photodetector

Claims (6)

一定強度の光を生成する光源部と、前記光源部からの光を3つに分波する分波手段と、電気光学結晶の基板上に変調電極と分岐光導波路とを設けてなるマッハツェンダ干渉計の3つを、それぞれ、直交するx、y、z軸方向の電界を検出するように配置してなる3軸光電界センサ素子と、前記3つのマッハツェンダ干渉計により変調された3つの信号光を合波させる合波手段と、合波された信号光を電気信号に変換して検波する光検出器とを備えることを特徴とする光電界センサ装置。A Mach-Zehnder interferometer including a light source unit that generates light of a constant intensity, a demultiplexing unit that splits the light from the light source unit into three, and a modulation electrode and a branch optical waveguide provided on an electro-optic crystal substrate. Are respectively arranged to detect electric fields in the orthogonal x, y, and z-axis directions, and three signal lights modulated by the three Mach-Zehnder interferometers are used. An optical electric field sensor device comprising: multiplexing means for multiplexing; and a photodetector for converting the multiplexed signal light into an electric signal and detecting the electric signal. 前記分波手段は4ポート偏波分離光サーキュレータであり、前記マッハツェンダ干渉計のいずれか1つと前記4ポート偏波分離光サーキュレータとの間には光アッテネータが挿入され、前記マッハツェンダ干渉計の他の2つと前記4ポート偏波分離光サーキュレータとの間には偏波合成器が挿入されたことを特徴とする請求項1記載の光電界センサ装置。The demultiplexing means is a four-port polarization-separating optical circulator, and an optical attenuator is inserted between any one of the Mach-Zehnder interferometers and the four-port polarization-separating optical circulator, and the other of the Mach-Zehnder interferometer The optical electric field sensor device according to claim 1, wherein a polarization combiner is inserted between two and the four-port polarization-separating optical circulators. 前記光源部は互いに直交する直線偏光を発生する2つのレーザ光源と他の偏波合成器とからなることを特徴とする請求項1または2記載の光電界センサ装置。3. The optical electric field sensor device according to claim 1, wherein the light source unit includes two laser light sources generating linearly polarized light orthogonal to each other and another polarization combiner. 前記電気光学結晶はLiNbO単結晶であり、前記分岐光導波路は前記LiNbO単結晶の基板上にTiイオンを拡散して形成されたことを特徴とする請求項1から3のいずれか記載の光電界センサ装置。The electro-optical crystal is a LiNbO 3 single crystal, the branched optical waveguide as claimed in any of claims 1 to 3, characterized in that it is formed by diffusing Ti ions on the substrate of the LiNbO 3 monocrystal Optical electric field sensor device. 前記レーザ光源は半導体レーザ光源であることを特徴とする請求項3記載の光電界センサ装置。The optical electric field sensor device according to claim 3, wherein the laser light source is a semiconductor laser light source. 前記レーザ光源は半導体レーザ励起のNd:YAGレーザ光源であることを特徴とする請求項3記載の光電界センサ装置。4. The optical electric field sensor device according to claim 3, wherein the laser light source is a semiconductor laser-excited Nd: YAG laser light source.
JP2003037046A 2003-02-14 2003-02-14 Photoelectric field sensor Pending JP2004245731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003037046A JP2004245731A (en) 2003-02-14 2003-02-14 Photoelectric field sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003037046A JP2004245731A (en) 2003-02-14 2003-02-14 Photoelectric field sensor

Publications (1)

Publication Number Publication Date
JP2004245731A true JP2004245731A (en) 2004-09-02

Family

ID=33021973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003037046A Pending JP2004245731A (en) 2003-02-14 2003-02-14 Photoelectric field sensor

Country Status (1)

Country Link
JP (1) JP2004245731A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006313072A (en) * 2005-05-06 2006-11-16 Seikoh Giken Co Ltd Triaxial optical field sensor
JP2007316004A (en) * 2006-05-29 2007-12-06 Seikoh Giken Co Ltd Light source device for orthogonally polarized light, and electric field sensor using the same
JP2008157817A (en) * 2006-12-25 2008-07-10 Seikoh Giken Co Ltd Orthogonal polarization light source device and electric field sensor using the same
CN105676003A (en) * 2014-12-05 2016-06-15 韩国标准科学硏究院 Electromagnetic wave power sensing apparatus and system comprising thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006313072A (en) * 2005-05-06 2006-11-16 Seikoh Giken Co Ltd Triaxial optical field sensor
JP2007316004A (en) * 2006-05-29 2007-12-06 Seikoh Giken Co Ltd Light source device for orthogonally polarized light, and electric field sensor using the same
JP2008157817A (en) * 2006-12-25 2008-07-10 Seikoh Giken Co Ltd Orthogonal polarization light source device and electric field sensor using the same
CN105676003A (en) * 2014-12-05 2016-06-15 韩国标准科学硏究院 Electromagnetic wave power sensing apparatus and system comprising thereof

Similar Documents

Publication Publication Date Title
CN105091877A (en) Rotation sensing method based on polarization state of light and optical gyroscope thereof
CN105705907A (en) Energy-efficient optic gyroscope devices
WO1995002192A1 (en) Electric field sensor
CN111337008A (en) Polarization-maintaining ASE light source with intensity noise cancellation function and fiber-optic gyroscope
JP2022544743A (en) LIDAR adapter for use with LIDAR chips
CN112066972A (en) Single-light-source dual-polarization optical fiber gyroscope
JP3952227B2 (en) Wavelength converter
JP2007078633A (en) High sensitivity three-axis photoelectric field sensor
JP2004245731A (en) Photoelectric field sensor
JP2004212137A (en) Triaxial photoelectric field sensor
JP5044100B2 (en) Electromagnetic wave measuring device, electromagnetic wave measuring probe, electromagnetic wave measuring probe array
JP3727051B2 (en) Optical electric field sensor
JP2004198461A (en) Waveguide type variable optical attenuator
JP2004212138A (en) Electric field sensing device
US20240142705A1 (en) Optical coherent imager having shared input-output path and method for sensing coherent light
JP2024505358A (en) Optical coherent imager that shares input and output paths and coherent light sensing method
JPH0464030B2 (en)
JP2010014579A (en) Optical sensor and measuring system using the same
US20240022329A1 (en) Optical transceiver with multimode interferometers
Chen et al. Research and fabrication of integrated optical chip of hybrid-integrated optical acceleration seismic geophone
Shulepov et al. Suppression of residual amplitude modulation in diffused-channel Ti: LiNbO 3 optical waveguides by changing their geometry
JP2023012760A (en) electric field sensor
JP3627204B2 (en) Electric field sensor
Kalibjian Optical-hybrid etalons for simultaneous phase-and polarization-diversity operations
JPH03506077A (en) ring interferometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060116

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081028