JP2006313072A - Triaxial optical field sensor - Google Patents

Triaxial optical field sensor Download PDF

Info

Publication number
JP2006313072A
JP2006313072A JP2005134884A JP2005134884A JP2006313072A JP 2006313072 A JP2006313072 A JP 2006313072A JP 2005134884 A JP2005134884 A JP 2005134884A JP 2005134884 A JP2005134884 A JP 2005134884A JP 2006313072 A JP2006313072 A JP 2006313072A
Authority
JP
Japan
Prior art keywords
field sensor
electric field
optical waveguide
triaxial
circuit board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005134884A
Other languages
Japanese (ja)
Inventor
Shinsuke Enomoto
真介 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seikoh Giken Co Ltd
Original Assignee
Seikoh Giken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seikoh Giken Co Ltd filed Critical Seikoh Giken Co Ltd
Priority to JP2005134884A priority Critical patent/JP2006313072A/en
Publication of JP2006313072A publication Critical patent/JP2006313072A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact triaxial optical field sensor of high sensitivity capable of enhancing spatial resolution since a separation distance is narrowed between antennas. <P>SOLUTION: This triaxial optical field sensor has a structure of arranging on respective side faces of an equilateral triangle pole base block 5 a light modulator part 1 comprising a Mach-Zehnder interferometer for measuring orthogonal triaxial-directional electric fields, and a uniaxial optical field sensor comprising a metal antenna electrode 3 formed on a printed board, and is arranged in structure with a field detecting direction of the antenna tilted by about 54.7°with respect to a direction of a branched optical waveguide, and with the printed board 2 crossed three-dimensionally with the adjacent printed board 2 to detect the triaxial-directional electric fields orthogonal to each other. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電気光学効果を利用して電界を測定する光電界センサに係り、特に、直交する3軸方向の電界強度およびその3軸方向の各電界強度の合成計算により求まる総電界強度の測定に好適な3軸光電界センサに関する。   The present invention relates to an optical electric field sensor that measures an electric field by utilizing an electro-optic effect, and in particular, measurement of electric field strength in three orthogonal axis directions and total electric field strength obtained by a combined calculation of the electric field strengths in the three axis directions. The present invention relates to a three-axis optical electric field sensor suitable for.

電気光学効果を利用した干渉型光導波路を用いた光電界センサは、次のような優れた性質を有する。
(1)アンテナを除いて金属部をほとんど持たないために被測定電界を乱さない。
(2)光ファイバで検出信号を伝送するので途中で誘導や電気的雑音の影響を受けない。
(3)結晶の電気光学効果を利用するので高速応答が可能で、その検出信号をそのまま少ない損失で伝送できる。
(4)センサ部に電源を必要としない。
このような特質から光電界センサは、EMC分野などの広範な電界測定に用いられる。
An optical electric field sensor using an interference optical waveguide utilizing the electro-optic effect has the following excellent properties.
(1) Since there is almost no metal part except the antenna, the electric field to be measured is not disturbed.
(2) Since the detection signal is transmitted through an optical fiber, it is not affected by guidance or electrical noise on the way.
(3) Since the electro-optic effect of the crystal is used, high-speed response is possible, and the detection signal can be transmitted as it is with little loss.
(4) No power is required for the sensor unit.
Due to these characteristics, the optical electric field sensor is used for a wide range of electric field measurements in the EMC field.

従来の直交する3軸方向の電界を検出する3軸光電界センサには光変調電極と電界検出用アンテナ電極を一体化した金属電極を電気光学基板上に配した1軸光電界センサ3個を正三角柱の各側面に配置したものがある(特許文献1参照)。   A conventional triaxial optical electric field sensor for detecting electric fields in three orthogonal directions is composed of three uniaxial optical electric field sensors each having a metal electrode on which an optical modulation electrode and an antenna electrode for electric field detection are integrated on an electro-optic substrate. Some are arranged on each side of a regular triangular prism (see Patent Document 1).

以下、図4、図5および図6を用いて従来の3軸光電界センサについて説明する。図4は、従来の3軸光電界センサに使用される1軸方向の電界を測定する反射型1軸光電界センサの構造を示す斜視図である。図5は、従来の3軸光電界センサの構造を示す斜視図である。図6は、従来の3軸光電界センサを上方から見た断面図である。   Hereinafter, a conventional three-axis optical electric field sensor will be described with reference to FIGS. 4, 5, and 6. FIG. 4 is a perspective view showing the structure of a reflective uniaxial optical electric field sensor used to measure a uniaxial electric field used in a conventional triaxial optical electric field sensor. FIG. 5 is a perspective view showing the structure of a conventional triaxial optical electric field sensor. FIG. 6 is a cross-sectional view of a conventional triaxial optical electric field sensor as viewed from above.

図4に示すように、光ファイバ4から入射した光は電気光学結晶基板であるLiNbO3基板6上の光導波路7を経て、2本の分岐光導波路8aおよび8bに分岐される。金属電極9により一方の分岐光導波路8aに電界を印加すると、その分岐光導波路8aに屈折率変化が生じるのに対して、分岐光導波路8bに電界による屈折率変化は生じない。いずれの分岐光導波路を伝播する光も反射ミラー10によって反射され、分岐光導波路を逆方向に伝播し、再び合波される。その後、合波光は光ファイバ4に出射し、光検出器に導かれ電気信号に変換される。2つの光路の屈折率差により生じた位相差に応じて、合波後の光強度は変化する。この光強度変化は、被検出電界の強度変化に相当する。 As shown in FIG. 4, the light incident from the optical fiber 4 is branched into two branched optical waveguides 8a and 8b through an optical waveguide 7 on a LiNbO 3 substrate 6 which is an electro-optic crystal substrate. When an electric field is applied to one branched optical waveguide 8a by the metal electrode 9, a refractive index change occurs in the branched optical waveguide 8a, whereas a refractive index change due to the electric field does not occur in the branched optical waveguide 8b. Light propagating through any of the branch optical waveguides is reflected by the reflection mirror 10, propagates in the opposite direction through the branch optical waveguide, and is multiplexed again. Thereafter, the combined light is emitted to the optical fiber 4, guided to the photodetector, and converted into an electrical signal. The combined light intensity changes according to the phase difference caused by the refractive index difference between the two optical paths. This change in light intensity corresponds to a change in the intensity of the detected electric field.

分岐光導波路8aおよび8bに対し54.7°傾いた電界検出方向の感度が高い電界検出アンテナになるように金属電極9が形成される。次に、図4に示した反射型1軸光電界センサを図5に示すように正三角柱固定基台の各側面に配置することで、直交する3軸方向の電界を測定できる3軸光電界センサを作製する。図6に示すように、構造上、正三角柱断面の各辺の長さと比較して1軸光電界センサの幅が同じか、あるいは短くなっているのがわかる。   The metal electrode 9 is formed so as to be an electric field detection antenna having high sensitivity in the electric field detection direction inclined by 54.7 ° with respect to the branched optical waveguides 8a and 8b. Next, by arranging the reflective uniaxial optical electric field sensor shown in FIG. 4 on each side surface of the equilateral triangular prism fixed base as shown in FIG. 5, a triaxial optical electric field that can measure electric fields in three orthogonal directions. Create a sensor. As shown in FIG. 6, it can be seen that the width of the uniaxial optical electric field sensor is the same or shorter than the length of each side of the regular triangular prism section due to the structure.

特開2004−219088号公報Japanese Patent Laid-Open No. 2004-219088

光電界センサの感度を上げるには、アンテナ長を長くすることが最も簡単な方法である。上述した特許文献1の3軸方向の電界測定用光電界センサは、光変調電極と電界測定用アンテナが電気光学結晶基板上に一体化して形成しているので、アンテナ長を長くして高感度化すると、下地となる電気光学結晶基板もアンテナ長に合わせて大きくする必要があった。しかしながら、電気光学結晶を大きくすると各軸間のアンテナ中心までの距離が長くなり、3次元の測定分解能が悪くなるという問題があった。また、LiNbO3、LiTaO3といった光変調用の電気光学結晶基板は誘電率が高いので、基板を大きくすると被測定電界に与える影響が無視できないという問題があった。さらに、電気光学結晶基板は複雑な形状への加工は困難で高価である。したがって、電気光学結晶基板は可能な限り小さく、加工形状が簡素である方がコスト的に良い。また、できるだけ湿度変化に強い構造の3軸光電界センサが求められていた。 The easiest way to increase the sensitivity of the optical electric field sensor is to increase the antenna length. In the above-described triaxial electric field measurement optical electric field sensor disclosed in Patent Document 1, the optical modulation electrode and the electric field measurement antenna are integrally formed on the electro-optic crystal substrate. In this case, the electro-optic crystal substrate serving as a base has to be increased in accordance with the antenna length. However, when the electro-optic crystal is enlarged, there is a problem that the distance to the center of the antenna between the axes becomes longer and the three-dimensional measurement resolution is deteriorated. Further, since the electro-optic crystal substrate for light modulation such as LiNbO 3 and LiTaO 3 has a high dielectric constant, there is a problem that the influence on the electric field to be measured cannot be ignored when the substrate is enlarged. Furthermore, the electro-optic crystal substrate is difficult and expensive to process into a complicated shape. Therefore, it is better in terms of cost if the electro-optic crystal substrate is as small as possible and the processing shape is simple. In addition, a three-axis optical electric field sensor having a structure resistant to humidity change as much as possible has been demanded.

本発明は、上述した問題点を解決すべくなされたもので、その技術課題は、高感度、小型で、空間分解能の高い、湿度変化に強い構造の3軸光電界センサを提供することである。   The present invention has been made to solve the above-mentioned problems, and a technical problem thereof is to provide a three-axis optical electric field sensor having a high sensitivity, a small size, a high spatial resolution, and a structure resistant to humidity change. .

上記目的を達成するための第1の発明は、分岐光導波路、並びにアンテナ取り付け電極および変調電極からなる金属電極が電気光学結晶基板上に形成された分岐光導波路型マッハツェンダ干渉計を3個備えて、互いに直交する3軸方向の電界を検出する3軸光電界センサにおいて、前記分岐光導波路と同方向に長手方向を有するプリント基板上に前記分岐光導波路の方向から略54.7°傾いた方向に金属アンテナが形成され、前記プリント基板の形状は矩形の対角線上の2隅にそれぞれ長方形状の切り欠き部が設けられ、前記切り欠き部のそれぞれの前記長手方向の長さは対角線上の他の切り欠き部の形成によって相対的に突出した凸部の前記長手方向の長さよりも大きく、かつ前記金属アンテナは前記矩形の全幅にわたって形成され、前記分岐光導波路型マッハツェンダ干渉計は正三角柱基台の3つの側面にそれぞれ配置され、前記プリント基板の前記切り欠き部と隣接するプリント基板の前記凸部が立体的に交差するように配置された3軸光電界センサである。   The first invention for achieving the above object comprises three branched optical waveguide type Mach-Zehnder interferometers in which a branched optical waveguide and a metal electrode comprising an antenna mounting electrode and a modulation electrode are formed on an electro-optic crystal substrate. In a three-axis optical electric field sensor for detecting electric fields in three axial directions orthogonal to each other, a direction inclined approximately 54.7 ° from the direction of the branch optical waveguide on a printed circuit board having a longitudinal direction in the same direction as the branch optical waveguide A metal antenna is formed on the printed circuit board, and the printed circuit board has rectangular cutouts at two corners on a rectangular diagonal line, and the lengths of the cutout parts in the longitudinal direction are the other diagonal lines. The length of the projecting portion that protrudes relatively by the formation of the notch portion is longer than the length in the longitudinal direction, and the metal antenna is formed over the entire width of the rectangle. The branched optical waveguide type Mach-Zehnder interferometers are arranged on three side surfaces of the regular triangular prism base, respectively, and are arranged so that the notches of the printed circuit board and the convex parts of the adjacent printed circuit board intersect three-dimensionally. This is an axial optical electric field sensor.

上記目的を達成するための第2の発明は、前記分岐光導波路型マッハツェンダ干渉計は、入出力を共通にし、反射型にした3軸光電界センサである。   A second invention for achieving the above object is a three-axis optical electric field sensor in which the branched optical waveguide type Mach-Zehnder interferometer has a common input and output and is a reflection type.

上記目的を達成するための第3の発明は、前記分岐光導波路型マッハツェンダ干渉計を真空封止する容器を備えてなる3軸光電界センサである。   A third invention for achieving the above object is a three-axis optical electric field sensor including a container for vacuum-sealing the branched optical waveguide type Mach-Zehnder interferometer.

本発明によれば、分岐光導波路、並びにアンテナ取り付け電極および変調電極からなる金属電極が電気光学結晶基板上に形成された分岐光導波路型マッハツェンダ干渉計を3個備えて、互いに直交する3軸方向の電界を検出する3軸光電界センサにおいて、プリント基板の主面の上部側は、前記分岐光導波路の方向を中心として左側に幅広部があり、前記プリント基板の主面の下部側は、前記分岐光導波路の方向を中心として右側に幅広部がある鉤状の形状のプリント基板上に形成された金属アンテナからなる1軸光電界センサを前記金属アンテナが前記分岐光導波路の方向から略54.7°傾いた互いに直交する3軸方向の電界を検出できるように正三角柱基台の3つの側面に配置し、隣接するプリント基板を立体的に互いに交差させることで、極めて簡単で小型の構造の3軸光電界センサを実現し、3軸間の距離を狭めることができるので、3軸光電界センサの空間分解能を高くできる。また、分岐光導波路型マッハツェンダ干渉計は、入出力を共通にし、反射型にしたことでより小型の3軸光電界センサを実現できる。更に、真空封止するガラス製容器からなる光変調基部を備えることで湿度変化に変化に強い3軸光電界センサを実現できる。   According to the present invention, three branch optical waveguide type Mach-Zehnder interferometers in which a branch optical waveguide and a metal electrode composed of an antenna mounting electrode and a modulation electrode are formed on an electro-optic crystal substrate are provided, and the three axial directions are orthogonal to each other. In the three-axis optical electric field sensor for detecting the electric field, the upper side of the main surface of the printed circuit board has a wide portion on the left side with respect to the direction of the branch optical waveguide, and the lower side of the main surface of the printed circuit board is A uniaxial optical electric field sensor made of a metal antenna formed on a printed circuit board having a bowl-like shape with a wide portion on the right side with respect to the direction of the branch optical waveguide. It is placed on the three sides of the equilateral triangular prism base so that it can detect electric fields in three axes perpendicular to each other at an angle of 7 °. In, to achieve 3-axis optical electric field sensor of a very simple and compact construction, it is possible to narrow the distance between the three axes, it can increase the spatial resolution of the three-axis optical field sensor. Further, the branch optical waveguide type Mach-Zehnder interferometer can realize a smaller three-axis optical electric field sensor by making the input / output common and making it a reflection type. Furthermore, a three-axis optical electric field sensor that is resistant to changes in humidity can be realized by providing a light modulation base made of a glass container to be vacuum-sealed.

その結果、高感度、小型で、空間分解能の高い、湿度変化に強い構造の3軸光電界センサの提供が可能となる。   As a result, it is possible to provide a three-axis optical electric field sensor having a high sensitivity, a small size, a high spatial resolution, and a structure resistant to humidity change.

本発明を実施するための最良の形態について、以下に図面を参照して説明する。図1は、本発明を実施するための最良の形態に係る1軸光電界センサを示す斜視図である。図2は、本発明を実施するための最良の形態に係る3軸光電界センサを示す模式的斜視図である。図3は、本発明を実施するための最良の形態に係る3軸光電界センサの上面から見た断面図である。   The best mode for carrying out the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view showing a uniaxial optical electric field sensor according to the best mode for carrying out the present invention. FIG. 2 is a schematic perspective view showing a three-axis optical electric field sensor according to the best mode for carrying out the present invention. FIG. 3 is a cross-sectional view of the triaxial optical electric field sensor according to the best mode for carrying out the present invention as seen from the upper surface.

本発明を実施するための最良の形態に係る1軸光電界センサはLiNbO3などの電気光学基板上に作製されたTi拡散導波路とそこに電圧を印加する金属電極と反射ミラーと光ファイバを備えて構成されるマッハツェンダ干渉計、アンテナ電極を配したプリント基板およびマッハツェンダ干渉計を真空封止するガラス製容器12(図3参照)から構成される。 A uniaxial optical electric field sensor according to the best mode for carrying out the present invention includes a Ti diffusion waveguide fabricated on an electro-optic substrate such as LiNbO 3, a metal electrode for applying a voltage thereto, a reflection mirror, and an optical fiber. It comprises a Mach-Zehnder interferometer configured and a printed circuit board on which an antenna electrode is arranged and a glass container 12 (see FIG. 3) for vacuum-sealing the Mach-Zehnder interferometer.

図1に示すように、1はマッハツェンダ干渉計、2はプリント基板で、3はプリント基板上に形成された金属アンテナ電極で、4は光ファイバである。金属のアンテナ電極パターンは、3軸光電界センサの構成に用いる正3角柱基台上の分岐光導波路の方向に対して略54.7°傾いた方向に伸びた形状に作製され、この検出方向で最大感度になる。プリント基板は、プリント基板の主面の上部側は、分岐光導波路の方向を中心として左側に幅広部があり、プリント基板の主面の下部側は、分岐光導波路の方向を中心として右側に幅広部がある2つの鉤を合わせた形状で、3軸光電界センサを構成する際に隣り合うプリント基板と金属アンテナの中心を境として立体的に交差する形状で作製される。   As shown in FIG. 1, 1 is a Mach-Zehnder interferometer, 2 is a printed circuit board, 3 is a metal antenna electrode formed on the printed circuit board, and 4 is an optical fiber. The metal antenna electrode pattern is formed in a shape extending in a direction inclined approximately 54.7 ° with respect to the direction of the branched optical waveguide on the regular triangular prism base used for the configuration of the triaxial optical electric field sensor. At maximum sensitivity. In the printed circuit board, the upper side of the main surface of the printed circuit board has a wide portion on the left side about the direction of the branch optical waveguide, and the lower side of the main surface of the printed circuit board is wide on the right side about the direction of the branch optical waveguide. When a three-axis optical electric field sensor is formed, the shape is formed by combining two ridges with a portion, and is formed in a shape that three-dimensionally intersects with the adjacent printed circuit board and the center of the metal antenna as a boundary.

図2に示すように、正三角柱基台5の各側面には、図1で示した1軸光電界センサを配置する。図3および図4に示すように、3つの1軸光電界センサの電界検出方向は互いに直交する方位となる。   As shown in FIG. 2, the uniaxial optical electric field sensor shown in FIG. 1 is arranged on each side of the regular triangular prism base 5. As shown in FIGS. 3 and 4, the electric field detection directions of the three uniaxial optical electric field sensors are orthogonal to each other.

このように、本発明を実施するための最良の形態に係る3軸光電界センサは、プリント基板の主面の上部側は、分岐光導波路の方向を中心として左側に幅広部があり、プリント基板の主面の下部側は、分岐光導波路の方向を中心として右側に幅広部がある鉤状の形状のプリント基板上に形成された金属アンテナからなる1軸光電界センサを金属アンテナが分岐光導波路の方向から略54.7°傾いた互いに直交する3軸方向の電界を検出できるように正三角柱基台の3つの側面に配置し、隣接するプリント基板を立体的に互いに交差させることで、極めて簡単で小型の構造の3軸光電界センサを実現する。3軸間の距離を狭めることができるので、3軸光電界センサの空間分解能を高くできる。また、分岐光導波路型マッハツェンダ干渉計は、入出力を共通にし、反射型にしたことでより小型の3軸光電界センサを実現できる。更に、真空封止するガラス製容器からなる光変調基部を備えることで湿度変化に変化に強い3軸光電界センサを実現できる。   As described above, the triaxial optical electric field sensor according to the best mode for carrying out the present invention has a wide portion on the left side with respect to the direction of the branched optical waveguide on the upper side of the main surface of the printed circuit board. The lower side of the main surface is a uniaxial optical electric field sensor composed of a metal antenna formed on a printed circuit board having a bowl-like shape with a wide portion on the right side with respect to the direction of the branch optical waveguide. By arranging the three sides of the equilateral triangular prism base so as to detect electric fields in three axis directions perpendicular to each other inclined approximately 54.7 ° from the direction of the A triaxial optical electric field sensor having a simple and small structure is realized. Since the distance between the three axes can be reduced, the spatial resolution of the three-axis optical electric field sensor can be increased. Further, the branch optical waveguide type Mach-Zehnder interferometer can realize a smaller three-axis optical electric field sensor by making the input / output common and making it a reflection type. Furthermore, a three-axis optical electric field sensor that is resistant to changes in humidity can be realized by providing a light modulation base made of a glass container to be vacuum-sealed.

その結果、高感度、小型で、空間分解能の高い、湿度変化に強い構造の従来の3軸光電界センサのようにアンテナ長を長くして高感度化する手法をとらない3軸光電界センサの提供が可能となる。   As a result, a three-axis optical electric field sensor that does not take a method of increasing the sensitivity by increasing the antenna length like a conventional three-axis optical electric field sensor having a high sensitivity, a small size, a high spatial resolution, and a structure resistant to humidity change. Provision is possible.

本発明を実施するための最良の形態に係る1軸光電界センサを示す正面図。The front view which shows the uniaxial optical electric field sensor which concerns on the best form for implementing this invention. 本発明を実施するための最良の形態に係る3軸光電界センサを示す模式的斜視図。1 is a schematic perspective view showing a triaxial optical electric field sensor according to the best mode for carrying out the present invention. 本発明を実施するための最良の形態に係る3軸光電界センサの上面から見た断面図。Sectional drawing seen from the upper surface of the triaxial optical electric field sensor which concerns on the best form for implementing this invention. 従来の3軸光電界センサに使用される1軸方向の電界を測定する反射型1軸光電界センサの構造を示す斜視図。The perspective view which shows the structure of the reflection type uniaxial optical electric field sensor which measures the electric field of the uniaxial direction used for the conventional triaxial optical electric field sensor. 従来の3軸光電界センサを示す斜視図。The perspective view which shows the conventional triaxial optical electric field sensor. 従来の3軸光電界センサを上方から見た断面図。Sectional drawing which looked at the conventional triaxial optical electric field sensor from upper direction.

符号の説明Explanation of symbols

1 光変調器部
2 プリント基板
3 金属アンテナ電極
4 光ファイバ
5 正三角柱基台
6 LiNbO3基板
7 光導波路
8a,8b 分岐光導波路
9 金属電極
10 反射ミラー
11 1軸光電界センサ
1 the optical modulator unit 2 printed circuit board 3 metal antenna electrode 4 optical fiber 5 regular triangular prism base 6 LiNbO 3 substrate 7 waveguide 8a, 8b branching optical waveguide 9 metal electrode 10 reflecting mirror 11 one-axis light field sensor

Claims (3)

分岐光導波路、並びにアンテナ取り付け電極および変調電極からなる金属電極が電気光学結晶基板上に形成された分岐光導波路型マッハツェンダ干渉計を3個備えて、互いに直交する3軸方向の電界を検出する3軸光電界センサにおいて、前記分岐光導波路と同方向に長手方向を有するプリント基板上に前記分岐光導波路の方向から略54.7°傾いた方向に金属アンテナが形成され、前記プリント基板の形状は矩形の対角線上の2隅にそれぞれ長方形状の切り欠き部が設けられ、前記切り欠き部のそれぞれの前記長手方向の長さは対角線上の他の切り欠き部の形成によって相対的に突出した凸部の前記長手方向の長さよりも大きく、かつ前記金属アンテナは前記矩形の全幅にわたって形成され、前記分岐光導波路型マッハツェンダ干渉計は正三角柱基台の3つの側面にそれぞれ配置され、前記プリント基板の前記切り欠き部と隣接するプリント基板の前記凸部が立体的に交差するように配置されたことを特徴とする3軸光電界センサ。   Three branch optical waveguide type Mach-Zehnder interferometers each having a branch optical waveguide and a metal electrode composed of an antenna mounting electrode and a modulation electrode formed on an electro-optic crystal substrate are provided to detect electric fields in three axial directions orthogonal to each other. In the axial optical electric field sensor, a metal antenna is formed on a printed circuit board having a longitudinal direction in the same direction as the branched optical waveguide in a direction inclined approximately 54.7 ° from the direction of the branched optical waveguide, and the shape of the printed circuit board is A rectangular cutout is provided at each of two corners of the rectangular diagonal, and the length of each of the cutouts in the longitudinal direction is relatively convex due to the formation of the other cutout on the diagonal. The metal antenna is formed over the entire width of the rectangle, and the branched optical waveguide type Mach-Zehnder interferometer is A triaxial optical electric field sensor, which is arranged on each of three side surfaces of a triangular prism base, and is arranged so that the notch portion of the printed circuit board and the convex portion of the adjacent printed circuit board intersect three-dimensionally. . 前記分岐光導波路型マッハツェンダ干渉計は、入出力を共通にし、反射型にしたことを特徴とする請求項1記載の3軸光電界センサ。   2. The three-axis optical electric field sensor according to claim 1, wherein the branched optical waveguide type Mach-Zehnder interferometer is a reflection type with a common input / output. 前記分岐光導波路型マッハツェンダ干渉計を真空封止する容器を備えてなる請求項1又は請求項2記載の3軸光電界センサ。   The triaxial optical electric field sensor according to claim 1 or 2, further comprising a container for vacuum-sealing the branched optical waveguide type Mach-Zehnder interferometer.
JP2005134884A 2005-05-06 2005-05-06 Triaxial optical field sensor Pending JP2006313072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005134884A JP2006313072A (en) 2005-05-06 2005-05-06 Triaxial optical field sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005134884A JP2006313072A (en) 2005-05-06 2005-05-06 Triaxial optical field sensor

Publications (1)

Publication Number Publication Date
JP2006313072A true JP2006313072A (en) 2006-11-16

Family

ID=37534622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005134884A Pending JP2006313072A (en) 2005-05-06 2005-05-06 Triaxial optical field sensor

Country Status (1)

Country Link
JP (1) JP2006313072A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105067897A (en) * 2015-07-17 2015-11-18 李俊杰 Triangular pyramid-shaped three-dimensional pulsed electric field measurement device and method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57187690A (en) * 1981-05-14 1982-11-18 Westinghouse Electric Corp Fuel rod supporting lattice
JP2002031659A (en) * 2000-07-17 2002-01-31 Tokin Corp Photoelectric field sensor
JP2004053954A (en) * 2002-07-19 2004-02-19 Mitsui Chemicals Inc Waveguide type optical device
JP2004212137A (en) * 2002-12-27 2004-07-29 Nec Tokin Corp Triaxial photoelectric field sensor
JP2004219088A (en) * 2003-01-09 2004-08-05 Nec Tokin Corp Triaxial optical field sensor element
JP2004245731A (en) * 2003-02-14 2004-09-02 Nec Tokin Corp Photoelectric field sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57187690A (en) * 1981-05-14 1982-11-18 Westinghouse Electric Corp Fuel rod supporting lattice
JP2002031659A (en) * 2000-07-17 2002-01-31 Tokin Corp Photoelectric field sensor
JP2004053954A (en) * 2002-07-19 2004-02-19 Mitsui Chemicals Inc Waveguide type optical device
JP2004212137A (en) * 2002-12-27 2004-07-29 Nec Tokin Corp Triaxial photoelectric field sensor
JP2004219088A (en) * 2003-01-09 2004-08-05 Nec Tokin Corp Triaxial optical field sensor element
JP2004245731A (en) * 2003-02-14 2004-09-02 Nec Tokin Corp Photoelectric field sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105067897A (en) * 2015-07-17 2015-11-18 李俊杰 Triangular pyramid-shaped three-dimensional pulsed electric field measurement device and method

Similar Documents

Publication Publication Date Title
US5289256A (en) Integrated-optics expansion interferometer in an extension-metrological neutral environment
KR100220289B1 (en) Electric field sensor
EP0668507B1 (en) Electric field sensor
EP2839334A1 (en) Electro-optic modulator and electro-optic distance-measuring device
TW201802441A (en) Temperature measurement substrate and temperature measurement system
JP2007057324A (en) Fiber optic measuring system
JP3253621B2 (en) Method and sensor for measuring voltage and / or electric field strength
JP2007078633A (en) High sensitivity three-axis photoelectric field sensor
JP3720327B2 (en) 3-axis optical electric field sensor
JP3727051B2 (en) Optical electric field sensor
JP2006313072A (en) Triaxial optical field sensor
JP2009036767A (en) Device and method for detecting harmful substance
US11125943B2 (en) Optical modulator and optical measurement apparatus
JP2004219088A (en) Triaxial optical field sensor element
JPS61239132A (en) Optical waveguide type pressure sensor
KR101056275B1 (en) Polymer waveguide optical current sensors with output power tapping
EP3798612A1 (en) Apparatus for exploring an optical property of a sample
JPH05312844A (en) Electric field measuring method
JP2004245731A (en) Photoelectric field sensor
JPH0464030B2 (en)
JP3661869B2 (en) Photoelectric magnetic field sensor and photoelectric magnetic field detection device
JP2008298523A (en) Optical voltage probe and voltage-measuring method using the optical voltage probe
JPH0684884B2 (en) Waveguide optical displacement sensor
JP3627204B2 (en) Electric field sensor
JPH07159114A (en) Microdisplacement gage

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060822

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110426