JP3720327B2 - 3-axis optical electric field sensor - Google Patents

3-axis optical electric field sensor Download PDF

Info

Publication number
JP3720327B2
JP3720327B2 JP2002380296A JP2002380296A JP3720327B2 JP 3720327 B2 JP3720327 B2 JP 3720327B2 JP 2002380296 A JP2002380296 A JP 2002380296A JP 2002380296 A JP2002380296 A JP 2002380296A JP 3720327 B2 JP3720327 B2 JP 3720327B2
Authority
JP
Japan
Prior art keywords
optical
electric field
field sensor
light
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002380296A
Other languages
Japanese (ja)
Other versions
JP2004212137A (en
Inventor
良和 鳥羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2002380296A priority Critical patent/JP3720327B2/en
Publication of JP2004212137A publication Critical patent/JP2004212137A/en
Application granted granted Critical
Publication of JP3720327B2 publication Critical patent/JP3720327B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光を用いて電界の測定を行う光電界センサに係り、特に、3軸方向の電界の測定に好適な3軸光電界センサに関する。
【0002】
【従来の技術】
電気光学効果を利用した干渉型光導波路を用いた光電界センサは、以下のような優れた特質を持っている。すなわち、金属部をほとんど持たないために被測定電界を乱さないこと、光ファイバで検出信号を伝送するので途中で誘導や電気的雑音の影響を受けないこと、結晶の電気光学効果を利用するので、高速応答が可能であり、かつその検出信号をそのまま少ない損失で伝送できること、センサ部に電源を必要としないことである。このような特質のゆえに光電界センサは、EMC分野などの広範な電界測定に用いられている。
【0003】
従来例としての3軸方向の電界を測定できる光電界センサを図5に基づいて説明する。光源1から出射した直線偏光の光は偏波保持ファイバ4、光サーキュレータ7、および偏波保持ファイバ10を経て、3軸光電界センサヘッド13に入射し、被測定電界による強度変調を受けて、再び、偏波保持ファイバ10に入射する。その後、変調された光は光サーキュレータ7を経て、シングルモード光ファイバ14を介して、O/E変換器17に入射し、電気信号に変換される。
【0004】
他の2軸方向の電界に対しては、図5に示すように、それぞれのセンシング系を有し、その構成は、第1の軸方向と同様である。なお、第2の軸方向の電界に対しては、光源2、偏波保持ファイバ5、光サーキュレータ8、偏波保持ファイバ11、3軸光電界センサヘッド13、シングルモード光ファイバ15、およびO/E変換器18によってセンシング系が構成されている。また、第3の軸方向の電界に対しては、光源3、偏波保持ファイバ6、光サーキュレータ9、偏波保持ファイバ12、3軸光電界センサヘッド13、シングルモード光ファイバ16、およびO/E変換器19によってセンシング系が構成されている。この構成により、直交3軸方向の電界を測定することができる。
【0005】
このような3軸光電界センサは次の特許文献1に開示されている。
【0006】
【特許文献1】
特開2002−257884号公報
【0007】
【発明が解決しようとする課題】
上述の3軸光電界センサは、光源、光サーキュレータ、O/E変換器が3軸独立していることから高価な装置であった。
【0008】
そこで、本発明は、部品点数を削減し、低コストの3軸電界センサを提供することを課題とする。
【0009】
【課題を解決するための手段】
上記目的を達成するために、本発明の3軸光電界センサは、電界を捉える3つのアンテナと、該アンテナと対をなし前記電界により光に強度変調を施す3つの光変調器と、無変調光を発生する光源と、該光源から光サーキュレータを介して供給された光の光路を切替える光スイッチと、該光スイッチの出力光を伝送して前記3つの光変調器の1つに選択的に供給すると共に、該光変調器から出力された変調光を伝送して前記光スイッチに逆方向から入力する光ファイバと、前記光スイッチおよび前記光サーキュレータを介して入力された変調光を電気信号に変換するO/E変換器とを備える3軸光電界センサであって、前記3つの光変調器が正三角柱状に配置され、前記光変調器は電気光学効果を有する基板と該基板上に形成された干渉型の光導波路と該光導波路の近傍に設けられた変調電極からなり、各々の前記変調電極のパターンが前記正三角柱の側面上において正三角柱の軸方向と54.7度をなす方向に形成され、前記変調電極が前記アンテナの機能を有することを特徴とする。
【0011】
また、前記光源は、発振周波数がわずかに異なり、互いに直交する2つの直線偏波を出力するレーザ光源とすることができる。
【0012】
そして、前記光サーキュレータは偏波無依存型とすることができる。
【0013】
【発明の実施の形態】
次に、図1から図4に基づいて、本発明の実施の形態を説明する。
【0014】
図2は、本発明の一実施の形態における3軸センサヘッドの外観斜視図である。22は3芯シングルモード光ファイバ、21は非金属の保持ロッド、20は3軸センサ部である。この3軸センサ部の大きさはφ12×35mmであり、3軸方向の電界を測定する反射型マッハツェンダ干渉計から成る光変調部が収められている。
【0015】
上記3軸センサ部20を上面から見たときの断面図を図3に示す。正三角柱の支持部材23の側面に、互いに直交する、x軸、y軸、およびz軸方向の電界を測定する光変調器が配置されている。24はx軸方向の電界を測定する1軸光変調器、25はy軸方向の電界を測定する1軸光変調器、26はz軸方向の電界を測定する1軸光変調器、19はハウジングである。このような構成により、3次元直交座標軸、x、y、z軸方向の電界測定が可能になる。
【0016】
ここで用いる1軸光変調器は、いずれもLiNbO3基板上に作製されたTi拡散導波路と、そこに電圧を印加する金属電極と反射ミラーとシングルモード光ファイバを備えて構成されている。
【0017】
図4を用いて、x軸、y軸またはz軸方向の電界を測定する本実施の形態の1軸光変調器について説明する。27はシングルモード光ファイバ、28はLiNbO基板、29は光導波路、30a、30bは分岐光導波路、31は金属電極(アンテナ)、32は反射ミラーである。
【0018】
金属電極(アンテナ)31は、三角形の金属膜の組み合わせにより形成され、矢印で示す方向(光導波路に対し54.7度の方向)の電界によって誘起された電圧を分岐光導波路30bに印加するように、そのパターンが決められる。そうすると、図3に示すような正三角柱の側面に、3つの光変調器の導波路方向が図3の紙面に垂直になるように配置することにより、直交3軸方向の電界を測定することができる。
【0019】
この様子をさらに説明する。正三角柱の1つの側面上において中心軸に平行な辺と54.7°の角度をなす直線は、他の2つの側面における対応する2つの直線と、互いに直交している。従って、この3直線方向の電界測定によって、直交3軸方向の電界測定が可能となる。
【0020】
次に、図1を参照して、本実施の形態の3軸光電界センサについて説明する。20は本実施の形態の3軸センサ部、33は発振周波数がわずかに異なり、互いに直交する2つの直線偏波を出力する光源、34は偏波無依存型の光サーキュレータ、35は光スイッチ、36は伝送シングルモード光ファイバ、37はフォトダイオードとアンプからなるO/E変換器である。
【0021】
このとき用いる光源の波長は、LiNbO基板上のTi拡散導波路における電気光学効果とロスを考慮して、1.2〜1.6μm程度の波長が選ばれる。また、RIN(相対雑音強度)特性の良い半導体レーザ励起Nd:YAGレーザや低消費電力の半導体レーザが光源として適している。
【0022】
半導体レーザ励起のNd:YAGレーザを光源に用いる場合には、1.32μmのレーザ波長が、そして半導体レーザを光源に用いる場合には、高出力が得られる1.55μmのレーザ波長が使いやすい。
【0023】
次に、この電界センサの動作について説明する。光源33から出射して発振波長がわずかに異なり互いに直交する2つの直線偏波の光は、シングルモード光ファイバ38、光サーキュレータ34、光スイッチ35、および伝送シングルモード光ファイバ36を経て、3軸センサ部20に入射し、被測定電界による強度変調を受けて、再び、伝送シングルモード光ファイバ36に入射する。その後、変調された光は光スイッチ35、光サーキュレータ34を経て、O/E変換器37に入射し、電気信号に変換される。
【0024】
他の2軸方向に対しては、光スイッチ35により光路を切り替えることにより第1の軸方向と同様の動作が行われる。
【0025】
このような構成により、本実施の形態の電界センサ装置は、光変調器のスイッチングによる軸の選択により3軸方向の電界をそれぞれ測定することが可能となった。
【0026】
本発明の3軸光電界センサにおいては、互いに直交する2つの直線偏波を出力する光源を用いることにより光変調器の偏波依存性を実質的に解消することができる。それに伴い、光スイッチング方式あるいは光伝送路の偏波無依存化が可能となり、その結果、汎用光部品を使用できるようになった。また、ほぼ1軸センサと同様な部品構成が可能となり、実用性の高い3軸光電界センサが実現できた。
【0027】
【発明の効果】
上述のように、本発明によれば、部品点数が削減され、低価格でかつ3軸方向の電界測定が可能な3軸光電界センサを提供することができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態における3軸光電界センサの構成を示す図。
【図2】本発明の一実施の形態における3軸センサヘッドの外観斜視図。
【図3】本発明の一実施の形態における3軸センサ部を上面から見たときの断面図。
【図4】本発明の一実施の形態における3軸センサヘッドの構成要素である1軸光変調器の構造を示す斜視図。
【図5】従来の3軸光電界センサの構成を示す図。
【符号の説明】
19 ハウジング
20 3軸センサ部
21 非金属の保持ロッド
22 3芯シングルモード光ファイバ
23 支持部材
24、25、26 1軸光変調器
27 シングルモード光ファイバ
28 LiNbO3基板
29 光導波路
30a、30b 分岐光導波路
31 金属電極
32 反射ミラー
33 光源
34 光サーキュレータ
35 光スイッチ
36 伝送シングルモード光ファイバ
37 O/E変換器
38 シングルモード光ファイバ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical electric field sensor that measures an electric field using light, and more particularly, to a triaxial optical electric field sensor suitable for measuring an electric field in three axial directions.
[0002]
[Prior art]
An optical electric field sensor using an interference optical waveguide utilizing the electro-optic effect has the following excellent characteristics. In other words, since it has almost no metal part, it does not disturb the electric field to be measured, it transmits the detection signal through the optical fiber, so it is not affected by induction or electrical noise, and uses the electro-optic effect of the crystal The high-speed response is possible, and the detection signal can be transmitted as it is with little loss, and the power supply is not required for the sensor unit. Because of these characteristics, the optical electric field sensor is used for a wide range of electric field measurements in the EMC field.
[0003]
A conventional optical electric field sensor capable of measuring electric fields in three axial directions will be described with reference to FIG. The linearly polarized light emitted from the light source 1 passes through the polarization maintaining fiber 4, the optical circulator 7, and the polarization maintaining fiber 10, enters the triaxial optical electric field sensor head 13, and receives intensity modulation by the electric field to be measured. The light again enters the polarization maintaining fiber 10. Thereafter, the modulated light passes through the optical circulator 7, enters the O / E converter 17 through the single mode optical fiber 14, and is converted into an electric signal.
[0004]
As shown in FIG. 5, the other two-axis electric fields have their respective sensing systems, and the configuration thereof is the same as that of the first axial direction. For the electric field in the second axial direction, the light source 2, the polarization maintaining fiber 5, the optical circulator 8, the polarization maintaining fiber 11, the triaxial optical electric field sensor head 13, the single mode optical fiber 15, and the O / The E converter 18 constitutes a sensing system. For the electric field in the third axial direction, the light source 3, the polarization maintaining fiber 6, the optical circulator 9, the polarization maintaining fiber 12, the three-axis optical electric field sensor head 13, the single mode optical fiber 16, and the O / The E converter 19 constitutes a sensing system. With this configuration, it is possible to measure the electric field in the orthogonal three-axis direction.
[0005]
Such a three-axis optical electric field sensor is disclosed in the following Patent Document 1.
[0006]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-257484
[Problems to be solved by the invention]
The above-described three-axis optical electric field sensor is an expensive device because the light source, the optical circulator, and the O / E converter are independent on three axes.
[0008]
Therefore, an object of the present invention is to provide a low-cost three-axis electric field sensor by reducing the number of parts.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, a three-axis optical electric field sensor according to the present invention includes three antennas that capture an electric field, three optical modulators that are paired with the antenna and that modulate the intensity of light by the electric field, A light source that generates light, an optical switch that switches an optical path of light supplied from the light source via an optical circulator, and selectively transmits one of the three optical modulators by transmitting output light of the optical switch. An optical fiber for transmitting the modulated light output from the optical modulator and inputting the modulated light to the optical switch from the opposite direction; and the modulated light input via the optical switch and the optical circulator as an electrical signal. A three-axis optical electric field sensor including an O / E converter for converting, wherein the three optical modulators are arranged in a regular triangular prism shape, and the optical modulator is formed on a substrate having an electro-optic effect and the substrate Interference type A modulation electrode provided in the vicinity of the waveguide and the optical waveguide, and each modulation electrode pattern is formed on the side surface of the regular triangular prism in a direction forming 54.7 degrees with the axial direction of the regular triangular prism, The modulation electrode has a function of the antenna .
[0011]
The light source may be a laser light source that outputs two linearly polarized waves that are slightly different in oscillation frequency and orthogonal to each other.
[0012]
The optical circulator can be a polarization independent type.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of the present invention will be described with reference to FIGS.
[0014]
FIG. 2 is an external perspective view of the three-axis sensor head in one embodiment of the present invention. Reference numeral 22 denotes a three-core single mode optical fiber, 21 denotes a non-metallic holding rod, and 20 denotes a three-axis sensor unit. The size of the triaxial sensor unit is φ12 × 35 mm, and an optical modulation unit including a reflective Mach-Zehnder interferometer that measures an electric field in the triaxial direction is accommodated.
[0015]
A cross-sectional view of the triaxial sensor unit 20 as viewed from above is shown in FIG. An optical modulator that measures electric fields in the x-axis, y-axis, and z-axis directions orthogonal to each other is disposed on the side surface of the support member 23 that is a regular triangular prism. 24 is a uniaxial optical modulator that measures an electric field in the x-axis direction, 25 is a uniaxial optical modulator that measures an electric field in the y-axis direction, 26 is a uniaxial optical modulator that measures an electric field in the z-axis direction, and 19 is It is a housing. With such a configuration, electric field measurement in the three-dimensional orthogonal coordinate axes, x, y, and z-axis directions becomes possible.
[0016]
Each of the uniaxial optical modulators used here includes a Ti diffusion waveguide fabricated on a LiNbO 3 substrate, a metal electrode for applying a voltage thereto, a reflection mirror, and a single mode optical fiber.
[0017]
A uniaxial optical modulator according to this embodiment for measuring an electric field in the x-axis, y-axis, or z-axis direction will be described with reference to FIG. 27 is a single mode optical fiber, 28 is a LiNbO 3 substrate, 29 is an optical waveguide, 30a and 30b are branched optical waveguides, 31 is a metal electrode (antenna), and 32 is a reflection mirror.
[0018]
The metal electrode (antenna) 31 is formed by a combination of triangular metal films, and applies a voltage induced by an electric field in a direction indicated by an arrow (a direction of 54.7 degrees with respect to the optical waveguide) to the branched optical waveguide 30b. The pattern is determined. Then, by arranging the three optical modulators on the side surfaces of the regular triangular prism as shown in FIG. 3 so that the waveguide directions are perpendicular to the paper surface of FIG. it can.
[0019]
This will be further described. A straight line forming an angle of 54.7 ° with a side parallel to the central axis on one side surface of the regular triangular prism is orthogonal to two corresponding straight lines on the other two side surfaces. Therefore, the electric field measurement in the three orthogonal directions can be performed by the electric field measurement in the three linear directions.
[0020]
Next, the three-axis optical electric field sensor of the present embodiment will be described with reference to FIG. 20 is a triaxial sensor unit of the present embodiment, 33 is a light source that outputs two linearly polarized waves that are slightly different in oscillation frequency, 34 is a polarization-independent optical circulator, 35 is an optical switch, Reference numeral 36 denotes a transmission single mode optical fiber, and reference numeral 37 denotes an O / E converter including a photodiode and an amplifier.
[0021]
The wavelength of the light source used at this time is selected to be about 1.2 to 1.6 μm in consideration of the electro-optic effect and loss in the Ti diffusion waveguide on the LiNbO 3 substrate. Further, a semiconductor laser pumped Nd: YAG laser with good RIN (relative noise intensity) characteristics and a semiconductor laser with low power consumption are suitable as a light source.
[0022]
When a semiconductor laser-pumped Nd: YAG laser is used as the light source, a laser wavelength of 1.32 μm is easy to use.
[0023]
Next, the operation of this electric field sensor will be described. Two linearly polarized lights that are emitted from the light source 33 and have a slightly different oscillation wavelength and orthogonal to each other pass through a single mode optical fiber 38, an optical circulator 34, an optical switch 35, and a transmission single mode optical fiber 36, and are triaxially transmitted. The light enters the sensor unit 20, undergoes intensity modulation by the electric field to be measured, and again enters the transmission single mode optical fiber 36. Thereafter, the modulated light passes through the optical switch 35 and the optical circulator 34, enters the O / E converter 37, and is converted into an electric signal.
[0024]
For the other two axial directions, the same operation as in the first axial direction is performed by switching the optical path by the optical switch 35.
[0025]
With such a configuration, the electric field sensor device of the present embodiment can measure the electric fields in the three axial directions by selecting the axis by switching the optical modulator.
[0026]
In the triaxial optical electric field sensor of the present invention, the polarization dependence of the optical modulator can be substantially eliminated by using a light source that outputs two linearly polarized waves orthogonal to each other. As a result, it became possible to make the optical switching system or polarization independent of the optical transmission line, and as a result, general-purpose optical components could be used. In addition, a component configuration almost the same as that of a uniaxial sensor is possible, and a highly practical triaxial optical electric field sensor can be realized.
[0027]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a three-axis optical electric field sensor that can reduce the number of parts, is inexpensive, and can measure electric fields in three axes.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a three-axis optical electric field sensor according to an embodiment of the present invention.
FIG. 2 is an external perspective view of a three-axis sensor head according to an embodiment of the present invention.
FIG. 3 is a cross-sectional view of a triaxial sensor unit according to an embodiment of the present invention when viewed from above.
FIG. 4 is a perspective view showing a structure of a uniaxial optical modulator that is a constituent element of a triaxial sensor head according to an embodiment of the present invention.
FIG. 5 is a diagram showing a configuration of a conventional three-axis optical electric field sensor.
[Explanation of symbols]
19 Housing 20 Triaxial sensor portion 21 Non-metallic holding rod 22 Three-core single mode optical fiber 23 Support members 24, 25, 26 Single axis optical modulator 27 Single mode optical fiber 28 LiNbO 3 substrate 29 Optical waveguides 30a, 30b Branched light Waveguide 31 Metal electrode 32 Reflection mirror 33 Light source 34 Optical circulator 35 Optical switch 36 Transmission single mode optical fiber 37 O / E converter 38 Single mode optical fiber

Claims (3)

電界を捉える3つのアンテナと、該アンテナと対をなし前記電界により光に強度変調を施す3つの光変調器と、無変調光を発生する光源と、該光源から光サーキュレータを介して供給された光の光路を切替える光スイッチと、該光スイッチの出力光を伝送して前記3つの光変調器の1つに選択的に供給すると共に、該光変調器から出力された変調光を伝送して前記光スイッチに逆方向から入力する光ファイバと、前記光スイッチおよび前記光サーキュレータを介して入力された変調光を電気信号に変換するO/E変換器とを備える3軸光電界センサであって、前記3つの光変調器が正三角柱状に配置され、前記光変調器は電気光学効果を有する基板と該基板上に形成された干渉型の光導波路と該光導波路の近傍に設けられた変調電極からなり、各々の前記変調電極のパターンが前記正三角柱の側面上において正三角柱の軸方向と54.7度をなす方向に形成され、前記変調電極が前記アンテナの機能を有することを特徴とする3軸光電界センサ。Three antennas that capture an electric field, three optical modulators that are paired with the antenna and modulate the intensity of light by the electric field, a light source that generates unmodulated light, and an optical circulator supplied from the light source An optical switch that switches the optical path of the light, and the output light of the optical switch is transmitted and selectively supplied to one of the three optical modulators, and the modulated light output from the optical modulator is transmitted A three-axis optical electric field sensor comprising: an optical fiber that inputs to the optical switch from the opposite direction; and an O / E converter that converts the modulated light input via the optical switch and the optical circulator into an electrical signal. The three optical modulators are arranged in a regular triangular prism shape, and the optical modulator has an electro-optic effect substrate, an interference type optical waveguide formed on the substrate, and a modulation provided in the vicinity of the optical waveguide. Consisting of electrodes In the pattern of each of said modulation electrodes the regular triangular prism on the side is formed in a direction forming a positive triangular prism of the axial and 54.7 degrees, triaxial photoelectric to the modulation electrode and having the function of the antenna Field sensor. 前記光源は、発振周波数がわずかに異なり、互いに直交する2つの直線偏波を出力するレーザ光源であることを特徴とする請求項1記載の3軸光電界センサ。2. The three-axis optical electric field sensor according to claim 1 , wherein the light source is a laser light source that outputs two linearly polarized waves that are slightly different in oscillation frequency and orthogonal to each other. 前記光サーキュレータは偏波無依存型であることを特徴とする請求項1または請求項2に記載の3軸光電界センサ。 The three-axis optical electric field sensor according to claim 1 or 2, wherein the optical circulator is a polarization independent type.
JP2002380296A 2002-12-27 2002-12-27 3-axis optical electric field sensor Expired - Fee Related JP3720327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002380296A JP3720327B2 (en) 2002-12-27 2002-12-27 3-axis optical electric field sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002380296A JP3720327B2 (en) 2002-12-27 2002-12-27 3-axis optical electric field sensor

Publications (2)

Publication Number Publication Date
JP2004212137A JP2004212137A (en) 2004-07-29
JP3720327B2 true JP3720327B2 (en) 2005-11-24

Family

ID=32816561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002380296A Expired - Fee Related JP3720327B2 (en) 2002-12-27 2002-12-27 3-axis optical electric field sensor

Country Status (1)

Country Link
JP (1) JP3720327B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006313072A (en) * 2005-05-06 2006-11-16 Seikoh Giken Co Ltd Triaxial optical field sensor
JP2007078633A (en) * 2005-09-16 2007-03-29 Seikoh Giken Co Ltd High sensitivity three-axis photoelectric field sensor
JP2007315894A (en) * 2006-05-25 2007-12-06 Ntt Docomo Inc Electric field measuring apparatus
JP5376619B2 (en) 2008-02-06 2013-12-25 日本電気株式会社 Electromagnetic field measuring device
CN102472785B (en) * 2009-06-29 2014-10-08 日本电气株式会社 Probe for electric/magnetic field
CN103308745B (en) * 2010-04-12 2016-01-27 郭嘉昕 Optical fiber current sensing system
CN103852649B (en) * 2014-03-12 2017-01-25 中国科学院电子学研究所 Three-dimensional electric field measuring method based on coplanar sensing units
CN104793059A (en) * 2014-12-26 2015-07-22 中国舰船研究设计中心 Optical fiber field intensity sensor

Also Published As

Publication number Publication date
JP2004212137A (en) 2004-07-29

Similar Documents

Publication Publication Date Title
KR100220289B1 (en) Electric field sensor
CN110554229B (en) Novel non-intrusive all-fiber reciprocal voltage electric field sensor
JP3720327B2 (en) 3-axis optical electric field sensor
JP3253621B2 (en) Method and sensor for measuring voltage and / or electric field strength
JP2007078633A (en) High sensitivity three-axis photoelectric field sensor
JP3727051B2 (en) Optical electric field sensor
JP5044100B2 (en) Electromagnetic wave measuring device, electromagnetic wave measuring probe, electromagnetic wave measuring probe array
JP2004361196A (en) Optical-fiber current sensor
EP0913666A2 (en) Interference measurement apparatus and probe used for interference measurement apparatus
JP2001343410A (en) Electric field probe
JP3627204B2 (en) Electric field sensor
JP2006313072A (en) Triaxial optical field sensor
JP2004219088A (en) Triaxial optical field sensor element
JP3673611B2 (en) Electric field sensor
JP2673485B2 (en) Electric field detection method
JP3505669B2 (en) Electric field sensor
CN114370928B (en) Linear type Sagnac interference type optical fiber vibration sensor
JP2004012468A (en) Electric field sensor
JP2004245731A (en) Photoelectric field sensor
JP2841863B2 (en) Ring interferometer
JP3577616B2 (en) Electric field sensor
JP2004212138A (en) Electric field sensing device
CA2380696A1 (en) Reduced minimum configuration fiber opic current sensor
Kijima et al. Electro-optical field sensor using single total internal reflection in electro-optical crystals
JPH0269688A (en) Magnetic field sensor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050907

R150 Certificate of patent or registration of utility model

Ref document number: 3720327

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080916

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130916

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees