JP2005274375A - Polarization dispersion measuring method - Google Patents

Polarization dispersion measuring method Download PDF

Info

Publication number
JP2005274375A
JP2005274375A JP2004088484A JP2004088484A JP2005274375A JP 2005274375 A JP2005274375 A JP 2005274375A JP 2004088484 A JP2004088484 A JP 2004088484A JP 2004088484 A JP2004088484 A JP 2004088484A JP 2005274375 A JP2005274375 A JP 2005274375A
Authority
JP
Japan
Prior art keywords
polarization
optical
polarization dispersion
dispersion
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004088484A
Other languages
Japanese (ja)
Inventor
Hiroshi Kajioka
博 梶岡
Takashi Iizuka
孝 飯塚
Yuichi Nagashima
永嶌勇一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Optoquest Co Ltd
Original Assignee
Optoquest Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Optoquest Co Ltd filed Critical Optoquest Co Ltd
Priority to JP2004088484A priority Critical patent/JP2005274375A/en
Publication of JP2005274375A publication Critical patent/JP2005274375A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of measuring inexpensively and easily polarization dispersion in a single mode optical fiber and various kinds of optical devices imparting an important influence on a transmission characteristic of a light speed transmission system. <P>SOLUTION: In this method of measuring the polarization dispersion concerned in the present invention, a means for measuring the polarization dispersion, using an RF power of a modulated component as a function of a relative polarization direction of a measured optical medium to an intermediate polarization element, when a circular polarization light or rotating linear polarization wave is made to get incident into a measured object using a semiconductor laser and a sine wave amplification modulator in a light source part, and when an output thereof is detected by an RF power meter via the intermediate polarization element with a double refraction set in a prescribed value. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は偏波分散測定方法に関するものである。さらに詳しく詳述すれば本発明は高速光通信システムの伝送特性に重要な影響を与えるシングルモード光ファイバおよび各種WDM光デバイスの偏波分散を簡易に測定出来る偏波分散測定方法に関するものである。   The present invention relates to a polarization dispersion measuring method. More specifically, the present invention relates to a polarization mode dispersion measuring method capable of easily measuring the polarization mode dispersion of a single mode optical fiber and various WDM optical devices that have an important influence on the transmission characteristics of a high-speed optical communication system.

現在幹線系の光通信伝送システムの伝送速度は10Gb/sが主流になっているがインターネットの急速な普及による今後のトラフィックの増大に対応するため40Gb/s以上の高速伝送システムも実用化が検討されている。このような高速光伝送システムにおいては伝送距離が増大するにつれて伝送路であるシングルモード光ファイバ(以下SMFと略す)のコアのわずかな非対称性によって発生する偏波分散がビットエラーレートの劣化をもたらすことが問題になっている。この偏波分散は伝送路に使われる光部品によっても発生する。特に前者のSMFの場合には偏波分散は伝送路の温度変化による光ファイバの歪などによってランダムに変動するのでその補償は大きな課題になっている。従って伝送システムを構築する場合には光ケーブルの偏波分散を事前に測定しその補償が必要かどうかをあらかじめ把握することが必要である。また光ファイバアンプとWDM光伝送技術の進展により伝送路には光部品が多数使われるよため個別の光部品の偏波分散もあらかじめ工場出荷段階で測定することが規定されている。   Currently, 10Gb / s is the mainstream transmission speed for trunk-line optical communication transmission systems. However, in order to cope with the future traffic increase due to the rapid spread of the Internet, the practical use of high-speed transmission systems of 40Gb / s or higher is also under consideration. Has been. In such a high-speed optical transmission system, the polarization dispersion generated by a slight asymmetry of the core of a single mode optical fiber (hereinafter abbreviated as SMF), which is a transmission path, as the transmission distance increases causes the bit error rate to deteriorate. That is a problem. This polarization dispersion is also caused by optical components used in the transmission line. In particular, in the case of the former SMF, polarization dispersion varies randomly due to distortion of the optical fiber due to a change in the temperature of the transmission line, and so compensation has become a major issue. Therefore, when constructing a transmission system, it is necessary to measure beforehand the polarization dispersion of the optical cable and to know in advance whether the compensation is necessary. Also, with the development of optical fiber amplifier and WDM optical transmission technology, since many optical components are used in the transmission line, it is stipulated that the polarization dispersion of individual optical components is also measured in advance at the factory shipment stage.

偏波分散の測定法は非特許文献1に詳述されているように周波数領域と時間領域の2種類ある。SMFの場合には時間領域の測定法である干渉法が主に使われている。一方光部品には周波数領域の測定法である偏光解析法と固定アナライザ法が使われている。2000年4月のITU―TSG15において偏光解析法の1種であるJones行列法とポアンカレ−球法が基準測定に認定された。一方代替基準測定法として偏光解析法の1種である偏光状態法、時間領域測定法である干渉法が規定されている。   As described in detail in Non-Patent Document 1, there are two types of polarization dispersion measurement methods: frequency domain and time domain. In the case of SMF, interferometry, which is a time domain measurement method, is mainly used. On the other hand, ellipsometry and fixed analyzer methods, which are frequency domain measurement methods, are used for optical components. In April 2000 ITU-TSG15, the Jones matrix method and the Poincare sphere method, which are one type of ellipsometry, were certified as reference measurements. On the other hand, as an alternative reference measurement method, a polarization state method, which is a kind of ellipsometry, and an interference method, which is a time domain measurement method, are defined.

干渉法においては通常は広帯域な光源が用いられ光源のスペクトルの平均的な偏波分散しか測定できない。一方偏光解析法においては入射側においては波長可変レーザおよび4種類の偏光状態を発生させる偏光制御装置が必要である。一方受光側においては偏光解析装置(ポラリメータ)が必要であり通常は計測システムの価格は2000万円以上と高価である。代替基準測定法である固定アナライザ法においては一般に入射側で光源の波長と偏光状態を制御する装置、受光部で光スペクトル解析装置が必要となるのでやはり高価である。偏波分散の測定法としてはこの他にも偏波分散の原理に立ち返り光源を電流パルスで駆動し受光部で偏光モード間のパルスの到達時間の差を観測するパルス法や光源を正弦波で振幅変調し偏光モードによる変調信号の位相差を測定する変調波位相測定法などがあるが直交偏光モードの振幅変調波の位相差を測定するためネットワークアナライザあるいは選択レベルメータが必要でありまた入射側で偏光を制御する装置も必要であるため高価であるという問題があった。   In the interferometry, a broadband light source is usually used, and only average polarization dispersion of the spectrum of the light source can be measured. On the other hand, in the ellipsometry, on the incident side, a tunable laser and a polarization control device that generates four types of polarization states are required. On the other hand, an ellipsometer (polarimeter) is necessary on the light receiving side, and the price of the measurement system is usually as high as 20 million yen or more. The fixed analyzer method, which is an alternative reference measurement method, is generally expensive because it requires a device for controlling the wavelength and polarization state of the light source on the incident side and an optical spectrum analyzer at the light receiving unit. There are other methods for measuring polarization dispersion, such as the pulse method, where the light source is driven with current pulses and the difference in the arrival time of the pulses between the polarization modes is observed at the light receiving unit. There is a modulation wave phase measurement method that measures the phase difference of the modulated signal by amplitude modulation and polarization mode, but a network analyzer or a selection level meter is required to measure the phase difference of amplitude modulation wave in orthogonal polarization mode, and the incident side In addition, since an apparatus for controlling the polarization is required, there is a problem that it is expensive.

波平編、「DWDM光測定技術」、第8章、(株)オプトロにクス社、平成13年3月10日発行。Published by Namihira, "DWDM optical measurement technology", Chapter 8, Optronics, Inc., March 10, 2001.

Henrik Sunnerd etal,”Outage Probabilities in PMD Compensated Transmission Systems”,Proc.27th ECOC(ECOC’01),Tu.A.3.1,Sept.30−Oct.4,2001,Amsterdam.(先のECOC−01−Tu.A.3.1スエーデンのChalmers大の報告である。)Henrik Sunnard et al., “Outcome Properties in PMD Compensated Transmission Systems”, Proc. 27th ECOC (ECOC'01), Tu. A. 3.1, Sept. 30-Oct. 4, 2001, Amsterdam. (This is a report by Chalmers University of the previous ECOC-01-Tu.A.3.1 Sweden.) K.Ogaki,M.Nakada,Y.Nagano,”Fluctuation Difference in the Principal States of Polarization in Aeial and Buried Cables”,KDDI,OFC2003,MF13,March.23−28,2003,Atlanta,USA.K. Ogaki, M .; Nakada, Y .; Nagano, “Fluctuation Differences in the Principal States of Polarization in Aial and Burred Cables”, KDDI, OFC 2003, MF13, March. 23-28, 2003, Atlanta, USA.

本特許は上記の問題点を解決するため光通信用光ケーブルや光部品などの光伝送媒体の安価な偏波分散測定方法を提供するものである。   This patent provides an inexpensive method for measuring polarization dispersion of an optical transmission medium such as an optical cable for optical communication or an optical component in order to solve the above problems.

上記の目的を達成するために本発明に係わる偏波分散測定方法は光源部に半導体レーザ、正弦波振幅変調装置を用い円偏光あるいは回転する直線偏光波を被測定対象に入射しその出力を複屈折が所定の値に設定された中間偏光素子を介してRFパワーメータで検出する場合に変調成分のRFパワーを被測定光媒質と中間偏光素子の相対偏光方位の関数として
偏波分散を測定する手段を採用した。
In order to achieve the above object, the polarization dispersion measuring method according to the present invention uses a semiconductor laser and a sine wave amplitude modulation device as a light source unit to make a circularly polarized wave or a rotating linearly polarized wave incident on the object to be measured and to output the output. When detecting with an RF power meter via an intermediate polarization element whose refraction is set to a predetermined value, the polarization dispersion is measured using the RF power of the modulation component as a function of the relative polarization direction of the measured optical medium and the intermediate polarization element. Adopted means.

以上説明したように本発明の偏波分散測定方法によれば光源部に複雑な偏光発生装置を使わずまた受光部にネットワークアナライザや光スペクトル解析装置を使う必要がないため光伝送媒体や光部品の偏波分散を安価に簡単に測定できる方法を提供できる。   As described above, according to the polarization dispersion measuring method of the present invention, it is not necessary to use a complicated polarization generator for the light source unit, and it is not necessary to use a network analyzer or an optical spectrum analyzer for the light receiving unit. It is possible to provide a method that can easily measure the polarization dispersion of the light at low cost.

図1によって本発明の偏波分散測定方法の一つの実施例を説明する。DFBレーザ1から出た光を振幅変調器2に3の正弦波信号発生器から出力される正弦波信号で光振幅変調をする。光源の波長は1550nmである。また変調周波数は10GHzとした。振幅変調器2は電気光学結晶LiNbO3上にマッハツエ−ンダーの干渉系を構成した外部変調器を用いた。変調器の出力はレンズでコリメートされ4の偏光制御器を介して被測定対象の光媒体この場合はSM光ファイバ5に入射される。この場合4の偏光制御器は偏光子と4分の1波長板からなる円偏光化光学系を用いた。光源出力が円偏光であるということは原理的に被測定媒質の2つの固有偏光モードが等しい振幅で励振されるということを意味する。被測定媒体5の出力は偏光制御器6を介して偏波面保存光ファイバ(PMF)7に入射され受光器8を介してRF(高周波)パワーメータに導かれ信号処理回路10に導かれる。RFパワーメータは市販の高周波パワーメータに変調周波数近傍の成分が通過するフィルタを付加したものを用いた。   An embodiment of the polarization dispersion measuring method of the present invention will be described with reference to FIG. The light emitted from the DFB laser 1 is optically modulated in the amplitude modulator 2 by the sine wave signal output from the sine wave signal generator 3. The wavelength of the light source is 1550 nm. The modulation frequency was 10 GHz. As the amplitude modulator 2, an external modulator having a Mach-Zehnder interference system formed on the electro-optic crystal LiNbO3 was used. The output of the modulator is collimated by a lens and is incident on the optical medium to be measured, in this case the SM optical fiber 5, via the polarization controller 4. In this case, the polarization controller of No. 4 used a circular polarization optical system composed of a polarizer and a quarter wave plate. The fact that the light source output is circularly polarized means that, in principle, the two intrinsic polarization modes of the measured medium are excited with equal amplitude. The output of the medium to be measured 5 is incident on a polarization-maintaining optical fiber (PMF) 7 via a polarization controller 6, led to an RF (high frequency) power meter via a light receiver 8, and then led to a signal processing circuit 10. The RF power meter used was a commercially available high-frequency power meter with a filter through which components near the modulation frequency pass.

6の偏光制御装置は2分の1波長板の方位を電気的に回転するタイプであり光ケーブルの出射光の偏光面を回転させ偏波面保存光ファイバ7の固有偏光方位と被測定光ケーブルの固有偏光モード(PSP)の方位との相対方位(以下αとする)を変化させる。なお偏光制御器6を省略して偏波面保存光ファイバ7を回転させても同様の効果が得られる。被測定媒体5はSMファイバケーブルでボビンに巻いてあり長さはおよそ50kmである。なお複屈折媒体は偏波面保存光ファイバ以外にもルチルやYVO4(Yttrium Vanadate)なども使える。   The polarization control device 6 is a type in which the direction of the half-wave plate is electrically rotated, and the polarization plane of the outgoing light of the optical cable is rotated, and the intrinsic polarization orientation of the polarization-maintaining optical fiber 7 and the intrinsic polarization of the optical cable to be measured The relative orientation (hereinafter referred to as α) with the orientation of the mode (PSP) is changed. The same effect can be obtained by omitting the polarization controller 6 and rotating the polarization-maintaining optical fiber 7. The medium 5 to be measured is wound around a bobbin with an SM fiber cable and has a length of about 50 km. As the birefringent medium, rutile or YVO4 (Yttrium Vanadate) can be used in addition to the polarization-maintaining optical fiber.

今変調周波数fを10GHzとすると屈折率nの媒質中の変調波の周期は次式で表される。   If the modulation frequency f is 10 GHz, the period of the modulation wave in the medium having the refractive index n is expressed by the following equation.

Figure 2005274375
Figure 2005274375

f=10GHz,n=1.5とするとΛはおよそ2cmとなる。ここで偏波面保存光ファイバ7の長さdを変調周波数と以下の関係式で定義されるように設定した。   When f = 10 GHz and n = 1.5, Λ is about 2 cm. Here, the length d of the polarization-maintaining optical fiber 7 is set so as to be defined by the modulation frequency and the following relational expression.

Figure 2005274375
Figure 2005274375

ここでLは波長1550nmで3mmであるのでd=10mとした。数式2は振幅変調された光が波偏波面保存光ファイバを通過する場合にその固有偏光モードに90度の位相差あるいは変調周期100psの4分の1の25psの偏波分散を与えることを意味する。   Here, since L is 3 mm at a wavelength of 1550 nm, d = 10 m. Equation 2 means that when the amplitude-modulated light passes through the wave polarization preserving optical fiber, the intrinsic polarization mode is given a phase difference of 90 degrees or a polarization dispersion of 25 ps, which is a quarter of a modulation period of 100 ps. To do.

ここで被測定対象の光ケーブルの偏波分散の平均値をτ(ps)とする。従って光ケーブルを伝送する振幅変調波は固有偏光モードPSP間に次式で表される位相差φが生じる。   Here, the average value of the polarization dispersion of the optical cable to be measured is τ (ps). Therefore, the amplitude-modulated wave transmitted through the optical cable has a phase difference φ expressed by the following equation between the intrinsic polarization modes PSP.

Figure 2005274375
Figure 2005274375

今光源部において振幅変調波は円偏光で入射されているので前述したように光ケーブルのPSPは振幅が等しく光位相差90度で入射されている。ベースバンドの振幅変調波の位相を考える場合には光搬送波の位相差90度は無視してよい。このような場合光ケーブルの出力端におけるベースバンド変調信号振幅Pは次式で表される。   Since the amplitude-modulated wave is now incident as circularly polarized light in the light source unit, the PSP of the optical cable is incident with the same amplitude and an optical phase difference of 90 degrees as described above. When considering the phase of the baseband amplitude-modulated wave, the optical carrier phase difference of 90 degrees may be ignored. In such a case, the baseband modulation signal amplitude P at the output end of the optical cable is expressed by the following equation.

Figure 2005274375
Figure 2005274375

光ケーブルに偏波分散がなければφ=0であるのでPは偏波分散による減衰は受けないことが分かる。またφ=πすなわち偏波分散が50psの場合にはベースバンド変調成分の振幅が零となる。   If there is no polarization dispersion in the optical cable, φ = 0 and it can be seen that P is not attenuated by polarization dispersion. When φ = π, that is, when the polarization dispersion is 50 ps, the amplitude of the baseband modulation component becomes zero.

今受光部に偏波分散がπ/2の偏波面保存光ファイバ7を用いているのでその出力のRFパワーメータ10の出力(ベースバンド変調信号の振幅)Pは光ケーブルのPSPと偏波面保存光ファイバ7の固有偏光方位差αの関数として若干の計算の結果以下で表される。   Since the polarization-preserving optical fiber 7 having a polarization dispersion of π / 2 is used in the light receiving unit, the output (the amplitude of the baseband modulation signal) P of the output is the PSP of the optical cable and the polarization-preserving light. The result of some calculations as a function of the intrinsic polarization orientation difference α of the fiber 7 is expressed below.

Figure 2005274375
Figure 2005274375

ここで被測定光ケーブルのφすなわち偏波分散τを測定する方法を考える。数式5よりαを変化させたベースバンド信号振幅Pを測定すればαが求められる。
α=0、α=π/2の場合のPはそれぞれ以下のように表される。
Here, consider a method of measuring φ of the optical cable to be measured, that is, polarization dispersion τ. Α can be obtained by measuring the baseband signal amplitude P with α changed from Equation 5.
P in the case of α = 0 and α = π / 2 is expressed as follows.

Figure 2005274375
Figure 2005274375

Figure 2005274375
Figure 2005274375

ここでWを数式8で定義する。   Here, W is defined by Equation 8.

Figure 2005274375
Figure 2005274375

数式6、数式7、数式8よりφは次式で求められる。   From Equation 6, Equation 7, and Equation 8, φ is obtained by the following equation.

Figure 2005274375
Figure 2005274375

数式8によってφを求めるためにはα=0の方位を特定する必要がある。すなわち被測定対象光ケーブルのPSPの方位を求める必要がある。α=0の場合には被測定光ケーブルの偏波分散φと測定用の偏波面保存光ファイバのFast軸、Slow軸が一致しており偏波分散が加算されるのでPが最小になる。すなわちこの場合がα=0の場合である。測定の結果φ=2度と得られた。数式3よりφは0.56psと測定された。   In order to obtain φ by Expression 8, it is necessary to specify the direction of α = 0. That is, it is necessary to obtain the PSP direction of the optical cable to be measured. When α = 0, the polarization dispersion φ of the optical cable to be measured matches the Fast axis and Slow axis of the polarization-maintaining optical fiber for measurement, and P is minimized because the polarization dispersion is added. That is, this case is a case where α = 0. As a result of the measurement, φ = 2 degrees was obtained. From Equation 3, φ was measured to be 0.56 ps.

もうひとつの実施例を説明する。前述した円偏光光源は被測定光ファイバまでのリード部で円偏光性が崩れる可能性があるので偏光制御器4が直線偏光を回転できる装置である場合を考える。この場合偏光方位は被測定光ファイバ5と中間の複屈折媒質7との相対偏光方位を変化させる速度よりも早い一定の速度で回転させた。今光源の偏光方位と光ケーブル5のPSPの相対偏光方位をβとする。   Another embodiment will be described. Since the circularly polarized light source described above may lose its circular polarization at the lead portion to the optical fiber to be measured, consider the case where the polarization controller 4 is a device that can rotate linearly polarized light. In this case, the polarization direction was rotated at a constant speed faster than the speed at which the relative polarization direction between the measured optical fiber 5 and the intermediate birefringent medium 7 was changed. Let β be the polarization direction of the light source and the relative polarization direction of the PSP of the optical cable 5.

今βを変化させながら受信側で偏光制御器6を駆動させαを変化させRFパワーメータの出力Pをモニターするとそれはαとβの関数となって時間的に変化する。今βはαより高速に変化するのでPが最大になるのはβ=0でα=0または90度の場合である。α=0の場合でPが最小になるのはβ=45度の場合でそのときのPは数式6で与えられることが分かる。またα=90度でPが最小になるのはβ=45度でそのときのPは数式7で与えられることが分かる。   If the polarization controller 6 is driven on the receiving side while changing β, α is changed, and the output P of the RF power meter is monitored, it changes with time as a function of α and β. Since β changes faster than α, P is maximized when β = 0 and α = 0 or 90 degrees. It can be seen that when α = 0, P is minimized when β = 45 degrees, and P at that time is given by Equation 6. It can also be seen that P is minimum when α = 90 degrees, and P at that time is given by Equation 7.

本発明偏波分散測定方法の一実施例を示した基本構成図である。It is the basic composition figure showing one example of the polarization dispersion measuring method of the present invention.

符号の説明Explanation of symbols

1:半導体レーザ
2 振幅変調器
3 正弦波信号発生器
4 偏光制御器
5 被測定光媒質
6 偏光制御素子
7 複屈折光媒体
8 受光器
9 RFパワーメータ
10 信号処理回路
DESCRIPTION OF SYMBOLS 1: Semiconductor laser 2 Amplitude modulator 3 Sine wave signal generator 4 Polarization controller 5 Optical medium to be measured 6 Polarization control element 7 Birefringence optical medium 8 Light receiver 9 RF power meter 10 Signal processing circuit

Claims (3)

一定の伝送ビットレートあるいは周期的電気信号で振幅変調された光を被測定光媒体に特定の偏光状態で入射できる光部を有しその出力を変調周波数で決まる所定の複屈折率を有する中間の複屈折媒体を介して受光する光学系において該変調信号の基本周波数成分の振幅を該測定媒体の固有偏光軸と該中間複屈折媒体の固有偏光軸の相対方位角の関数として求めることによって被測定光媒体の偏波分散を測定する偏波分散測定方法。   An optical part capable of entering light whose amplitude is modulated with a constant transmission bit rate or periodic electrical signal into a measured optical medium in a specific polarization state, and having an output having an intermediate birefringence determined by a modulation frequency. In an optical system that receives light through a birefringent medium, the amplitude of the fundamental frequency component of the modulation signal is determined as a function of the relative azimuth of the intrinsic polarization axis of the measurement medium and the intrinsic polarization axis of the intermediate birefringent medium. A polarization dispersion measurement method for measuring polarization dispersion of an optical medium. 請求項1の偏波分散測定方法に用いる中間複屈折媒体の複屈折がその固有偏光モードのベースバンド変調信号間に90度の位相差を与えるような大きさであるような偏波分散測定方法。   2. A polarization dispersion measuring method in which the birefringence of the intermediate birefringent medium used in the polarization dispersion measuring method according to claim 1 is such that the birefringence gives a phase difference of 90 degrees between the baseband modulation signals of the intrinsic polarization modes. . 請求項1の偏波分散測定装置において光源部からの出力が円偏光または偏光方位が回転できる直線偏光であることを特徴とする偏波分散測定装置。
2. The polarization dispersion measuring apparatus according to claim 1, wherein the output from the light source is circularly polarized light or linearly polarized light whose polarization direction can be rotated.
JP2004088484A 2004-03-25 2004-03-25 Polarization dispersion measuring method Pending JP2005274375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004088484A JP2005274375A (en) 2004-03-25 2004-03-25 Polarization dispersion measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004088484A JP2005274375A (en) 2004-03-25 2004-03-25 Polarization dispersion measuring method

Publications (1)

Publication Number Publication Date
JP2005274375A true JP2005274375A (en) 2005-10-06

Family

ID=35174204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004088484A Pending JP2005274375A (en) 2004-03-25 2004-03-25 Polarization dispersion measuring method

Country Status (1)

Country Link
JP (1) JP2005274375A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101431186B1 (en) 2013-09-16 2014-08-18 가천대학교 산학협력단 Biosensing system and method using optical modulation and phase difference
CN104502071A (en) * 2015-01-05 2015-04-08 哈尔滨工程大学 Measuring and constructing method of broadband light source spectrum distribution function and self-correlation function
CN115166985A (en) * 2022-06-28 2022-10-11 四川大学 Method for preparing polarization-dependent attenuation element by utilizing ultrafast laser direct writing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101431186B1 (en) 2013-09-16 2014-08-18 가천대학교 산학협력단 Biosensing system and method using optical modulation and phase difference
CN104502071A (en) * 2015-01-05 2015-04-08 哈尔滨工程大学 Measuring and constructing method of broadband light source spectrum distribution function and self-correlation function
CN115166985A (en) * 2022-06-28 2022-10-11 四川大学 Method for preparing polarization-dependent attenuation element by utilizing ultrafast laser direct writing

Similar Documents

Publication Publication Date Title
Westbrook et al. In-line polarimeter using blazed fiber gratings
US8229254B2 (en) Systems and methods for polarization mode dispersion mitigation
JPS62134535A (en) Fiber optic dispersion method and device
JPH01113721A (en) Polarization scrambler
Tang et al. High-sensitivity displacement sensing based on an OEO incorporating an unbalanced MZI
US20240019721A1 (en) Polarization scrambler using a retardance element
US6459479B1 (en) Optical detection of a fiber span with high polarization-mode dispersion in a fiber system
Hong et al. All-fiber tunable LP 11 mode rotator with 360° range
JP5521042B2 (en) Fiber optic interferometer having high PMD in coupled state, fiber optic gyroscope (FOG), and inertial navigation system including such a gyroscope
Kim et al. Tunable photonic microwave notch filter with negative coefficient based on polarization modulation
JP2005274375A (en) Polarization dispersion measuring method
JP2013210278A (en) Electric field measuring device
Eyal et al. Measurement of polarization mode dispersion in systems having polarization dependent loss or gain
Ghosh et al. Simple direct-detection-based Stokes vector receiver circuit on InP
US10866438B2 (en) Faraday-based polarization scrambler
JP2014196912A (en) Device and method for measuring optical frequency characteristic
Esman et al. Passive elimination of polarization sensitivity of fiber-optic microwave modulators
JP6586186B1 (en) Wavelength sweep light source, OFDR apparatus using the same, and measurement method
JP4252506B2 (en) Optical fiber strain measurement device
Motuz The fixed analyzer method in PMD measurement
Zhang et al. Broadband Instantaneous Frequency Measurement System Based on the Dual Paths of the Stimulated Brillouin Scattering Effect
JPH07243940A (en) Polarization-dependent loss measuring method and device
Chaibi et al. Time resolved chirp measurement based on a polarization-maintaining fiber
JP2007040977A (en) Polarization dependency measuring method and device of 2-light flux interferometer
JP2004271277A (en) Polarization dispersion analysis method, apparatus thereof, and polarization dispersion compensating apparatus