JPH1047889A - Boiling cooler - Google Patents

Boiling cooler

Info

Publication number
JPH1047889A
JPH1047889A JP8201406A JP20140696A JPH1047889A JP H1047889 A JPH1047889 A JP H1047889A JP 8201406 A JP8201406 A JP 8201406A JP 20140696 A JP20140696 A JP 20140696A JP H1047889 A JPH1047889 A JP H1047889A
Authority
JP
Japan
Prior art keywords
refrigerant
passage
boiling
vapor
hollow body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8201406A
Other languages
Japanese (ja)
Inventor
Hiroyuki Osakabe
長賀部  博之
Seiji Kawaguchi
清司 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP8201406A priority Critical patent/JPH1047889A/en
Publication of JPH1047889A publication Critical patent/JPH1047889A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a boiling cooler, low in cost and capable of roughing a boiling surface easily. SOLUTION: The refrigerant tank of a boiling cooler is constituted of an extruded member 7, formed by extrusion work, and a cap, applied on the lower end surface of the extruded member 7. The extruded member 7 is provided with vapor passages 9, a condensed liquid passage 10 and non-operating passage 11, while the vapor passages 9 are divided into small passages 9a by a plurality of pieces of ribs 13. The vapor passages 9 (small passages 9a) are passages, through which vapor refrigerant, boiled and evaporated by receiving heat of a heat generating body, ascends, and a multitude of recesses and projections are formed on the inner wall surface thereof. The recesses and projections are formed so that particles R are injected into the passage from one opening end of the vapor passage 9 employing an injection nozzle 15 and the particles R are collided against the inner wall surface of the vapor passage 9.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷媒の沸騰と凝縮
の繰り返しによって発熱体を冷却する沸騰冷却装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a boiling cooling device for cooling a heating element by repeatedly boiling and condensing a refrigerant.

【0002】[0002]

【従来の技術】従来より、沸騰冷却装置においては、沸
騰面を粗面化(凹凸化)することにより沸騰面上の気泡
発生点数を増加して放熱性能を向上することが一般的に
知られている。沸騰面を粗面化する方法としては、下記
の様な幾つかの方法が提案されている。例えば、分散材
を含むメッキ液で表面をメッキした後、メッキ被膜から
露出する分散材を溶解させて表面に空洞を形成する方法
(特公昭59−25040号公報)、内部が広く開口部
が小さい微小空間を多数形成する方法(特公昭59−3
9679号公報、特公平1−23717号公報)、表面
にスクリーンメッシュを熱的に密着させる方法(特開昭
60−202297号公報)等がある。
2. Description of the Related Art Conventionally, it has been generally known that in a boiling cooling apparatus, the number of air bubbles generated on the boiling surface is increased by roughening (roughening) the boiling surface to improve heat radiation performance. ing. Several methods have been proposed for roughening the boiling surface, as described below. For example, a method of plating the surface with a plating solution containing a dispersing material, and then dissolving the dispersing material exposed from the plating film to form a cavity in the surface (Japanese Patent Publication No. 59-25040), has a wide inside and a small opening. A method of forming a large number of minute spaces (Japanese Patent Publication No. 59-3)
No. 9679, Japanese Patent Publication No. 23717/1990, and a method of thermally adhering a screen mesh to the surface (Japanese Patent Application Laid-Open No. 60-202297).

【0003】[0003]

【発明が解決しようとする課題】ところが、沸騰促進に
寄与する凹凸形状はミクロン単位であり、上記の各方法
により沸騰面をミクロン単位で粗面化することは非常に
コストが高くなる。また、沸騰面が容器内部に存在する
場合は、機械加工が物理的に不可能であるため、上記各
方法を沸騰冷却装置に適用することは極めて困難であ
る。本発明は、上記事情に基づいて成されたもので、そ
の目的は、低コストで、且つ容易に沸騰面を粗面化した
沸騰冷却装置を提供することにある。
However, the concavo-convex shape contributing to the promotion of boiling is on the order of microns, and it is extremely expensive to roughen the boiling surface in units of microns by each of the above methods. In addition, when the boiling surface exists inside the container, machining is physically impossible, so that it is extremely difficult to apply each of the above methods to the boiling cooling device. SUMMARY OF THE INVENTION The present invention has been made based on the above circumstances, and an object of the present invention is to provide a low-cost, easy-to-coarse boiling cooling apparatus having a roughened boiling surface.

【0004】[0004]

【課題を解決するための手段】請求項1の手段によれ
ば、冷媒槽を形成する中空体の開口端から中空内部に粒
子を噴射し、その粒子の衝突によって中空体の内壁面に
凹凸が形成される。この方法によれば、沸騰面が容器内
部(つまり中空体の内部)に存在しても沸騰面を粗面化
できる。また、中空体の内部に粒子を噴射するだけで良
いため、短時間で容易に加工を完了でき、低コストで沸
騰面を粗面化できる。
According to the first aspect of the present invention, particles are injected into the hollow interior from the open end of the hollow body forming the refrigerant tank, and the collision of the particles causes irregularities on the inner wall surface of the hollow body. It is formed. According to this method, the boiling surface can be roughened even if the boiling surface exists inside the container (that is, inside the hollow body). Further, since it is only necessary to spray particles into the hollow body, the processing can be completed easily in a short time, and the boiling surface can be roughened at low cost.

【0005】請求項2の手段によれば、冷媒槽は、中空
体の粒子が噴射された噴射側の開口端を上方に向けて配
置されている。中空体の何方か一方の開口端から粒子を
噴射した場合、粒子の衝突によって形成された凹凸の程
度(粗さ)は、噴射側の開口端に近い程、凹凸の程度が
大きく(表面が粗い)、噴射側の開口端から遠ざかるに
従って凹凸の程度が小さく(表面が滑らか)なる。従っ
て、より表面の粗い噴射側開口端を上方に向けて配置し
た方が、冷媒槽内上部の沸騰熱伝達を良くして放熱性能
を向上できる。
According to the second aspect of the present invention, the refrigerant tank is arranged such that the opening end on the injection side where the hollow particles are injected is directed upward. When particles are ejected from one of the open ends of the hollow body, the degree (roughness) of the irregularities formed by the collision of the particles increases as the particles are closer to the open end on the ejection side (the surface is rougher). ), The degree of unevenness decreases (the surface becomes smoother) as the distance from the opening end on the ejection side increases. Therefore, by arranging the injection-side opening end having a rougher surface upward, the boiling heat transfer in the upper part in the refrigerant tank can be improved and the heat radiation performance can be improved.

【0006】請求項3の手段によれば、中空体の蒸気通
路の内壁面のみに粒子の衝突による凹凸が形成されてい
る。蒸気通路の内壁面を粗面化することで冷媒の沸騰を
促進することができる。一方、凝縮液通路は、放熱器で
凝縮液化された凝縮液が流下するため、凝縮液通路では
冷媒の沸騰(発泡)を抑制した方が良く、凝縮液通路の
内壁面を粗面化するのは放熱性向上の面で逆効果とな
る。
According to the third aspect, irregularities due to collision of particles are formed only on the inner wall surface of the vapor passage of the hollow body. Boiling the refrigerant can be promoted by roughening the inner wall surface of the vapor passage. On the other hand, since the condensed liquid condensed and liquefied by the radiator flows down in the condensed liquid passage, it is better to suppress the boiling (foaming) of the refrigerant in the condensed liquid passage and roughen the inner wall surface of the condensed liquid passage. Has the opposite effect in terms of improving heat dissipation.

【0007】請求項4の手段によれば、冷媒槽を形成す
る中空体は、押出成形によって内壁面に微細な凹凸が形
成されている。この微細な凹凸により中空体の内壁面が
粗面化されることで冷媒の沸騰を促進できる。この押出
成形によれば、沸騰面が容器内部(つまり中空体の内
部)に存在しても、短時間で容易(低コストである)に
沸騰面を粗面化できる。
According to the fourth aspect of the present invention, the hollow body forming the refrigerant tank has fine irregularities formed on the inner wall surface by extrusion molding. The boiling of the refrigerant can be promoted by roughening the inner wall surface of the hollow body by the fine irregularities. According to this extrusion molding, even if the boiling surface exists inside the container (that is, inside the hollow body), the boiling surface can be easily roughened (at low cost) in a short time.

【0008】請求項5の手段によれば、中空体に設けら
れた蒸気通路の内壁面のみに粒子の衝突による凹凸が形
成されている。請求項3の手段と同様に、蒸気通路の内
壁面を粗面化することで冷媒の沸騰を促進することがで
きる。一方、凝縮液通路では冷媒の沸騰(発泡)を抑制
した方が良く、凝縮液通路の内壁面を粗面化するのは放
熱性向上の面で逆効果となる。
According to the means of claim 5, irregularities due to the collision of particles are formed only on the inner wall surface of the steam passage provided in the hollow body. Similarly to the means of claim 3, roughening the inner wall surface of the steam passage can promote the boiling of the refrigerant. On the other hand, it is better to suppress the boiling (foaming) of the refrigerant in the condensate passage, and roughening the inner wall surface of the condensate passage has an adverse effect in terms of improving heat dissipation.

【0009】請求項6の手段によれば、押出成形された
中空体の蒸気通路の開口端から中空内部に粒子を噴射
し、その粒子の衝突によって内壁面に凹凸が形成されて
いる。この様に、押出成形によって蒸気通路の内壁面に
微細な凹凸を形成した後、更に粒子の衝突による凹凸を
形成することで、沸騰面上の気泡発生点数をより増加さ
せることができ、放熱性能を更に向上できる。
According to the means of claim 6, particles are injected into the hollow interior from the open end of the steam passage of the extruded hollow body, and the collision of the particles forms irregularities on the inner wall surface. In this way, by forming fine irregularities on the inner wall surface of the steam passage by extrusion molding, and further forming irregularities due to particle collision, the number of bubbles generated on the boiling surface can be further increased, and the heat dissipation performance Can be further improved.

【0010】請求項7の手段によれば、中空体の中空内
部に噴射される粒子は、粒径が100〜1000μmで
ある。冷媒が沸騰する際に必要な気泡核の形成に有効な
凹凸形状はミクロン単位であり、ミリ単位の凹凸形状で
は気泡核の形成に寄与しにくい。従って、ミクロン単位
の凹凸形状を形成するためには、粒子の粒径を100〜
1000μmとすることが望ましい。
According to the means of claim 7, the particles injected into the hollow body of the hollow body have a particle size of 100 to 1000 μm. The irregular shape effective for forming the bubble nucleus necessary when the refrigerant boils is on the order of microns, and the irregular shape of the millimeter unit does not easily contribute to the formation of the bubble nucleus. Therefore, in order to form irregularities on the order of microns, the particle size of the particles should be 100 to
It is desirable that the thickness be 1000 μm.

【0011】請求項8の手段によれば、凹凸形状は放熱
器に近づくほど大きく設定される。放熱器に近い部分で
の冷媒槽は、冷媒が高温になって吸熱しにくくなってい
るが、上記構成により更に吸熱しやすくできる。
According to the means of claim 8, the uneven shape is set to be larger as approaching the radiator. In the refrigerant tank near the radiator, the temperature of the refrigerant becomes high and it is difficult for the refrigerant to absorb heat. However, the above configuration makes it easier to absorb heat.

【0012】[0012]

【発明の実施の形態】次に、本発明の沸騰冷却装置を図
面に基づいて説明する。 (第1実施例)図1は沸騰冷却装置の正面図、図2は沸
騰冷却装置の側面図である。本実施例の沸騰冷却装置1
は、冷媒の沸騰熱伝達によって発熱体2を冷却するもの
で、冷媒槽3、連結部4、放熱器5、及び冷却ファン
(図示しない)から構成される。発熱体2は、例えば電
気自動車や一般電力制御機器のインバータ回路を構成す
るIGBTモジュールであり、発熱体2の放熱面が冷媒
槽3の外壁面に密着した状態でボルト(図示しない)の
締め付けにより冷媒槽3に固定されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, a cooling apparatus according to the present invention will be described with reference to the drawings. (First Embodiment) FIG. 1 is a front view of a boiling cooling device, and FIG. 2 is a side view of the boiling cooling device. Boiling cooling device 1 of the present embodiment
Is for cooling the heating element 2 by the transfer of boiling heat of the refrigerant, and includes a refrigerant tank 3, a connecting portion 4, a radiator 5, and a cooling fan (not shown). The heating element 2 is, for example, an IGBT module that constitutes an inverter circuit of an electric vehicle or a general power control device, and is tightened with a bolt (not shown) in a state where the heat radiation surface of the heating element 2 is in close contact with the outer wall surface of the refrigerant tank 3. It is fixed to the refrigerant tank 3.

【0013】冷媒槽3は、例えばアルミニウム製のブロ
ック材から押出加工によって成形された押出材7(図3
参照)と、この押出材7の下端面に被せられるキャップ
8から成る。押出材7は、図3(a)に示す様に、横幅
に対して厚み幅の薄い偏平形状に設けられて、押出方向
(図3(b)の上下方向)に貫通する蒸気通路9、凝縮
液通路10、及び非作動通路11を有している。この蒸
気通路9、凝縮液通路10、非作動通路11は、押出方
向に延びる複数の通路壁12によって区画され、更に蒸
気通路9は押出方向に延びる複数本のリブ13によって
小通路9aに区画されている。また、各通路壁12に
は、発熱体2を固定するためのボルトを螺着する螺子穴
14が形成されている。
The coolant tank 3 is made of an extruded material 7 (FIG. 3) formed by extruding, for example, an aluminum block material.
) And a cap 8 to be placed on the lower end surface of the extruded material 7. As shown in FIG. 3A, the extruded material 7 is provided in a flat shape having a small thickness with respect to the lateral width, and has a steam passage 9 penetrating in the extrusion direction (vertical direction in FIG. 3B). It has a liquid passage 10 and a non-operating passage 11. The steam passage 9, the condensate passage 10, and the non-operating passage 11 are defined by a plurality of passage walls 12 extending in the pushing direction, and the steam passage 9 is further divided into small passages 9 a by a plurality of ribs 13 extending in the pushing direction. ing. Further, a screw hole 14 for screwing a bolt for fixing the heating element 2 is formed in each passage wall 12.

【0014】蒸気通路9は、発熱体2の熱を受けて沸騰
気化した蒸気冷媒が上昇する通路で、発熱体2の取付け
部位に対応する押出材7の中央部に2本並列に形成され
ている。但し、各蒸気通路9(小通路9a)は、その内
壁面に多数の凹凸(図示しない)が形成されている。こ
の凹凸は、図4に示す様に、蒸気通路9の一方の開口端
から噴射ノズル15を用いて通路内部に粒子Rを噴射
し、その粒子Rが内壁面に衝突することで形成されてい
る。この粒子Rの衝突によって形成される凹凸の程度
(表面粗さ)を図5に示す。なお、図5(a)は処理前
の表面粗さ、図5(b)は処理後の噴射側開口端付近の
表面粗さ、図5(c)は処理後の反噴射側開口端付近の
表面粗さを示す。 (噴射条件) 蒸気通路9の長さl:270mm 処理時間:10秒 噴射材(粒子R):酸化アルミナ(Al2 3 ) 噴射材(粒子R)の粒径:420〜590μm 使用エア圧力:2〜6kgf/cm2 エア供給口:3/8インチ
The vapor passage 9 is a passage through which the vapor refrigerant vaporized by the heat of the heating element 2 rises, and is formed in parallel at the center of the extruded material 7 corresponding to the mounting portion of the heating element 2. I have. However, each steam passage 9 (small passage 9a) has a large number of irregularities (not shown) formed on the inner wall surface. As shown in FIG. 4, the irregularities are formed by injecting particles R into the inside of the vapor passage 9 from one open end of the vapor passage 9 using an ejection nozzle 15 and colliding with the inner wall surface of the particles R. . FIG. 5 shows the degree of unevenness (surface roughness) formed by the collision of the particles R. 5 (a) shows the surface roughness before the treatment, FIG. 5 (b) shows the surface roughness near the ejection side opening end after the treatment, and FIG. 5 (c) shows the surface roughness near the non-ejection side opening end after the treatment. Shows the surface roughness. (Injection conditions) Length l of the steam passage 9: 270 mm Processing time: 10 seconds Injection material (particle R): alumina oxide (Al 2 O 3 ) Particle size of the injection material (particle R): 420 to 590 μm Working air pressure: 2-6 kgf / cm 2 Air supply port: 3/8 inch

【0015】凝縮液通路10は、放熱器5で冷却されて
液化した凝縮液が流下する通路で、発熱体2の取付け部
位から外れた位置に形成されている。非作動通路11
は、押出材7の横幅方向で凝縮液通路10と反対側に形
成されている。この凝縮液通路10と非作動通路11
は、内壁面に凹凸が形成されることはなく、押出加工で
得られた内壁面状態が保たれている。キャップ8は、押
出材7と同じアルミニウム製で、押出材7の下端外周部
に被せられて、ろう付けされている。但し、キャップ8
は、押出材7の反噴射側開口端(図4の下端)に被せら
れる。つまり、押出材7は、蒸気通路9の内部に粒子R
を噴射した噴射側の開口端が上方を向いて配置される。
キャップ8と押出材7の下端面との間には、押出材7に
形成された各通路9、10、11をそれぞれ連通する連
通路16が設けられている(図1参照)。
The condensed liquid passage 10 is a passage through which the condensed liquid cooled and liquefied by the radiator 5 flows, and is formed at a position off the mounting portion of the heating element 2. Non-operating passage 11
Are formed on the side opposite to the condensate passage 10 in the width direction of the extruded material 7. The condensate passage 10 and the non-operating passage 11
No irregularities are formed on the inner wall surface, and the state of the inner wall surface obtained by extrusion is maintained. The cap 8 is made of the same aluminum as the extruded material 7, and is covered on the outer periphery of the lower end of the extruded material 7 and brazed. However, cap 8
Is placed on the opening end (lower end in FIG. 4) of the extruded material 7 on the side opposite to the ejection side. That is, the extruded material 7 contains the particles R inside the steam passage 9.
The opening end on the ejection side that has ejected is directed upward.
Between the cap 8 and the lower end surface of the extruded member 7, there is provided a communication passage 16 which communicates each of the passages 9, 10, 11 formed in the extruded member 7 (see FIG. 1).

【0016】連結部4は、長円形状にプレス成形された
2枚の成形プレート17(図6参照)と、この2枚の成
形プレート17によって形成される偏平な空間内部を一
方の連通室と他方の連通室(図示しない)とに仕切るセ
パレータ18(図7参照)とから構成され、冷媒槽3の
上部に設けられて、冷媒槽3と放熱器5とを気密に連結
している。成形プレート17は、図6に示す様に、長手
方向の両端部に楕円形状の凹部170(成形プレート1
7の内側から外側へ窪んでいる)が設けられて、各凹部
170にそれぞれ連通口171、172(プレス時に打
ち抜かれた孔)が開口している。但し、一方の連通口1
71は、楕円形状を成す凹部170の上部寄り開口し、
他方の連通口172は、凹部170の下部寄りに開口し
ている。つまり、成形プレート17の上下方向(図6の
上下方向)において、一方の連通口171の方が他方の
連通口172より高い位置に開口している。また、成形
プレート17には、一方の連通口171の下部と他方の
連通口172の上部にそれぞれ円弧状の補強用リブ17
3が設けられている。2枚の成形プレート17は、下端
側を除く外周縁部が接合されて、内部に偏平な空間が形
成される。
The connecting portion 4 is composed of two molding plates 17 (see FIG. 6) press-molded into an oval shape, and a flat space formed by the two molding plates 17 is connected to one communication chamber. A separator 18 (see FIG. 7) partitioning the other communication chamber (not shown) is provided above the refrigerant tank 3 and hermetically connects the refrigerant tank 3 and the radiator 5. As shown in FIG. 6, the forming plate 17 has elliptical recesses 170 (forming plate 1) at both ends in the longitudinal direction.
7 are provided from the inside to the outside, and communication holes 171 and 172 (holes punched at the time of pressing) are opened in the respective recesses 170. However, one communication port 1
71 is an opening near the top of the concave portion 170 having an elliptical shape,
The other communication port 172 opens toward the lower part of the recess 170. That is, in the up-down direction of the forming plate 17 (up-down direction in FIG. 6), one communication port 171 is opened at a position higher than the other communication port 172. Also, the forming plate 17 has arc-shaped reinforcing ribs 17 at the lower part of one communication port 171 and the upper part of the other communication port 172, respectively.
3 are provided. The outer peripheral edges of the two molding plates 17 except for the lower ends are joined to form a flat space inside.

【0017】セパレータ18は、2枚の成形プレート1
7によって形成される偏平空間の他方の連通口172寄
りに配されて(図1参照)、その下端面が冷媒槽3の蒸
気通路9と凝縮液通路10とを区画する通路壁12の上
端面に当接してろう付けされている。このセパレータ1
8は、2枚の成形プレート17によって形成される偏平
空間の内周形状に相応した外形状(図7参照)にプレス
成形されて、その外周縁部が各成形プレート17の内壁
面にろう付けされている。連結部4の一方の連通室に
は、複数のインナフィン19が挿入されている。このイ
ンナフィン19は、図1に示す様に、成形プレート17
に設けられた複数の位置決め用リブ174によって支持
されている。但し、各インナフィン19は、冷媒槽3の
蒸気通路9から流出した蒸気冷媒が一方の連通室内を一
方の連通口171へ向かって流れることができる様に、
連結部4の長手方向を向いて配されるとともに、各イン
ナフィン19相互間に隙間が確保されている。
The separator 18 comprises two molded plates 1
7 is disposed near the other communication port 172 of the flat space formed by the pressure chamber 7 (see FIG. 1), and the lower end surface thereof is the upper end surface of the passage wall 12 that partitions the vapor passage 9 and the condensate passage 10 of the refrigerant tank 3. It is brazed in contact with. This separator 1
8 is press-formed into an outer shape (see FIG. 7) corresponding to the inner circumferential shape of the flat space formed by the two forming plates 17, and its outer peripheral edge is brazed to the inner wall surface of each forming plate 17. Have been. A plurality of inner fins 19 are inserted into one communication chamber of the connecting portion 4. As shown in FIG. 1, the inner fin 19 is
Are supported by a plurality of positioning ribs 174 provided at the bottom. However, each inner fin 19 is formed so that the vapor refrigerant flowing out from the vapor passage 9 of the refrigerant tank 3 can flow toward one communication port 171 through one communication chamber.
The connecting portions 4 are arranged in the longitudinal direction, and a gap is secured between the inner fins 19.

【0018】放熱器5は、所謂ドロンカップタイプの熱
交換器で、偏平な放熱管20と放熱用フィン21とを複
数積層して構成されている。放熱管20は、長円形状に
プレス成形された2枚の成形プレート22(図8参照)
を互いの外周縁部で接合して偏平な中空体に設けられ、
長手方向の両端部に連通口22aが開口している。ま
た、放熱管20の内部には、アルミニウム製の薄板を波
形状に成形したインナフィン23(図2参照)が挿入さ
れている。各放熱管20は、図2に示す様に、連結部4
の両側にそれぞれ複数個ずつ積層されて、互いの連通口
22aを通じて相互に連通している。また、連結部4に
接続される放熱管20と連結部4とは、連結部4の連通
口171、172と放熱管20の連通口22aとを通じ
て相互に連通している。放熱用フィン21は、積層方向
に隣接する各放熱管20同士の間に形成される偏平な空
間に挿入されて、放熱管20の外壁面にろう付けされて
いる。冷却ファンは、放熱器5に送風するもので、放熱
器5に対して送風方向が略垂直方向となる様に、放熱器
5の上方に配置されている。
The radiator 5 is a so-called Dron cup type heat exchanger, and is constituted by laminating a plurality of flat radiating tubes 20 and radiating fins 21. The radiator tube 20 is composed of two molded plates 22 press-formed into an oval shape (see FIG. 8).
Are provided in a flat hollow body by joining the outer peripheral edges of each other,
The communication ports 22a are open at both ends in the longitudinal direction. Further, an inner fin 23 (see FIG. 2) formed by shaping a thin aluminum plate into a corrugated shape is inserted into the heat radiation tube 20. As shown in FIG.
Are laminated on both sides of each other, and communicate with each other through their respective communication ports 22a. Further, the heat radiating pipe 20 connected to the connecting part 4 and the connecting part 4 communicate with each other through the communication ports 171 and 172 of the connecting part 4 and the communication port 22 a of the heat radiating pipe 20. The heat radiating fins 21 are inserted into flat spaces formed between the adjacent heat radiating tubes 20 in the stacking direction, and are brazed to the outer wall surface of the heat radiating tubes 20. The cooling fan blows air to the radiator 5, and is arranged above the radiator 5 so that the blowing direction is substantially perpendicular to the radiator 5.

【0019】次に、本実施例の作用を説明する。発熱体
2から発生した熱が伝わって沸騰した冷媒は、気泡とな
って各蒸気通路9を上昇し、各蒸気通路9から連結部4
の一方の連通室を通って一方の連通口171より各放熱
管20へ流入する。各放熱管20を流れる蒸気冷媒は、
冷却ファンの送風を受けて低温となっている放熱管20
の内壁面及び放熱管20内に挿入されたインナフィン2
3の表面に凝縮液化する。液化して液滴となって冷媒
は、連結部4に対して傾斜して取り付けられている放熱
管20の底面を流れて連結部4の他方の連通室に流入
し、更に連結部4の他方の連通口172より冷媒槽3の
凝縮液通路10へ流入する。凝縮液通路10を流下した
凝縮液は、キャップ8内の連通路16を通って再び蒸気
通路9に供給される。一方、放熱管20で蒸気冷媒が凝
縮する際に放出した凝縮潜熱は、放熱管20から放熱用
フィン21へ伝わり、冷却ファンによって送風される空
気中へ放出される。
Next, the operation of this embodiment will be described. The refrigerant boiled by the heat generated from the heat generating element 2 is transferred to the vapor passages 9 as bubbles and rises from the vapor passages 9 to the connecting portions 4.
And flows into each heat radiation pipe 20 from one communication port 171 through one communication chamber. The vapor refrigerant flowing through each radiator tube 20 is:
The radiator tube 20 which is cooled by the cooling fan
Inner fin 2 inserted into inner wall surface of heat sink and radiator tube 20
Condensed and liquefied on the surface of 3. The refrigerant is liquefied to form droplets, and the refrigerant flows through the bottom surface of the heat radiating pipe 20 attached to the connecting portion 4 at an angle, flows into the other communication chamber of the connecting portion 4, and further flows into the other communication chamber of the connecting portion 4. Flows into the condensate passage 10 of the refrigerant tank 3 from the communication port 172 of the refrigerant tank 3. The condensate flowing down the condensate passage 10 is supplied again to the vapor passage 9 through the communication passage 16 in the cap 8. On the other hand, the latent heat of condensation released when the vapor refrigerant is condensed in the radiator tube 20 is transmitted from the radiator tube 20 to the radiating fins 21 and released into the air blown by the cooling fan.

【0020】(第1実施例の効果)本実施例では、冷媒
槽3の蒸気通路9の内壁面に気泡核の形成に有効な多数
の凹凸が形成されているため、沸騰面上の気泡発生点数
が増加して放熱性能を向上できる。蒸気通路9の内壁面
を粗面化した場合(本実施例の場合)と、粗面化してい
ない従来の場合とで比較すると、図9に示す様に、発熱
体2が取り付けられる冷媒槽3の取付面の温度を4〜5
℃程度低減できる。なお、気泡核の形成に有効な凹凸形
状は、ミクロン単位であるため、蒸気通路9内に噴射す
る粒子Rは、粒径が100〜1000μmであることが
望ましい。本実施例の方法によれば、沸騰面が容器内部
(つまり押出材7の内部)に存在していても、蒸気通路
9の内部に粒子Rを噴射するだけで多数の凹凸を形成で
きるため、短時間で容易に加工を完了でき、低コストで
沸騰面の粗面化を行うことができる。
(Effect of the First Embodiment) In this embodiment, since a large number of irregularities effective for forming bubble nuclei are formed on the inner wall surface of the vapor passage 9 of the refrigerant tank 3, bubbles are generated on the boiling surface. The heat dissipation performance can be improved by increasing the score. A comparison between the case where the inner wall surface of the steam passage 9 is roughened (in the case of the present embodiment) and the conventional case where the inner wall surface is not roughened shows that the refrigerant tank 3 to which the heating element 2 is attached as shown in FIG. 4 ~ 5
Can be reduced by about ° C. In addition, since the uneven shape effective for forming the bubble nuclei is on the order of microns, it is desirable that the particles R injected into the vapor passage 9 have a particle diameter of 100 to 1000 μm. According to the method of the present embodiment, even if the boiling surface exists inside the container (that is, inside the extruded material 7), many irregularities can be formed only by injecting the particles R into the inside of the steam passage 9, Processing can be completed easily in a short time, and the boiling surface can be roughened at low cost.

【0021】また、押出材7は、粒子Rが噴射された噴
射側の開口端を上方に向けて配置している。これは、粒
子Rの衝突によって形成された凹凸の程度(粗さ)は、
図5(b)、(c)に示す様に、噴射側の開口端に近い
程、凹凸の程度が大きく(表面が粗い)、噴射側の開口
端から遠ざかるに従って凹凸の程度が小さく(表面が滑
らか)なることから、より表面の粗い噴射側の開口端を
上方に向けて配置した方が、冷媒槽3内上部の沸騰熱伝
達を良くして放熱性能を向上できる。更に、蒸気通路9
の内壁面のみに粒子Rの衝突による凹凸が形成されてい
る。蒸気通路9の内壁面を粗面化することで冷媒の沸騰
を促進することができるが、凝縮液通路10は、放熱器
5で凝縮液化された凝縮液が流下するため、凝縮液通路
10では冷媒の沸騰(発泡)を抑制した方が良く、凝縮
液通路10の内壁面を粗面化するのは放熱性向上の面で
逆効果となる。
The extruded material 7 is arranged such that the opening end on the side where the particles R are injected is directed upward. This is because the degree (roughness) of the irregularities formed by the collision of the particles R is
As shown in FIGS. 5 (b) and 5 (c), the degree of the irregularity increases (rougher the surface) as it approaches the opening end on the ejection side, and the degree of the irregularity decreases as the distance from the opening end on the ejection side decreases (the surface becomes (Smoothness), it is possible to improve the heat radiation performance by improving the boiling heat transfer in the upper part in the refrigerant tank 3 by arranging the opening end on the injection side with a rougher surface upward. Further, the steam passage 9
Are formed only on the inner wall surface of the substrate due to the collision of the particles R. Although the boiling of the refrigerant can be promoted by roughening the inner wall surface of the vapor passage 9, the condensed liquid condensed by the radiator 5 flows down in the condensed liquid passage 10. It is better to suppress the boiling (foaming) of the refrigerant, and roughening the inner wall surface of the condensed liquid passage 10 has the opposite effect in terms of improving heat dissipation.

【0022】(第2実施例)図10は押出材7の蒸気通
路9を粗面化する説明図である。本実施例は、図10に
示す様に、蒸気通路9の各小通路9a毎に噴射ノズル1
5を設けて、一度に粗面化処理を行う一例を示すもので
ある。これにより、処理時間を短縮できることは言うま
でもない。
(Second Embodiment) FIG. 10 is an explanatory view for roughening the steam passage 9 of the extruded material 7. In this embodiment, as shown in FIG. 10, the injection nozzle 1 is provided for each small passage 9a of the steam passage 9.
5 shows an example in which a roughening process is performed at one time. Thus, it goes without saying that the processing time can be reduced.

【0023】(第3実施例)図11は押出材7の上面図
である。本実施例は、押出加工によって蒸気通路9の内
壁面に微細な凹凸を多数形成した一例を示すものであ
る。凹凸の形状としては、図12(a)に示す様に、内
部の空間が広く形成されたピット形状24、または図1
2(b)に示す様な楔形状25等ができる。本実施例の
様に、押出加工でも、気泡核形成に有効な凹凸を形成す
ることにより、沸騰面上の気泡発生点数が増加して放熱
性能を向上できる。なお、押出加工によって蒸気通路9
の内壁面に凹凸を形成した後で、更に粒子Rを噴射して
粗面化することもできる。この場合、より多くの凹凸が
形成されるため、放熱性能を更に向上できる。
(Third Embodiment) FIG. 11 is a top view of the extruded material 7. This embodiment shows an example in which a large number of fine irregularities are formed on the inner wall surface of the steam passage 9 by extrusion. As shown in FIG. 12A, the shape of the unevenness is a pit shape 24 in which the internal space is formed wide, or FIG.
A wedge shape 25 as shown in FIG. As in the present embodiment, even in the extrusion process, by forming irregularities effective for forming bubble nuclei, the number of bubbles generated on the boiling surface is increased, and the heat radiation performance can be improved. In addition, the steam passage 9 is extruded.
After the irregularities are formed on the inner wall surface, the particles R can be further sprayed to roughen the surface. In this case, since more irregularities are formed, the heat radiation performance can be further improved.

【0024】なお、上記各実施例において、蒸気通路9
の内壁面に形成される凹凸形状は、放熱器5に近い程大
きく設定されることが望ましい。これは、放熱器5に近
い部分での冷媒槽3は冷媒が高温になって吸熱しにくく
なっているが、上記構成により更に吸熱し易くできるた
めである。
In each of the above embodiments, the steam passage 9
It is desirable that the concavo-convex shape formed on the inner wall surface be set larger as it is closer to the radiator 5. This is because the temperature of the refrigerant in the portion of the refrigerant tank 3 close to the radiator 5 becomes low and the heat is hardly absorbed, but the above configuration makes it easier to absorb heat.

【図面の簡単な説明】[Brief description of the drawings]

【図1】沸騰冷却装置の正面図である。FIG. 1 is a front view of a boiling cooling device.

【図2】沸騰冷却装置の側面図である。FIG. 2 is a side view of the boiling cooling device.

【図3】押出材の上面図(a)と正面図(b)である。FIG. 3 is a top view (a) and a front view (b) of an extruded material.

【図4】押出材の蒸気通路を粗面化する説明図である。FIG. 4 is an explanatory view for roughening a steam passage of an extruded material.

【図5】蒸気通路内壁面の表面粗さを示すグラフであ
る。
FIG. 5 is a graph showing the surface roughness of the inner wall surface of the steam passage.

【図6】成形プレートの平面図(a)と上面図(b)で
ある。
FIG. 6 is a plan view (a) and a top view (b) of a forming plate.

【図7】セパレータの正面図(a)と側面図(b)であ
る。
FIG. 7 is a front view (a) and a side view (b) of a separator.

【図8】プレートの上面図(a)と平面図(b)であ
る。
FIG. 8 is a top view (a) and a plan view (b) of a plate.

【図9】冷媒槽の取付面温度を比較したグラフである。FIG. 9 is a graph comparing the mounting surface temperatures of the refrigerant tanks.

【図10】押出材の蒸気通路を粗面化する説明図である
(第2実施例)。
FIG. 10 is an explanatory view for roughening a steam passage of an extruded material (second embodiment).

【図11】押出材の上面図である(第3実施例)。FIG. 11 is a top view of an extruded material (third embodiment).

【図12】蒸気通路の内壁面に形成された凹凸を示す断
面図である(第3実施例)。
FIG. 12 is a sectional view showing irregularities formed on an inner wall surface of a steam passage (third embodiment).

【符号の説明】[Explanation of symbols]

1 沸騰冷却装置 2 発熱体 3 冷媒槽 5 放熱器 7 押出材(中空体) 8 キャップ(閉塞部材) 9 蒸気通路 10 凝縮液通路 R 粒子 DESCRIPTION OF SYMBOLS 1 Boiling cooling device 2 Heating element 3 Refrigerant tank 5 Radiator 7 Extruded material (hollow body) 8 Cap (closing member) 9 Steam passage 10 Condensed liquid passage R Particle

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】冷媒の沸騰及び凝縮作用によって発熱体を
冷却する沸騰冷却装置であって、 前記冷媒を収容する冷媒槽と、 この冷媒槽で前記発熱体の熱を受けて気化した蒸気冷媒
が流入し、その蒸気冷媒の熱を放出する放熱器とを備
え、 前記冷媒槽は、両端が開口する中空体と、この中空体の
一方の開口端を閉塞する閉塞部材とから成り、 前記中空体は、開口端から中空内部に粒子を噴射し、そ
の粒子の衝突によって内壁面に凹凸が形成されているこ
とを特徴とする沸騰冷却装置。
1. A boiling cooling device for cooling a heating element by a boiling and condensing action of a refrigerant, comprising: a refrigerant tank containing the refrigerant; and a vapor refrigerant vaporized by receiving heat of the heating element in the refrigerant tank. A radiator that flows in and releases heat of the vapor refrigerant, wherein the refrigerant tank includes a hollow body having both ends opened, and a closing member that closes one open end of the hollow body; Is a boil cooling device characterized in that particles are sprayed from the opening end into the hollow interior, and the collision of the particles forms irregularities on the inner wall surface.
【請求項2】前記冷媒槽は、前記中空体の粒子が噴射さ
れた噴射側の開口端を上方に向けて配置されていること
を特徴とする請求項1記載の沸騰冷却装置。
2. The boiling cooling device according to claim 1, wherein the refrigerant tank is arranged with an opening end on an injection side where the particles of the hollow body are injected facing upward.
【請求項3】前記中空体は、前記発熱体の熱を受けて気
化した蒸気冷媒が上昇する蒸気通路と、前記放熱器で凝
縮液化された凝縮液が流下する凝縮液通路とが設けられ
て、前記蒸気通路の内壁面のみに前記凹凸が形成されて
いることを特徴とする請求項1または2記載の沸騰冷却
装置。
3. The hollow body is provided with a vapor passage through which a vapor refrigerant vaporized by receiving heat from the heating element rises, and a condensed liquid passage through which condensed liquid condensed and liquefied by the radiator flows down. 3. The boiling cooling device according to claim 1, wherein the unevenness is formed only on an inner wall surface of the steam passage.
【請求項4】冷媒の沸騰及び凝縮作用によって発熱体を
冷却する沸騰冷却装置であって、 前記冷媒を収容する冷媒槽と、 この冷媒槽で前記発熱体の熱を受けて気化した蒸気冷媒
が流入し、その蒸気冷媒の熱を放出する放熱器とを備
え、 前記冷媒槽は、両端が開口する中空体と、この中空体の
一方の開口端を閉塞する閉塞部材とから成り、 前記中空体は、押出成形によって内壁面に微細な凹凸が
形成されていることを特徴とする沸騰冷却装置。
4. A boiling cooling device for cooling a heating element by a boiling and condensing action of a refrigerant, comprising: a refrigerant tank containing the refrigerant; and a vapor refrigerant vaporized by receiving heat of the heating element in the refrigerant tank. A radiator that flows in and releases heat of the vapor refrigerant, wherein the refrigerant tank includes a hollow body having both ends opened, and a closing member that closes one open end of the hollow body; Is a boil cooling apparatus characterized in that fine irregularities are formed on an inner wall surface by extrusion molding.
【請求項5】前記中空体は、前記発熱体の熱を受けて気
化した蒸気冷媒が上昇する蒸気通路と、前記放熱器で凝
縮液化された凝縮液が流下する凝縮液通路とが設けられ
て、前記蒸気通路の内壁面のみに前記凹凸が形成されて
いることを特徴とする請求項4記載の沸騰冷却装置。
5. The hollow body is provided with a vapor passage through which a vapor refrigerant vaporized by receiving heat from the heating element rises, and a condensate passage through which condensate condensed and liquefied by the radiator flows down. The boiling cooling device according to claim 4, wherein the irregularities are formed only on the inner wall surface of the steam passage.
【請求項6】前記中空体は、前記蒸気通路の開口端から
中空内部に粒子を噴射し、その粒子の衝突によって内壁
面に凹凸が形成されていることを特徴とする請求項5記
載の沸騰冷却装置。
6. The boiling member according to claim 5, wherein the hollow body has particles projected from the open end of the steam passage into the hollow interior, and the inner surface of the hollow body is formed by the collision of the particles. Cooling system.
【請求項7】前記中空体の中空内部に噴射される粒子
は、粒径が100〜1000μmであることを特徴とす
る請求項1、2、3、6に記載した何れかの沸騰冷却装
置。
7. The boiling cooling apparatus according to claim 1, wherein the particles injected into the hollow interior of the hollow body have a particle size of 100 to 1000 μm.
【請求項8】前記凹凸は、前記放熱器に近づくに従っ
て、凹凸形状が大きく設定されることを特徴とする請求
項1ないし7に記載した何れかの沸騰冷却装置。
8. The boiling cooling device according to claim 1, wherein the irregularities are set such that the irregularities become larger as they approach the radiator.
JP8201406A 1996-07-31 1996-07-31 Boiling cooler Pending JPH1047889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8201406A JPH1047889A (en) 1996-07-31 1996-07-31 Boiling cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8201406A JPH1047889A (en) 1996-07-31 1996-07-31 Boiling cooler

Publications (1)

Publication Number Publication Date
JPH1047889A true JPH1047889A (en) 1998-02-20

Family

ID=16440568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8201406A Pending JPH1047889A (en) 1996-07-31 1996-07-31 Boiling cooler

Country Status (1)

Country Link
JP (1) JPH1047889A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9696068B2 (en) 2012-09-19 2017-07-04 Nec Corporation Cooling apparatus, heat receiving section and boiling section used therein, and method of manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009098831A (en) * 2007-10-16 2009-05-07 Takaaki Yamaoka Rfid card
JP2010194277A (en) * 2009-02-20 2010-09-09 Miinosu Denshi Kk Diaper monitoring device
JP2011147505A (en) * 2010-01-19 2011-08-04 Unicharm Corp Excretion management system, excretion detector and receiver
JP2013054659A (en) * 2011-09-06 2013-03-21 Kyoei Sangyo Kk Missing monitoring apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009098831A (en) * 2007-10-16 2009-05-07 Takaaki Yamaoka Rfid card
JP2010194277A (en) * 2009-02-20 2010-09-09 Miinosu Denshi Kk Diaper monitoring device
JP2011147505A (en) * 2010-01-19 2011-08-04 Unicharm Corp Excretion management system, excretion detector and receiver
JP2013054659A (en) * 2011-09-06 2013-03-21 Kyoei Sangyo Kk Missing monitoring apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9696068B2 (en) 2012-09-19 2017-07-04 Nec Corporation Cooling apparatus, heat receiving section and boiling section used therein, and method of manufacturing the same

Similar Documents

Publication Publication Date Title
KR100260676B1 (en) Cooling apparatus boling and condensing refrigerant
US6073683A (en) Cooling apparatus using boiling and condensing refrigerant and method for manufacturing the same
JP3203475B2 (en) Semiconductor device
US6357517B1 (en) Cooling apparatus boiling and condensing refrigerant
KR102296543B1 (en) Liquid-cooled heat sink
JPH06112385A (en) Cooling structure of semiconductor element
JP3608272B2 (en) Boiling cooling device and manufacturing method thereof
JP2000065456A (en) Ebullient cooler
JPH1047889A (en) Boiling cooler
JPH0878589A (en) Boiling/cooling device
JPH1098142A (en) Boiling cooler
JP2003258475A (en) Boiling cooler
JP3608286B2 (en) Boiling cooler
JP3511777B2 (en) Boiling cooling device
JPH08321570A (en) Boiling cooler
JPH0923081A (en) Boiling cooling equipment
KR100278583B1 (en) Cooling apparatus using boiling and condensing refrigerant
JP3501911B2 (en) Boiling cooling device
JP3496695B2 (en) Boiling cooling device and manufacturing method thereof
JP2531459B2 (en) Integrated circuit cooling structure
TWI802834B (en) Fluid cooling type heat dissipation module
JPH1050909A (en) Boiling cooler
CN113970228B (en) Heat abstractor and gradevin
JPH1065077A (en) Boiling cooling device
JPH11204709A (en) Boiling/cooling device