JPH1045023A - Energy absorbing member - Google Patents

Energy absorbing member

Info

Publication number
JPH1045023A
JPH1045023A JP21659296A JP21659296A JPH1045023A JP H1045023 A JPH1045023 A JP H1045023A JP 21659296 A JP21659296 A JP 21659296A JP 21659296 A JP21659296 A JP 21659296A JP H1045023 A JPH1045023 A JP H1045023A
Authority
JP
Japan
Prior art keywords
section
cross
wall
energy absorbing
absorbing member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21659296A
Other languages
Japanese (ja)
Other versions
JP3786743B2 (en
Inventor
Masakazu Kashiwagi
正和 柏木
Hiroshi Iwamura
宏 岩村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP21659296A priority Critical patent/JP3786743B2/en
Publication of JPH1045023A publication Critical patent/JPH1045023A/en
Application granted granted Critical
Publication of JP3786743B2 publication Critical patent/JP3786743B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To restrain the cracking of a wall and prevent the deterioration of energy absorbing ability by forming the outer wall corner R of a sectionally hollow extruded material to be thinner than original. SOLUTION: In sectionally square with cross inside-shaped extrusion molding, the thickness t1 of a corner R and a joint between a center cross section and a outer wall are made smaller than an original thickness (t). The corner R is made thinner (a) at the inside or outside of at both sides, e.g. The joint between the center cross section and the outer wall is made thinner (b) at the center cross section or at the outer face side of the joint between the cross section and the outer wall, e.g. In this way, the cracking of the wall is restrained and the deterioration of energy absorbing ability is prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車のフロント
部のサイドメンバのように、軸方向から加えられる衝撃
荷重を変形エネルギーに変換することにより構体全体の
破壊を防ぐエネルギー吸収部材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an energy absorbing member, such as a side member at a front portion of an automobile, for preventing an entire structure from being broken by converting an impact load applied from an axial direction into deformation energy.

【0002】[0002]

【従来の技術】自動車のフロント部分のエネルギー吸収
部材には、図13に示すようにバンパー1、フロントサ
イドメンバ(以下、サイドメンバ)2等があるが、高速
で大きな衝撃を受けた場合にそのエネルギーを吸収する
のは主としてサイドメンバ2である。そのため、サイド
メンバ2には限られたスペースでより多くのエネルギー
を吸収することが求められている。
2. Description of the Related Art As shown in FIG. 13, an energy absorbing member at a front portion of an automobile includes a bumper 1, a front side member (hereinafter referred to as a side member) 2 and the like. It is mainly the side member 2 that absorbs energy. Therefore, the side member 2 is required to absorb more energy in a limited space.

【0003】自動車のサイドメンバは鋼板プレス製の矩
形断面角材が使用されることが多かったが、最近の軽量
化要求からより軽量化が見込めるアルミ合金などの軽合
金を使用したものも考えられるようになってきた。これ
らのサイドメンバは全体に中空の柱状をしており、図1
4に模式的に示すように、軸方向に圧縮されたときに壁
面が蛇腹状になりながら変形して、衝撃エネルギーを金
属の塑性変形エネルギーに変換することによりエネルギ
ーを吸収している。なお、アルミ合金の場合、鋼に比べ
て強度も剛性も低いことから塑性崩壊しやすく、良好な
エネルギー吸収能力を有している。
[0003] As a side member of an automobile, a rectangular steel plate having a rectangular cross section made of a steel plate press is often used, but a light alloy such as an aluminum alloy which can be expected to be lighter in light of recent demands for a lighter weight can be considered. It has become These side members have a hollow column shape as a whole, and FIG.
As schematically shown in FIG. 4, when compressed in the axial direction, the wall surface deforms while forming a bellows shape, and absorbs energy by converting impact energy into plastic deformation energy of metal. In addition, in the case of aluminum alloy, since it has low strength and rigidity as compared with steel, it easily collapses plastically and has good energy absorbing ability.

【0004】従来のサイドメンバなどに使われるエネル
ギー吸収部材は、特開平4−50083号公報又は特開
平02−175452号公報のように、軸方向に圧縮力
を受けて塑性崩壊する際にいかにうまく蛇腹状に圧壊さ
せるかということに主眼がおかれている。すなわち、故
意に蛇腹状に崩壊させることによりオイラー座屈(サイ
ドメンバそのものが折れる)を防ぎ、安定したエネルギ
ー吸収を得ようというものである。しかし、これらの技
術ではエネルギー吸収を安定化させることはできてもエ
ネルギー吸収量そのものを増加させることはできず、こ
れを増加させるためには断面の大径化、厚肉化は避けら
れない。従って、自動車のように限られたスペース、限
られた重量の中でより多くのエネルギー吸収量を確保す
るためには、これらの従来技術だけでは不十分となって
いる。
A conventional energy absorbing member used for a side member or the like is well-known when it is subjected to a compressive force in the axial direction and plastically collapses, as disclosed in JP-A-4-50083 or JP-A-02-175452. The main focus is on whether to collapse the bellows. That is, by intentionally disintegrating in a bellows shape, Euler buckling (the side member itself is broken) is prevented, and stable energy absorption is obtained. However, these technologies can stabilize energy absorption but cannot increase the amount of energy absorption itself, and in order to increase the energy absorption, it is inevitable to increase the diameter and thickness of the cross section. Therefore, in order to secure a larger amount of energy absorption in a limited space and a limited weight like an automobile, these conventional technologies are not enough.

【0005】軽量化を図る場合、アルミなどの軽金属の
使用が考えられるがアルミ合金を中心とする軽金属は鋼
に比べて伸びが少なく、わずかな変形量でも割れが入っ
てしまうなどの欠点もある。特に、少ないボリュームで
多くのエネルギー吸収能力を持たせようとした場合、熱
処理や合金成分の調整などで材料強度を高める処理を行
うがこのような処置を行うと材料の延性(伸び)が失わ
れてしまう場合が多く、圧壊時に材料が割れてエネルギ
ーを効果的に吸収できない恐れがある。また、高強度材
を用いない場合はエネルギー吸収部材の肉厚を増してや
る必要があり、圧壊時に形材壁面が蛇腹状に変形する
際、厚肉化のため壁面表面のひずみが大きくなりすぎ、
割れが入ることによりエネルギー吸収能力が落ちてしま
うという欠点がある。
In order to reduce the weight, use of a light metal such as aluminum is conceivable. However, a light metal mainly made of an aluminum alloy has a drawback that it has a smaller elongation than steel and that even a small amount of deformation causes cracking. . In particular, when trying to give a large amount of energy absorption capacity with a small volume, a treatment to increase the material strength by heat treatment or adjustment of alloy components is performed, but such a treatment loses the ductility (elongation) of the material. In many cases, the material may be broken at the time of crushing and energy may not be absorbed effectively. Also, when not using a high-strength material, it is necessary to increase the thickness of the energy absorbing member, and when the profile wall deforms in a bellows shape during crushing, the wall surface distortion due to the thickening becomes too large,
There is a disadvantage that the energy absorption ability is reduced due to cracks.

【0006】[0006]

【発明が解決しようとする課題】アルミ合金を中心とす
る軽合金を用いることにより軽量化と良好なエネルギー
吸収能力を得ることができるが、上記のように大きなエ
ネルギー吸収能力を持たせようとした場合、材料が割れ
て所定のエネルギー吸収能力を得ることができない恐れ
がある。本発明は上記従来技術の欠点を解消しようとす
るもので、その目的は、壁面に発生する割れを抑制して
エネルギー吸収能力の低下を防ぎ、伸びの少ない材料で
も、限られたスペース、重量の中で高いエネルギー吸収
能力を持ったエネルギー吸収部材を得ることである。
The use of a light alloy mainly composed of an aluminum alloy makes it possible to reduce the weight and obtain a good energy absorption capacity. However, it has been attempted to provide a large energy absorption capacity as described above. In this case, there is a possibility that the material may be broken and a predetermined energy absorbing ability may not be obtained. An object of the present invention is to solve the above-mentioned drawbacks of the prior art, and an object of the present invention is to suppress cracks generated on a wall surface to prevent a reduction in energy absorption ability, and to use a material having a small elongation even in a limited space and weight. An object of the present invention is to obtain an energy absorbing member having a high energy absorbing ability.

【0007】[0007]

【課題を解決するための手段】本発明に係るエネルギー
吸収部材の1つは、外壁のコーナー部分にR(曲率)を
有する中空断面の押出形材にあって、コーナーR部の板
厚が元板厚よりも薄く形成されていることを特徴とする
エネルギー吸収部材、あるいは、外壁のコーナー部分に
Rを有するとともに内部にウエブを有する中空断面の押
出形材にあって、コーナーR部又はウエブと外壁との接
合部の少なくとも一方の板厚が元板厚よりも薄く形成さ
れていることを特徴とするエネルギー吸収部材である。
このような押出形材としては、内部にウエブを有さない
口形、内部にウエブを有する日形(ウエブが1つ)、目
形(ウエブが2つ)、田の字形(ウエブがクロスセクシ
ョン)等が例示できる。田の字形の例を図1に示す。ま
た、断面が田の字形の中には、クロスセクションが中央
部で交差しない図2のような断面略田の字の形材も含ま
れるものとする。
One of the energy absorbing members according to the present invention is an extruded member having a hollow cross section having an R (curvature) at a corner portion of an outer wall. An energy absorbing member characterized in that it is formed thinner than the plate thickness, or a hollow cross-section extruded material having a web at the corner portion of the outer wall and having an R at the corner portion of the outer wall, the corner R portion or the web An energy absorbing member characterized in that at least one of the joints with the outer wall is formed thinner than the original plate thickness.
Examples of such extruded shapes include a mouth shape having no web inside, a Japanese shape having one web inside (one web), an eye shape (two webs), and a cross-shape (web is a cross section). Etc. can be exemplified. FIG. 1 shows an example of a cross shape. In addition, it is assumed that the cross-section having a cross-section includes a cross-section having a cross-section substantially cross-section as shown in FIG. 2 in which the cross sections do not intersect at the center.

【0008】なお、上記エネルギー吸収部材において、
元板厚とは、外壁又はウエブの薄く形成されていない箇
所の板厚である。また、上記エネルギー吸収部材におい
て、好ましくは、元板厚より薄く形成されたコーナーR
部又は内部のウエブと外壁との接合部の板厚と元板厚と
の比(以下、板厚比という)をkとしたとき、k=0.
45〜0.7に設定する。
[0008] In the above energy absorbing member,
The original thickness is the thickness of the outer wall or the portion of the web that is not formed thin. Further, in the energy absorbing member, preferably, the corner R formed to be thinner than the original plate thickness.
When the ratio of the plate thickness of the joint portion between the inner or inner web and the outer wall and the original plate thickness (hereinafter, referred to as the plate thickness ratio) is k, k = 0.
Set it to 45-0.7.

【0009】本発明に係るもう1つのエネルギー吸収部
材は、中空矩形断面を有する形材にあって、壁面部の外
側に矩形断面の凸部が設けられていることを特徴とする
エネルギー吸収部材である(図8参照)。ここで、矩形
断面の形材とは外形が長方形又は正方形断面の形材をい
う。これには断面口形のほか、目形、日形、田形等の内
部にウエブを有する形材も含まれる。この形材の場合、
向かい合う壁面部の外側に凸部が設けられていることが
好ましい。なお、上記いずれのタイプのエネルギー吸収
部材も、好ましくはアルミニウム合金押出形材を用いて
形成され、特に自動車のサイドメンバのように軸方向か
ら加えられる衝撃荷重を変形エネルギーに変換すること
により構体全体の破壊を防ぐ用途に適用される。
Another energy absorbing member according to the present invention is a shape member having a hollow rectangular cross section, wherein a convex portion having a rectangular cross section is provided outside a wall portion. (See FIG. 8). Here, the profile having a rectangular cross section refers to a profile having a rectangular or square cross section. This includes not only a mouth shape in cross section, but also a shape material having a web inside such as an eye shape, a Japanese shape, and a Tagata shape. For this profile,
It is preferable that a convex portion is provided on the outside of the facing wall portion. Each of the above types of energy absorbing members is preferably formed using an extruded aluminum alloy material. In particular, by converting an impact load applied from the axial direction into a deformation energy like a side member of an automobile, the entire structure is formed. Applied to prevent destruction.

【0010】[0010]

【発明の実施の形態】以下、図1〜図12を参照して、
本発明に係るエネルギー吸収部材の構成及び作用につい
てより具体的に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIGS.
The configuration and operation of the energy absorbing member according to the present invention will be described more specifically.

【0011】(1)田の字形断面のエネルギー吸収部材 図1に示すのは、田の字形断面の押出形材において、コ
ーナーR部及び/又は中央部クロスセクションと外壁と
の接合部の板厚t1を、元肉厚tに対して薄肉化したも
のである。同図(a)にはコーナーR部を薄肉化する例
として、内側から薄肉化したもの、外側から薄肉化
したもの、双方の側から薄肉化したものが記載され、
(b)には中央部クロスセクションと外壁との接合部を
薄肉化する例として、中央部クロスセクションを薄肉
化したもの(この例ではクロスセクションが接合する部
分の外壁内面が円弧状に形成され、薄肉化したクロスセ
クションの端とこの円弧状部が連続している)、クロ
スセクションと外壁との接合部の外面側を薄肉化したも
のが記載されている。なお、いずれの場合も、薄肉化し
た部分の両端を円弧状に形成しているが、これはひずみ
の集中を防止するためである。このタイプのエネルギー
吸収部材では、薄肉化した部分のひずみが低減すること
により割れが防止されるとともに、薄肉化する部分を特
定し当該部分の板厚比k(=t1/t)を適当な値に設
定することで、極端な軸方向強度の低下なしにエネルギ
ー吸収能力を向上させることができる。
(1) Energy absorbing member having a cross section in a cross section FIG. 1 shows an extruded section having a cross section in a cross section in a cross section of a cross section of a corner R and / or a central section and an outer wall. The thickness t 1 is made thinner than the original thickness t. FIG. 3A shows an example in which the corner R portion is thinned, that is, a thinner portion from the inside, a thinner portion from the outer portion, and a thinner portion from both sides.
FIG. 2B shows an example in which the thickness of the junction between the center cross section and the outer wall is reduced. In this example, the thickness of the center cross section is reduced (in this example, the inner surface of the outer wall at the portion where the cross section is joined is formed in an arc shape). The end of the thinned cross section and the arc-shaped portion are continuous with each other), and the thinned outer surface of the joint between the cross section and the outer wall is described. In each case, both ends of the thinned portion are formed in an arc shape in order to prevent concentration of strain. In this type of energy absorbing member, cracking is prevented by reducing the strain in the thinned portion, the portion to be thinned is specified, and the plate thickness ratio k (= t 1 / t) of the portion is appropriately adjusted. By setting to a value, the energy absorbing ability can be improved without an extreme decrease in the axial strength.

【0012】このタイプのエネルギー吸収部材では、形
材のコーナーR部及び/又は中央部クロスセクションと
外壁との接合部の肉厚を減じることにより、蛇腹状に圧
壊するときの壁面のひずみを減少させ、材料自体の割れ
を防ぐ効果がある。また、薄肉化される部分と他の部分
を円弧状に連続させることでひずみの集中を防ぐことが
できる。これにより材料の割れによって引き起こされる
エネルギー吸収能力の低下を防ぎ、伸びの少ない材料で
もエネルギー吸収部材として使用できるようになる。
In this type of energy absorbing member, the wall thickness at the time of collapse in a bellows shape is reduced by reducing the thickness of the joint between the corner R and / or the central cross section of the profile and the outer wall. Has the effect of preventing cracking of the material itself. In addition, concentration of strain can be prevented by connecting a portion to be thinned and another portion in an arc shape. This prevents the energy absorbing ability from being reduced due to the cracking of the material, and allows a material having a small elongation to be used as an energy absorbing member.

【0013】上記エネルギー吸収部材において材料の割
れが防止されるのは、薄肉化した部分において曲げひず
みが減少するためである。すなわち、壁面が蛇腹状に圧
壊するときは、図3に示すように壁面は曲げによる変形
を受け、肉厚が厚い場合、高ひずみ領域(矢印で例示)
では表面での曲げひずみが大きくなりこれが割れの原因
となるが、材料の応力状態が弾性領域内では曲げひずみ
は肉厚の2乗に比例するため、薄肉化した部分では、例
えば板厚比k=0.5とした場合、曲げひずみは4分の
1になる。実際には割れは塑性状態で起こるため前記の
比例関係は厳密には成り立たないが、薄肉化によりひず
みは確実に減少する。
The reason that the material is prevented from cracking in the energy absorbing member is that bending strain is reduced in the thinned portion. That is, when the wall surface is crushed in a bellows shape, the wall surface is deformed by bending as shown in FIG. 3, and when the wall surface is thick, a high strain region (illustrated by an arrow)
In this case, the bending strain on the surface increases, which causes cracking. However, since the bending strain is proportional to the square of the wall thickness in the elastic region of the material, in the thinned portion, for example, the sheet thickness ratio k = 0.5, the bending strain is reduced to 1/4. Actually, since the cracking occurs in a plastic state, the above proportional relationship does not strictly hold, but the strain is surely reduced by thinning.

【0014】一方、軸方向圧壊の場合、板厚一定の従来
例では、図4(a)に示すように、板の端(コーナーR
部及びクロスセクションと外壁との接合部)のほうが中
央部より大きな荷重を受け持つことになるが、本発明の
ようにコーナーR部など板の端の部分を薄肉化すること
により、同図(b)に示すように荷重分布が均一にな
り、従来衝撃による圧壊荷重の吸収にさほど寄与してい
なかった中央部もエネルギー吸収に寄与させることがで
きるようになる。このため、薄肉化による圧壊時の反力
の低下を十分補うことができる。
On the other hand, in the case of axial crushing, as shown in FIG.
Portion and the joint between the cross section and the outer wall) bear a larger load than the central portion. However, by thinning the end portions of the plate such as the corner R portions as in the present invention, FIG. As shown in (1), the load distribution becomes uniform, and the central portion, which did not significantly contribute to the absorption of the crushing load due to the impact, can also contribute to the energy absorption. For this reason, it is possible to sufficiently compensate for the decrease in the reaction force at the time of crushing due to the thinning.

【0015】(実施例)次に、このタイプのエネルギー
吸収部材の作用効果をより具体的に説明する。図5に示
すような断面(50mm×50mm、元板厚2mm)及
び長さ(200mm)を持つアルミ押出形材で、4隅の
コーナーR部及び4箇所の中央部クロスセクションの外
壁との接合部を薄肉化(その形態は図1の及び)し
たものについて、薄肉化した部分の板厚比kを1〜0.
3まで数段階変化させ、それぞれ軸方向に1mm/sの
速度で圧縮し、図6に示す荷重−変位曲線(ストローク
140mm付近まで図示)を得た。但し、図6の縦軸
は、形材の圧壊荷重Pを当該形材の全断面が降伏したと
仮定したときの荷重P(σ0.2)で無次元化してある。
なお、アルミ押出形材は6061−T6を使用した。こ
れは、耐力28kgf/mm2、引張強さ31.5kg
f/mm2、破断伸び12%であり、伸びが比較的少な
く脆い材料であるといえる。
(Embodiment) Next, the operation and effect of this type of energy absorbing member will be described more specifically. Extruded aluminum material having a cross section (50 mm × 50 mm, original plate thickness of 2 mm) and length (200 mm) as shown in FIG. 5 and joining to the outer wall of four corners R and four central cross sections The thickness ratio k of the thinned portion is 1-0.
The pressure-displacement curve shown in FIG. 6 (illustrated up to around a stroke of 140 mm) was obtained by changing the pressure in several steps to 3 and compressing each at a speed of 1 mm / s in the axial direction. However, the vertical axis in FIG. 6 is made dimensionless by the crushing load P of the profile by the load P (σ0.2) assuming that the entire cross section of the profile has yielded.
Note that 6061-T6 was used as the extruded aluminum material. It has a proof stress of 28 kgf / mm 2 and a tensile strength of 31.5 kg.
It is f / mm 2 and the elongation at break is 12%, which means that the material has a relatively small elongation and is brittle.

【0016】また、図6の結果から、各形材のエネルギ
ー吸収量U(k=1の形材を基準)と各形材のPcr/P
meanを求め、それらとkの関係を図7に示す。ここで、
エネルギー吸収量Uは図6の各曲線と横軸で囲まれる面
積(ストローク160mmまで)で表され、また、Pcr
は初期圧壊荷重(初期反力といってもよい)の最大値で
あり、Pmeanはストローク160mmまでの圧壊荷重の
平均値(エネルギー吸収量/ストローク)を表す。
Further, from the results of FIG. 6, the energy absorption amount U of each section (based on the section of k = 1) and Pcr / P of each section are shown.
Means are obtained, and the relationship between them and k is shown in FIG. here,
The energy absorption U is represented by the area (up to a stroke of 160 mm) surrounded by each curve and the horizontal axis in FIG.
Is the maximum value of the initial crushing load (also referred to as the initial reaction force), and Pmean represents the average value of the crushing load up to a stroke of 160 mm (energy absorption / stroke).

【0017】この実験結果によると、板厚比k=1、つ
まり元の均一な板厚の状態よりコーナーR部などを薄肉
化した方が、初期反力Pcrを抑えつつ全体的なエネルギ
ー吸収能力が大きくなっている領域があるのがわかる。
また、板厚比kを0.5にしたとき最もエネルギー吸収
量が大きくなっており、これ以上だと材料の割れ(割れ
自体は完全には防げない)の影響、これ以下だと薄肉化
による強度低下が原因と思われる吸収エネルギー量の減
少が見られる。すなわち、割れによる影響と強度低下に
よる影響が釣り合うところがk=0.5であると考えら
れる。
According to the results of this experiment, the plate thickness ratio k = 1, that is, when the corner R portion is made thinner than in the original uniform plate thickness state, the overall energy absorption capacity is reduced while suppressing the initial reaction force Pcr. It can be seen that there is a region where is larger.
Further, when the plate thickness ratio k is set to 0.5, the amount of energy absorption is largest, and when it is more than this, the effect of cracking of the material (the crack itself cannot be completely prevented) is obtained. There is a decrease in the amount of energy absorbed, which may be due to the decrease in strength. That is, it is considered that k = 0.5 where the effect of cracking and the effect of strength reduction are balanced.

【0018】図7より、望ましい板厚比kの範囲として
k=0.45〜0.7が得られる。この下限値であるk
=0.45はエネルギー吸収量が元肉厚のものを上回る
下限値であり、上限値であるk=0.7を超えるとエネ
ルギー吸収量が元肉厚のものを下回るほか、初期圧壊荷
重の最大値Pcrと平均圧壊荷重Pmeanとの比が2.0を
超えてしまう。通常、輸送機関の構造部材の場合、安全
率は2.0付近の値を採用しているため、Pcr/Pmean
が2.0以上の場合では設計上考慮すべき荷重Pmeanに
比べ予想される最大入力がPcr≧2.0×Pmeanとなる
ため構造物全体のバランスが崩れ、構造物全体が破壊さ
れる恐れがある。以上のことから0.45≦k≦0.7
が好ましい範囲といえる。
FIG. 7 shows that k = 0.45 to 0.7 as a desirable range of the thickness ratio k. This lower limit value k
= 0.45 is the lower limit value where the energy absorption exceeds the original thickness, and when the upper limit exceeds k = 0.7, the energy absorption is lower than the original thickness and the initial crushing load The ratio between the maximum value Pcr and the average crushing load Pmean exceeds 2.0. Normally, in the case of transportation structural members, the safety factor adopts a value near 2.0, so Pcr / Pmean
Is 2.0 or more, the maximum input expected compared to the load Pmean to be considered in the design becomes Pcr ≧ 2.0 × Pmean, so that the balance of the entire structure is broken and the entire structure may be destroyed. is there. From the above, 0.45 ≦ k ≦ 0.7
Is a preferable range.

【0019】なお、従来のエネルギー吸収部材のように
壁面部にくぼみ(圧壊イニシエーター)を設けて蛇腹状
に圧壊しやすくした場合の実験結果を図6に合わせて載
せてある。これは、くぼみがある以外は板厚、材質は上
述したk=1の場合と同じであり、k=1の場合に比べ
て初期圧壊荷重の最大値Pcrを低減することはできてい
るが、その後に続く荷重−変位曲線はk=1のものとほ
とんど同じでありエネルギー吸収量の増加にはつながっ
ていないことが分かる。それに対して、本発明によるエ
ネルギー吸収部材はエネルギー吸収量において従来のも
のを上回っている。
FIG. 6 shows the results of an experiment in which a depression (crush initiator) is provided on the wall surface to make it easier to collapse in a bellows-like manner, as in a conventional energy absorbing member. This is the same as in the case of k = 1 described above except that there is a depression, and the maximum value Pcr of the initial crushing load can be reduced as compared with the case of k = 1. The subsequent load-displacement curve is almost the same as that of k = 1, and it can be seen that it does not lead to an increase in energy absorption. In contrast, the energy absorbing member according to the present invention has a higher energy absorption than the conventional one.

【0020】(2)中空矩形断面のエネルギー吸収部材 図8に示すのは、中空矩形断面の形材において、壁面部
の外側に高さαt、幅(B/β)の矩形断面の凸部を設
けたものである。同図(a)は壁面部の1つに凸部を設
けた例、(b)は向かい合う2つの壁面部に凸部を設け
た例、(c)は3つの壁面部に、(d)は4つの壁面部
に凸部を設けた例であるが、圧壊時に形材が受ける荷重
分布のバランスの点から、向かい合う壁面部の外側に凸
部が設けられている(b)又は(d)がより好ましい。
(2) Energy Absorbing Member with Hollow Rectangular Cross Section FIG. 8 shows a shape having a hollow rectangular cross section having a rectangular cross section having a height αt and a width (B / β) outside the wall surface. It is provided. FIG. 3A shows an example in which a convex portion is provided on one of the wall portions, FIG. 3B shows an example in which a convex portion is provided on two facing wall portions, FIG. 3C shows three examples, and FIG. This is an example in which the convex portions are provided on the four wall portions. However, from the viewpoint of the balance of the load distribution that the profile receives at the time of crush, the convex portions are provided outside the facing wall portions (b) or (d). More preferred.

【0021】従来の矩形断面を有する形材を軸方向に圧
壊するときは、図9に示すコーナー部(円で囲んだ箇
所)での塑性ヒンジラインの移動によるエネルギー吸収
が多くを占めており、壁面部(コーナー部に挟まれた部
分)が蛇腹状に折り畳まれるときに消費される曲げ変形
エネルギーの大きさはそれ程大きくないことが知られて
いる。このことは、コーナー部を増やしてやることによ
りエネルギー吸収量が増えることを示している。つま
り、このエネルギー吸収部材では、従来エネルギー吸収
に余り貢献していなかった壁面部に凸状のコーナー部を
設けることにより、そこで塑性ヒンジラインが形成さ
れ、このヒンジラインの移動によって衝撃エネルギーを
吸収するようになっているので、大幅な重量増を招くこ
となく、単純な矩形断面部材よりも多くの衝撃エネルギ
ーを吸収することができる。
When a conventional profile having a rectangular cross section is crushed in the axial direction, energy absorption due to the movement of the plastic hinge line at the corners (circled portions) shown in FIG. It is known that the amount of bending deformation energy consumed when a wall surface (a portion sandwiched between corners) is folded in a bellows shape is not so large. This indicates that increasing the number of corners increases the amount of energy absorption. In other words, in this energy absorbing member, a plastic hinge line is formed there by providing a convex corner portion on a wall surface portion that has not conventionally contributed much to energy absorption, and the impact energy is absorbed by the movement of the hinge line. As a result, it is possible to absorb more impact energy than a simple rectangular cross-section member without causing a significant increase in weight.

【0022】(実施例)次に、このタイプのエネルギー
吸収部材の作用効果をシュミレーション解析結果に基づ
いてより具体的に説明する。図8(a)〜(d)に示す
ように、断面B×H、板厚t、高さh(=180mm)
のアルミ押出形材について、壁面部の外側に高さαt、
幅(B/β)の矩形断面の凸部を設けたものを、それぞ
れ軸方向に1mm/sの速度で高さhの80%圧縮し、
図10及び図11に示すエネルギー吸収量と凸部高さパ
ラメータα又は凸部幅パラメータβの関係図を得た。図
10及び図11の縦軸は本発明型(図8(a)〜
(d))のエネルギー吸収量E2と従来型(凸部のない
もの)のエネルギー吸収量E1の比であり、また、図1
0では凸部幅パラメータβ=3と設定し、図11では凸
部高さパラメータα=5と設定した。なお、アルミ押出
形材は6N01−T5とした。
(Embodiment) Next, the operation and effect of this type of energy absorbing member will be described more specifically based on simulation analysis results. As shown in FIGS. 8A to 8D, a cross section B × H, a plate thickness t, and a height h (= 180 mm)
Of aluminum extruded profile of height αt on the outside of the wall,
Each of the projections having a rectangular cross section with a width (B / β) is compressed 80% of the height h at a speed of 1 mm / s in the axial direction, respectively.
A relationship diagram between the energy absorption amount and the convex portion height parameter α or the convex portion width parameter β shown in FIGS. 10 and 11 was obtained. The vertical axes in FIGS. 10 and 11 represent the present invention type (FIGS. 8A to 8A).
FIG. 1D shows the ratio of the energy absorption amount E 2 of the conventional type (with no convex portion) to the energy absorption amount E 1 of the conventional type (with no convex portions).
At 0, the convex portion width parameter β = 3, and in FIG. 11, the convex portion height parameter α = 5. The extruded aluminum material was 6N01-T5.

【0023】図10及び図11に示すように、本発明型
の形材(a)〜(d)は、壁面部に凸部を設けることに
よりα、βの全ての領域で従来型よりエネルギー吸収量
が増大している。また、図11はエネルギー吸収量の比
(E2/E1)と、本発明型の形材の断面積A2と従来型
の形材の断面積のA1の比(A2/A1)の関係を示すも
ので、本発明型の形材は、凸部の面積が増大する以上の
割合で実際のエネルギー吸収量が増加していることがわ
かる。つまり、少ない重量増加でより大きなエネルギー
吸収量の増大を図ることができる。
As shown in FIGS. 10 and 11, the shapes (a) to (d) of the type according to the present invention have energy absorption in all the regions α and β compared to the conventional type by providing a convex portion on the wall surface. The amount is increasing. Further, FIG. 11 is the ratio of the energy absorption amount (E 2 / E 1), the ratio of A 1 of the cross-sectional area of the cross-sectional area A 2 and the conventional profile of the present invention type profiles of (A 2 / A 1 ) Indicates that the actual energy absorption of the shaped material of the present invention increases at a rate higher than the area of the protrusion increases. That is, a larger increase in energy absorption can be achieved with a small weight increase.

【0024】[0024]

【発明の効果】本発明によれば、中空断面の形材のコー
ナーR部及び/又は内部のウエブと外壁との接合部の板
厚を、元肉厚に対して薄肉化することにより、初期反力
を抑えつつより大きなエネルギー吸収能力を得ることが
でき、割れやすい材料でもエネルギー吸収部材として使
用可能にすることができる。また、中空矩形断面の形材
の壁面部の外側に矩形断面の凸部を設けることにより、
少ない重量増加でより大きなエネルギー吸収量の増大を
図ることができる。
According to the present invention, the thickness of the corner R of the hollow section and / or the joint between the inner web and the outer wall is made thinner than the original thickness, so that the initial thickness can be reduced. Greater energy absorbing ability can be obtained while suppressing the reaction force, and even a fragile material can be used as an energy absorbing member. In addition, by providing a convex portion having a rectangular cross section outside the wall portion of the shape member having a hollow rectangular cross section,
A larger increase in energy absorption can be achieved with a small increase in weight.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に関わる田の字形断面のエネルギー吸収
部材の断面形状の種々の形態を示す図である。
FIG. 1 is a view showing various forms of a cross-sectional shape of an energy absorbing member having a cross-shaped cross section according to the present invention.

【図2】同じく田の字形断面のエネルギー吸収部材の断
面形状の他の形態を示す図である。
FIG. 2 is a view showing another embodiment of the cross-sectional shape of the energy absorbing member also having a cross-section in a cross shape.

【図3】エネルギー吸収部材の蛇腹状圧壊図である。FIG. 3 is a bellows-like crush diagram of the energy absorbing member.

【図4】田の字型断面のエネルギー吸収部材の圧縮の荷
重分布を示すもので、(a)が従来例、(b)が本発明
例を示す図である。
FIGS. 4A and 4B show the distribution of compression load of an energy absorbing member having a cross section in a cross-section, in which FIG. 4A shows a conventional example and FIG. 4B shows an example of the present invention.

【図5】実施例に用いた田の字型断面のエネルギー吸収
部材の側面図(a)及び断面図(b)である。
FIGS. 5A and 5B are a side view and a cross-sectional view, respectively, of an energy absorbing member having a cross-shaped cross section used in Examples.

【図6】その荷重(Pcr/P(σ0.2))−変位(圧壊
スロトーク)曲線である。
FIG. 6 is a graph showing the load (Pcr / P (σ0.2))-displacement (crushing slot talk).

【図7】そのエネルギー吸収量(U)−板厚比(k)曲
線と、最大圧壊荷重と平均圧壊荷重の比(Pcr/Pmea
n)−板厚比(k)曲線である。
FIG. 7 is a curve of the energy absorption (U) -plate thickness ratio (k) and the ratio of the maximum crushing load to the average crushing load (Pcr / Pmea).
n) -plate thickness ratio (k) curve.

【図8】本発明に関わる矩形断面のエネルギー吸収部材
の断面形状の種々の形態を示す図である。
FIG. 8 is a view showing various forms of a cross-sectional shape of the energy absorbing member having a rectangular cross-section according to the present invention.

【図9】従来の矩形断面のエネルギー吸収部材の断面形
状を示す図である。
FIG. 9 is a view showing a cross-sectional shape of a conventional energy absorbing member having a rectangular cross section.

【図10】そのエネルギー吸収量と凸部高さパラメータ
αの関係を示す図である。
FIG. 10 is a diagram showing a relationship between the energy absorption amount and a convex portion height parameter α.

【図11】同じくエネルギー吸収量と凸部幅パラメータ
βの関係を示す図である。
FIG. 11 is a diagram showing the relationship between the energy absorption amount and the convex portion width parameter β.

【図12】同じく吸収エネルギー比(E2/E1)と断面
積比(A2/A1)の関係を示す図である。
FIG. 12 is a diagram showing a relationship between an absorption energy ratio (E 2 / E 1 ) and a sectional area ratio (A 2 / A 1 ).

【図13】自動車のフロント部の構造を示す図である。FIG. 13 is a diagram showing a structure of a front portion of the automobile.

【図14】矩形断面形材の軸圧縮変形の模式図である。FIG. 14 is a schematic view of axial compression deformation of a rectangular cross-sectional shape member.

【符号の説明】[Explanation of symbols]

1 バンパーリインホースメント 2 フロントサイドメンバ 1 Bumper reinforcement 2 Front side member

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 外壁のコーナー部分にR(曲率)を有す
る中空断面の押出形材にあって、コーナーR部の板厚が
元板厚よりも薄く形成されていることを特徴とするエネ
ルギー吸収部材。
1. An extruded profile having a hollow cross section having an R (curvature) at a corner portion of an outer wall, wherein a thickness of a corner R portion is formed smaller than an original thickness. Element.
【請求項2】 外壁のコーナー部分にR(曲率)を有す
るとともに内部にウエブを有する中空断面の押出形材に
あって、コーナーR部又はウエブと外壁との接合部の少
なくとも一方の板厚が元板厚よりも薄く形成されている
ことを特徴とするエネルギー吸収部材。
2. An extruded profile having a hollow section having an R (curvature) at a corner portion of an outer wall and a web therein, wherein at least one of a corner R portion and a joint portion between the web and the outer wall has a thickness of at least one. An energy absorbing member characterized by being formed thinner than the original plate thickness.
【請求項3】 押出形材の断面が田の字形であることを
特徴とする請求項2に記載のエネルギー吸収部材。
3. The energy absorbing member according to claim 2, wherein the cross section of the extruded member has a cross-section.
【請求項4】 元板厚より薄く形成されたコーナーR部
又はウエブと外壁との接合部の板厚と元板厚との比をk
としたとき、k=0.45〜0.7である請求項1〜3
のいずれかに記載のエネルギー吸収部材。
4. The ratio of the thickness of the corner R portion or the joint portion between the web and the outer wall formed to be smaller than the thickness of the base plate to the base plate thickness is k.
Wherein k = 0.45 to 0.7.
The energy absorbing member according to any one of the above.
【請求項5】 中空矩形断面を有する形材にあって、壁
面部の外側に矩形断面の凸部が設けられていることを特
徴とするエネルギー吸収部材。
5. An energy-absorbing member having a hollow rectangular cross-sectional shape, wherein a projection having a rectangular cross-section is provided outside a wall portion.
【請求項6】 向かい合う壁面部の外側に凸部が設けら
れていることを特徴とする請求項5に記載のエネルギー
吸収部材。
6. The energy absorbing member according to claim 5, wherein a convex portion is provided outside the facing wall portion.
【請求項7】 アルミニウム合金押出形材を用いて形成
される請求項1〜6のいずれかに記載のエネルギー吸収
部材。
7. The energy absorbing member according to claim 1, which is formed using an extruded aluminum alloy.
【請求項8】 自動車のサイドメンバに用いられること
を特徴とする請求項1〜7のいずれかに記載のエネルギ
ー吸収部材。
8. The energy absorbing member according to claim 1, wherein the energy absorbing member is used for a side member of an automobile.
JP21659296A 1996-07-29 1996-07-29 Extrusion axial energy absorbing member Expired - Fee Related JP3786743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21659296A JP3786743B2 (en) 1996-07-29 1996-07-29 Extrusion axial energy absorbing member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21659296A JP3786743B2 (en) 1996-07-29 1996-07-29 Extrusion axial energy absorbing member

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2001160584A Division JP3897542B2 (en) 2001-05-29 2001-05-29 Energy absorbing member

Publications (2)

Publication Number Publication Date
JPH1045023A true JPH1045023A (en) 1998-02-17
JP3786743B2 JP3786743B2 (en) 2006-06-14

Family

ID=16690842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21659296A Expired - Fee Related JP3786743B2 (en) 1996-07-29 1996-07-29 Extrusion axial energy absorbing member

Country Status (1)

Country Link
JP (1) JP3786743B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002347548A (en) * 2001-05-29 2002-12-04 Toyotomi Kiko Co Ltd Energy absorbing member
JP2006159934A (en) * 2004-12-02 2006-06-22 Sumitomo Metal Ind Ltd Impact absorption member
WO2008123506A1 (en) 2007-04-04 2008-10-16 Sumitomo Metal Industries, Ltd. Car-body reinforcing member, front side member, and car-body side structure
JP2012166644A (en) * 2011-02-14 2012-09-06 Mazda Motor Corp Crush can made of die-cast aluminum alloy
US9126628B2 (en) 2011-12-01 2015-09-08 Ford Global Technologies, Llc Lightweight vehicle beam
CN109720290A (en) * 2019-03-16 2019-05-07 吉林大学 A kind of energy absorbing tube of imitative sea-gull pinna rachis structure
JP2020501560A (en) * 2016-12-16 2020-01-23 ヒルズ・ペット・ニュートリシャン・インコーポレーテッド Pet food composition

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002347548A (en) * 2001-05-29 2002-12-04 Toyotomi Kiko Co Ltd Energy absorbing member
JP4572674B2 (en) * 2004-12-02 2010-11-04 住友金属工業株式会社 Shock absorbing member
JP2006159934A (en) * 2004-12-02 2006-06-22 Sumitomo Metal Ind Ltd Impact absorption member
EP2522563A1 (en) 2007-04-04 2012-11-14 Sumitomo Metal Industries, Ltd. Side structure for an automobile body
US8899665B2 (en) 2007-04-04 2014-12-02 Nippon Steel & Sumitomo Metal Corporation Strength member for an automobile body, front side member, and side structure for an automobile body
US8136871B2 (en) 2007-04-04 2012-03-20 Sumitomo Metal Industries, Ltd. Strength member for an automobile body, front side member, and side structure for an automobile body
EP2517950A1 (en) 2007-04-04 2012-10-31 Sumitomo Metal Industries, Ltd. Front side member for an automobile body
EP2517949A1 (en) 2007-04-04 2012-10-31 Sumitomo Metal Industries Limited Strength member for an automobile body
WO2008123506A1 (en) 2007-04-04 2008-10-16 Sumitomo Metal Industries, Ltd. Car-body reinforcing member, front side member, and car-body side structure
US8454079B2 (en) 2007-04-04 2013-06-04 Nippon Steel & Sumitomo Metal Corporation Strength member for an automobile body, front side member, and side structure for an automobile body
JP2012166644A (en) * 2011-02-14 2012-09-06 Mazda Motor Corp Crush can made of die-cast aluminum alloy
US9126628B2 (en) 2011-12-01 2015-09-08 Ford Global Technologies, Llc Lightweight vehicle beam
US9598107B2 (en) 2011-12-01 2017-03-21 Ford Global Technologies, Llc Lightweight vehicle beam
JP2020501560A (en) * 2016-12-16 2020-01-23 ヒルズ・ペット・ニュートリシャン・インコーポレーテッド Pet food composition
JP2021176327A (en) * 2016-12-16 2021-11-11 ヒルズ・ペット・ニュートリシャン・インコーポレーテッド Pet food composition
CN109720290A (en) * 2019-03-16 2019-05-07 吉林大学 A kind of energy absorbing tube of imitative sea-gull pinna rachis structure
CN109720290B (en) * 2019-03-16 2023-11-10 吉林大学 Energy-absorbing pipe of imitative seagull feather axle structure

Also Published As

Publication number Publication date
JP3786743B2 (en) 2006-06-14

Similar Documents

Publication Publication Date Title
JP3897542B2 (en) Energy absorbing member
EP1293415B1 (en) Automobile frame member
US6003930A (en) Vehicle with bumper and deforming element
JP2012166644A (en) Crush can made of die-cast aluminum alloy
JP2006328688A (en) Buckling restraining-type axial force bearing member
AU2004267086A1 (en) Bumper beam having face with supported angled wall
JPH1045023A (en) Energy absorbing member
JP2019093905A (en) Door beam
JP2008296716A (en) Energy absorbing member
JP2004051065A (en) Vehicle body structural member and collision-proof reinforcing member
JP2003184928A (en) Shock-energy absorbing structure member
JP3581258B2 (en) Shock absorbing underframe structure for railway vehicles
JP2012166645A (en) Die-cast aluminum alloy crash can
JP2001227573A (en) Energy absorbing member
JP3015835B2 (en) Lightweight door guard bar with excellent shock absorption properties
JPH11255048A (en) Structural member having reinforcing structure
JP3528290B2 (en) Energy absorber with local reinforcement jig
JP3520959B2 (en) Energy absorbing member for automotive frame structure made of extruded aluminum alloy with excellent axial crush characteristics
JP3025023B2 (en) Vehicle impact beam
JP3039145B2 (en) Body frame members
JP4759871B2 (en) Impact energy absorbing member
JP2005170232A (en) Shock absorbing member
JP2002012104A (en) Bumper stay
JP4285896B2 (en) Energy absorbing member for automobile frame structure made of extruded aluminum alloy material with excellent axial crushing characteristics
JP2004106612A (en) Energy absorbing member for absorbing impact in axial direction

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060322

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees