JP3786743B2 - Extrusion axial energy absorbing member - Google Patents

Extrusion axial energy absorbing member Download PDF

Info

Publication number
JP3786743B2
JP3786743B2 JP21659296A JP21659296A JP3786743B2 JP 3786743 B2 JP3786743 B2 JP 3786743B2 JP 21659296 A JP21659296 A JP 21659296A JP 21659296 A JP21659296 A JP 21659296A JP 3786743 B2 JP3786743 B2 JP 3786743B2
Authority
JP
Japan
Prior art keywords
plate thickness
wall
thickness
absorbing member
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21659296A
Other languages
Japanese (ja)
Other versions
JPH1045023A (en
Inventor
正和 柏木
宏 岩村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP21659296A priority Critical patent/JP3786743B2/en
Publication of JPH1045023A publication Critical patent/JPH1045023A/en
Application granted granted Critical
Publication of JP3786743B2 publication Critical patent/JP3786743B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、自動車のフロント部のサイドメンバのように、軸方向から加えられる衝撃荷重を変形エネルギーに変換することにより構体全体の破壊を防ぐエネルギー吸収部材に関する。
【0002】
【従来の技術】
自動車のフロント部分のエネルギー吸収部材には、図8に示すようにバンパー1、フロントサイドメンバ(以下、サイドメンバ)2等があるが、高速で大きな衝撃を受けた場合にそのエネルギーを吸収するのは主としてサイドメンバ2である。そのため、サイドメンバ2には限られたスペースでより多くのエネルギーを吸収することが求められている。
【0003】
自動車のサイドメンバは鋼板プレス製の矩形断面角材が使用されることが多かったが、最近の軽量化要求からより軽量化が見込めるアルミ合金などの軽合金を使用したものも考えられるようになってきた。これらのサイドメンバは全体に中空の柱状をしており、図9に模式的に示すように、軸方向に圧縮されたときに壁面が蛇腹状になりながら変形して、衝撃エネルギーを金属の塑性変形エネルギーに変換することによりエネルギーを吸収している。なお、アルミ合金の場合、鋼に比べて強度も剛性も低いことから塑性崩壊しやすく、良好なエネルギー吸収能力を有している。
【0004】
従来のサイドメンバなどに使われるエネルギー吸収部材は、特開平4−50083号公報又は特開平02−175452号公報のように、軸方向に圧縮力を受けて塑性崩壊する際にいかにうまく蛇腹状に圧壊させるかということに主眼がおかれている。すなわち、故意に蛇腹状に崩壊させることによりオイラー座屈(サイドメンバそのものが折れる)を防ぎ、安定したエネルギー吸収を得ようというものである。
しかし、これらの技術ではエネルギー吸収を安定化させることはできてもエネルギー吸収量そのものを増加させることはできず、これを増加させるためには断面の大径化、厚肉化は避けられない。従って、自動車のように限られたスペース、限られた重量の中でより多くのエネルギー吸収量を確保するためには、これらの従来技術だけでは不十分となっている。
【0005】
軽量化を図る場合、アルミなどの軽金属の使用が考えられるがアルミ合金を中心とする軽金属は鋼に比べて伸びが少なく、わずかな変形量でも割れが入ってしまうなどの欠点もある。特に、少ないボリュームで多くのエネルギー吸収能力を持たせようとした場合、熱処理や合金成分の調整などで材料強度を高める処理を行うがこのような処置を行うと材料の延性(伸び)が失われてしまう場合が多く、圧壊時に材料が割れてエネルギーを効果的に吸収できない恐れがある。また、高強度材を用いない場合はエネルギー吸収部材の肉厚を増してやる必要があり、圧壊時に形材壁面が蛇腹状に変形する際、厚肉化のため壁面表面のひずみが大きくなりすぎ、割れが入ることによりエネルギー吸収能力が落ちてしまうという欠点がある。
【0006】
【発明が解決しようとする課題】
アルミ合金を中心とする軽合金を用いることにより軽量化と良好なエネルギー吸収能力を得ることができるが、上記のように大きなエネルギー吸収能力を持たせようとした場合、材料が割れて所定のエネルギー吸収能力を得ることができない恐れがある。
本発明は上記従来技術の欠点を解消しようとするもので、その目的は、壁面に発生する割れを抑制してエネルギー吸収能力の低下を防ぎ、伸びの少ない材料でも、限られたスペース、重量の中で高いエネルギー吸収能力を持ったエネルギー吸収部材を得ることである。
【0007】
【課題を解決するための手段】
本発明に係る押出軸方向エネルギー吸収部材は、外壁のコーナー部分が円弧状である中空断面のアルミニウム合金押出形材にあって、コーナー部分の板厚が元板厚よりも薄く形成されていることを特徴とするエネルギー吸収部材である。この元板厚は、外壁の薄く形成されていない箇所の板厚を意味する。
あるいは、外壁のコーナー部分が円弧状でかつ内部にウエブを有する中空断面のアルミニウム合金押出形材にあって、コーナー部分又はウエブと外壁との接合部の少なくとも一方の板厚が元板厚よりも薄く形成されていることを特徴とするエネルギー吸収部材である。コーナー部分に関しては、元板厚は外壁の薄く形成されていない箇所の板厚を意味し、ウエブと外壁との接合部に関しては、元板厚は、ウエブの薄く形成されていない箇所の板厚を意味する。
この押出軸方向エネルギー吸収部材は、押出軸方向に圧縮するとき蛇腹状に変形してエネルギーを吸収する。押出軸方向エネルギー吸収部材という名称は、押出軸方向に蛇腹状に変形して押出軸方向のエネルギーを吸収する部材であることに由来する。
このようなアルミニウム合金押出形材としては、内部にウエブを有さない口形、内部にウエブを有する日形(ウエブが1つ)、目形(ウエブが2つ)、田の字形(ウエブがクロスセクション)等が例示できる。田の字形の例を図1に示す。また、断面が田の字形の中には、クロスセクションが中央部で交差しない図2のような断面略田の字の形材も含まれるものとする。
【0008】
上記エネルギー吸収部材において、好ましくは、元板厚より薄く形成されたコーナー部分又は内部のウエブと外壁との接合部の板厚と元板厚との比(以下、板厚比という)をkとしたとき、k=0.45〜0.7に設定する。
上記エネルギー吸収部材は、アルミニウム合金押出形材を用いて形成され、特に自動車のサイドメンバのように軸方向から加えられる衝撃荷重を変形エネルギーに変換することにより構体全体の破壊を防ぐ用途に適用される。
【0009】
【発明の実施の形態】
以下、図1〜図7を参照して、本発明に係る押出軸方向エネルギー吸収部材の構成及び作用についてより具体的に説明する。以下、軸方向とは押出軸方向を意味する。
【0010】
図1に示すのは、田の字形断面のアルミニウム合金押出形材において、コーナー部分及び/又は中央部クロスセクションと外壁との接合部の板厚tを、元肉厚tに対して薄肉化したものである。同図(a)にはコーナー部分を薄肉化する例として、▲1▼内側から薄肉化したもの、▲2▼外側から薄肉化したもの、▲3▼双方の側から薄肉化したものが記載され、(b)には中央部クロスセクションと外壁との接合部を薄肉化する例として、▲4▼中央部クロスセクションを薄肉化したもの(この例ではクロスセクションが接合する部分の外壁内面が円弧状に形成され、薄肉化したクロスセクションの端とこの円弧状部が連続している)、▲5▼クロスセクションと外壁との接合部の外面側を薄肉化したものが記載されている。なお、いずれの場合も、薄肉化した部分の両端を円弧状に形成しているが、これはひずみの集中を防止するためである。
このタイプのエネルギー吸収部材では、薄肉化した部分のひずみが低減することにより割れが防止されるとともに、薄肉化する部分を特定し当該部分の板厚比k(=t/t)を適当な値に設定することで、極端な軸方向強度の低下なしにエネルギー吸収能力を向上させることができる。
【0011】
このタイプのエネルギー吸収部材では、形材のコーナー部分及び/又は中央部クロスセクションと外壁との接合部の肉厚を減じることにより、蛇腹状に圧壊するときの壁面のひずみを減少させ、材料自体の割れを防ぐ効果がある。また、薄肉化される部分と他の部分を円弧状に連続させることでひずみの集中を防ぐことができる。これにより材料の割れによって引き起こされるエネルギー吸収能力の低下を防ぎ、伸びの少ない材料でもエネルギー吸収部材として使用できるようになる。
【0012】
上記エネルギー吸収部材において材料の割れが防止されるのは、薄肉化した部分において曲げひずみが減少するためである。すなわち、壁面が蛇腹状に圧壊するときは、図3に示すように壁面は曲げによる変形を受け、肉厚が厚い場合、高ひずみ領域(矢印で例示)では表面での曲げひずみが大きくなりこれが割れの原因となるが、材料の応力状態が弾性領域内では曲げひずみは肉厚の2乗に比例するため、薄肉化した部分では、例えば板厚比k=0.5とした場合、曲げひずみは4分の1になる。実際には割れは塑性状態で起こるため前記の比例関係は厳密には成り立たないが、薄肉化によりひずみは確実に減少する。
【0013】
一方、軸方向圧壊の場合、板厚一定の従来例では、図4(a)に示すように、板の端(コーナー部分及びクロスセクションと外壁との接合部)のほうが中央部より大きな荷重を受け持つことになるが、本発明のようにコーナー部分など板の端の部分を薄肉化することにより、同図(b)に示すように荷重分布が均一になり、従来衝撃による圧壊荷重の吸収にさほど寄与していなかった中央部もエネルギー吸収に寄与させることができるようになる。このため、薄肉化による圧壊時の反力の低下を十分補うことができる。
【0014】
(実施例)次に、このタイプのエネルギー吸収部材の作用効果をより具体的に説明する。
図5に示すような断面(50mm×50mm、元板厚2mm)及び長さ(200mm)を持つアルミ押出形材で、4隅のコーナー部分及び4箇所の中央部クロスセクションの外壁との接合部を薄肉化(その形態は図1の▲1▼及び▲2▼)したものについて、薄肉化した部分の板厚比kを1〜0.3まで数段階変化させ、それぞれ軸方向に1mm/sの速度で圧縮し、図6に示す荷重−変位曲線(ストローク140mm付近まで図示)を得た。但し、図6の縦軸は、形材の圧壊荷重Pを当該形材の全断面が降伏したと仮定したときの荷重P(σ0.2)で無次元化してある。
なお、アルミ押出形材は6061−T6を使用した。これは、耐力28kgf/mm、引張強さ31.5kgf/mm、破断伸び12%であり、伸びが比較的少なく脆い材料であるといえる。
【0015】
また、図6の結果から、各形材のエネルギー吸収量U(k=1の形材を基準)と各形材のPcr/Pmeanを求め、それらとkの関係を図7に示す。ここで、エネルギー吸収量Uは図6の各曲線と横軸で囲まれる面積(ストローク160mmまで)で表され、また、Pcrは初期圧壊荷重(初期反力といってもよい)の最大値であり、Pmeanはストローク160mmまでの圧壊荷重の平均値(エネルギー吸収量/ストローク)を表す。
【0016】
この実験結果によると、板厚比k=1、つまり元の均一な板厚の状態よりコーナー部分などを薄肉化した方が、初期反力Pcrを抑えつつ全体的なエネルギー吸収能力が大きくなっている領域があるのがわかる。また、板厚比kを0.5にしたとき最もエネルギー吸収量が大きくなっており、これ以上だと材料の割れ(割れ自体は完全には防げない)の影響、これ以下だと薄肉化による強度低下が原因と思われる吸収エネルギー量の減少が見られる。すなわち、割れによる影響と強度低下による影響が釣り合うところがk=0.5であると考えられる。
【0017】
図7より、望ましい板厚比kの範囲としてk=0.45〜0.7が得られる。この下限値であるk=0.45はエネルギー吸収量が元板厚のものを上回る下限値であり、上限値であるk=0.7を超えるとエネルギー吸収量が元板厚のものを下回るほか、初期圧壊荷重の最大値Pcrと平均圧壊荷重Pmeanとの比が2.0を超えてしまう。通常、輸送機関の構造部材の場合、安全率は2.0付近の値を採用しているため、Pcr/Pmeanが2.0以上の場合では設計上考慮すべき荷重Pmeanに比べ予想される最大入力がPcr≧2.0×Pmeanとなるため構造物全体のバランスが崩れ、構造物全体が破壊される恐れがある。以上のことから0.45≦k≦0.7が好ましい範囲といえる。
【0018】
なお、従来のエネルギー吸収部材のように壁面部にくぼみ(圧壊イニシエーター)を設けて蛇腹状に圧壊しやすくした場合の実験結果を図6に合わせて載せてある。これは、くぼみがある以外は板厚、材質は上述したk=1の場合と同じであり、k=1の場合に比べて初期圧壊荷重の最大値Pcrを低減することはできているが、その後に続く荷重−変位曲線はk=1のものとほとんど同じでありエネルギー吸収量の増加にはつながっていないことが分かる。それに対して、本発明によるエネルギー吸収部材はエネルギー吸収量において従来のものを上回っている。
【0019】
【発明の効果】
本発明によれば、中空断面のアルミニウム合金押出形材のコーナー部分及び/又は内部のウエブと外壁との接合部の板厚を、元肉厚に対して薄肉化することにより、初期反力を抑えつつより大きなエネルギー吸収能力を得ることができ、割れやすい材料でも軸方向エネルギー吸収部材として使用可能にすることができる。
【図面の簡単な説明】
【図1】本発明に関わる田の字形断面のエネルギー吸収部材の断面形状の種々の形態を示す図である。
【図2】同じく田の字形断面のエネルギー吸収部材の断面形状の他の形態を示す図である。
【図3】エネルギー吸収部材の蛇腹状圧壊図である。
【図4】田の字型断面のエネルギー吸収部材の圧縮の荷重分布を示すもので、(a)が従来例、(b)が本発明例を示す図である。
【図5】実施例に用いた田の字型断面のエネルギー吸収部材の側面図(a)及び断面図(b)である。
【図6】その荷重(Pcr/P(σ0.2))−変位(圧壊スロトーク)曲線である。
【図7】そのエネルギー吸収量(U)−板厚比(k)曲線と、最大圧壊荷重と平均圧壊荷重の比(Pcr/Pmean)−板厚比(k)曲線である。
【図8】自動車のフロント部の構造を示す図である。
【図9】矩形断面形材の軸圧縮変形の模式図である。
【符号の説明】
1 バンパーリインホースメント
2 フロントサイドメンバ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an energy absorbing member that prevents destruction of the entire structure by converting an impact load applied from the axial direction into deformation energy, like a side member of a front portion of an automobile.
[0002]
[Prior art]
As shown in FIG. 8, there are a bumper 1, a front side member (hereinafter referred to as a side member) 2 and the like as an energy absorbing member in the front part of an automobile, but the energy is absorbed when subjected to a large impact at a high speed. Is mainly the side member 2. Therefore, the side member 2 is required to absorb more energy in a limited space.
[0003]
The side members of automobiles often use rectangular cross-section square bars made of steel plate press, but in light of recent demands for weight reduction, it has become possible to use light alloys such as aluminum alloys that can be further reduced in weight. It was. These side members have a hollow columnar shape as a whole, and, as schematically shown in FIG. 9, the wall surface is deformed while being compressed in the axial direction, and the impact energy is transformed into the Energy is absorbed by converting to deformation energy. In addition, in the case of an aluminum alloy, since strength and rigidity are low compared with steel, it is easily plastically collapsed and has a good energy absorption capability.
[0004]
An energy absorbing member used for a conventional side member or the like has a bellows-like shape when it undergoes plastic collapse by receiving a compressive force in the axial direction as disclosed in JP-A-4-50083 or JP-A-02-175452. The main focus is on whether to crush. That is, by intentionally collapsing into a bellows shape, Euler buckling (the side member itself breaks) is prevented, and stable energy absorption is obtained.
However, although these techniques can stabilize energy absorption, the amount of energy absorption itself cannot be increased, and in order to increase this, it is inevitable to increase the diameter and thickness of the cross section. Therefore, in order to secure a larger amount of energy absorption in a limited space and a limited weight as in an automobile, these conventional techniques alone are insufficient.
[0005]
In order to reduce the weight, it is conceivable to use light metals such as aluminum. However, light metals such as aluminum alloys are less stretched than steel, and there are drawbacks such as cracking even with slight deformation. In particular, when a large volume of energy absorption capability is to be provided with a small volume, the material strength is increased by heat treatment or adjustment of the alloy components. However, if such treatment is performed, the ductility (elongation) of the material is lost. When the material is crushed, the material may be broken and energy may not be absorbed effectively. Also, if you do not use a high-strength material, it is necessary to increase the thickness of the energy absorbing member, and when the shape wall surface deforms into a bellows shape during crushing, the wall surface strain becomes too large due to thickening, There is a drawback that the energy absorption capacity is reduced due to the cracks.
[0006]
[Problems to be solved by the invention]
Light weight and good energy absorption ability can be obtained by using a light alloy centering on an aluminum alloy. However, when trying to have a large energy absorption ability as described above, the material cracks and the specified energy is obtained. There is a possibility that the absorption ability cannot be obtained.
The present invention is intended to eliminate the above-mentioned disadvantages of the prior art, and its purpose is to suppress cracks generated on the wall surface to prevent a decrease in energy absorption capacity, and even in a material with little elongation, it has limited space and weight. It is to obtain an energy absorbing member having high energy absorbing ability.
[0007]
[Means for Solving the Problems]
The extruded axial energy absorbing member according to the present invention is an aluminum alloy extruded shape having a hollow cross section in which the corner portion of the outer wall has an arc shape, and the plate thickness of the corner portion is formed thinner than the original plate thickness. It is an energy absorption member characterized by these. This original board thickness means the board thickness of the location where the outer wall is not formed thinly.
Alternatively, in an aluminum alloy extruded shape having a hollow cross-section with an arc-shaped outer wall portion and a web inside, the thickness of at least one of the corner portion or the joint between the web and the outer wall is larger than the original plate thickness. It is an energy absorption member characterized by being formed thinly. For the corner portion, the original plate thickness means the thickness of the portion where the outer wall is not formed thin, and for the junction between the web and the outer wall, the original plate thickness is the thickness of the portion where the web is not formed thin. Means.
The extrusion- axis-direction energy absorbing member absorbs energy by being deformed into a bellows shape when compressed in the extrusion-axis direction. The name “extrusion axis direction energy absorbing member” is derived from a member that deforms in a bellows shape in the extrusion axis direction and absorbs energy in the extrusion axis direction.
Such aluminum alloy extruded shapes include mouth shapes that do not have a web inside, daily shapes (with one web), web shapes (two webs), and rice-shaped shapes (cross webs). Section) etc. can be illustrated. An example of a rice field is shown in FIG. Further, the cross-sectional shape of the rice field includes a cross-sectional material having a substantially cross-sectional shape as shown in FIG. 2 in which the cross section does not intersect at the center.
[0008]
In the energy absorbing member, preferably, the ratio of the thickness of the corner portion formed at a thickness smaller than the original plate thickness or the junction between the inner web and the outer wall and the original plate thickness (hereinafter referred to as the plate thickness ratio) is k. In this case, k = 0.45 to 0.7 is set.
The energy absorbing member is formed by using an aluminum alloy extruded shape, and is applied particularly to an application for preventing the entire structure from being destroyed by converting an impact load applied from the axial direction into deformation energy like a side member of an automobile. The
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, with reference to FIGS. 1-7, the structure and effect | action of the extrusion direction energy absorption member which concern on this invention are demonstrated more concretely. Hereinafter, the axial direction means the extrusion axial direction.
[0010]
FIG. 1 shows an aluminum alloy extruded section having a square-shaped cross section, in which the thickness t 1 of the joint portion between the corner portion and / or the central cross section and the outer wall is made thinner than the original thickness t. It is a thing. In the figure (a), as an example of thinning the corner portion , (1) thinned from the inside, (2) thinned from the outside, and (3) thinned from both sides are described. (B) As an example of thinning the joint between the central cross section and the outer wall, (4) Thinned central cross section (in this example, the inner surface of the outer wall of the portion where the cross section is joined is circular) The ends of the thin cross section formed in an arc shape and the arc-shaped portion are continuous), and (5) the thinned outer surface side of the joint between the cross section and the outer wall is described. In either case, both ends of the thinned portion are formed in an arc shape, but this is to prevent concentration of strain.
In this type of energy absorbing member, cracking is prevented by reducing the strain of the thinned portion, and the thinned portion is specified, and the plate thickness ratio k (= t 1 / t) of the portion is appropriately set. By setting the value, it is possible to improve the energy absorption capability without drastically reducing the axial strength.
[0011]
In this type of energy absorbing member, by reducing the wall thickness of the joint between the corner part of the profile and / or the central cross section and the outer wall, the distortion of the wall surface when collapsing into a bellows is reduced, and the material itself Has the effect of preventing cracking. Further, strain concentration can be prevented by continuing the thinned portion and other portions in an arc shape. As a result, a decrease in energy absorption capability caused by the cracking of the material can be prevented, and even a material with little elongation can be used as the energy absorbing member.
[0012]
The reason why the material is prevented from cracking in the energy absorbing member is that bending strain is reduced in the thinned portion. That is, when the wall surface collapses into a bellows shape, the wall surface is deformed by bending as shown in FIG. 3, and when the wall thickness is thick, the bending strain on the surface increases in the high strain region (illustrated by arrows). Although it causes cracking, the bending strain is proportional to the square of the thickness when the stress state of the material is in the elastic region. Therefore, in the thinned portion, for example, when the plate thickness ratio k = 0.5, the bending strain Becomes a quarter. Actually, since the crack occurs in a plastic state, the above proportional relationship does not hold strictly, but the strain is surely reduced by thinning.
[0013]
On the other hand, in the case of axial crushing, in the conventional example in which the plate thickness is constant, as shown in FIG. 4 (a), the end of the plate (corner portion and the junction between the cross section and the outer wall) is loaded more than the center portion. However, by reducing the thickness of the end of the plate such as the corner as in the present invention, the load distribution becomes uniform as shown in FIG. The central portion that has not contributed so much can also contribute to energy absorption. For this reason, the fall of the reaction force at the time of crushing by thickness reduction can fully be compensated.
[0014]
(Example) Next, the function and effect of this type of energy absorbing member will be described more specifically.
Section (50 mm × 50 mm, initial thickness 2 mm), as shown in FIG. 5 and the aluminum extruded profile having a length (200 mm), the junction of the four corners of the corner portions and four positions central portion outer wall of the cross section of the The thickness ratio k of the thinned portion is changed by several steps from 1 to 0.3, and the axial direction is 1 mm / s for each of the thinned portions (forms (1) and (2) in FIG. 1). The load-displacement curve shown in FIG. 6 (illustrated up to around 140 mm stroke) was obtained. However, the vertical axis in FIG. 6 is made dimensionless by the load P (σ0.2) when the crushing load P of the profile is assumed that the entire cross section of the profile has yielded.
In addition, 6061-T6 was used for the aluminum extruded profile. This yield strength 28 kgf / mm 2, a tensile strength of 31.5kgf / mm 2, a breaking elongation of 12%, it can be said that elongation is relatively small brittle material.
[0015]
Further, from the results of FIG. 6, the energy absorption amount U of each profile (based on the profile of k = 1) and Pcr / Pmean of each profile are obtained, and the relationship between them and k is shown in FIG. Here, the energy absorption amount U is represented by an area (up to a stroke of 160 mm) surrounded by each curve and the horizontal axis in FIG. 6, and Pcr is the maximum value of the initial crushing load (may be referred to as initial reaction force). Yes, Pmean represents the average value (energy absorption / stroke) of the crushing load up to a stroke of 160 mm.
[0016]
According to this experimental result, when the plate thickness ratio k = 1, that is, when the corner portion is made thinner than the original uniform plate thickness, the overall energy absorption capability is increased while suppressing the initial reaction force Pcr. You can see that there is an area. In addition, when the plate thickness ratio k is 0.5, the energy absorption amount is the largest, and if it is more than this, it is due to the effect of material cracking (cracking itself cannot be completely prevented), and if it is less than this, it is due to thinning. There is a decrease in the amount of absorbed energy that appears to be due to a decrease in strength. That is, it is considered that k = 0.5 is a balance between the effect of cracking and the effect of strength reduction.
[0017]
From FIG. 7, k = 0.45 to 0.7 is obtained as a desirable range of the plate thickness ratio k. This lower limit value k = 0.45 is a lower limit value in which the energy absorption amount exceeds that of the original plate thickness , and when the upper limit value k = 0.7 is exceeded, the energy absorption amount is lower than that of the original plate thickness. In addition, the ratio between the maximum value Pcr of the initial crushing load and the average crushing load Pmean exceeds 2.0. Usually, in the case of a structural member of a transportation system, the safety factor adopts a value near 2.0. Therefore, when Pcr / Pmean is 2.0 or more, the maximum expected compared to the load Pmean to be considered in the design. Since the input becomes Pcr ≧ 2.0 × Pmean, the balance of the entire structure is lost, and the entire structure may be destroyed. From the above, it can be said that 0.45 ≦ k ≦ 0.7 is a preferable range.
[0018]
In addition, the experimental result in the case where a depression (crushing initiator) is provided in the wall surface portion as in the case of a conventional energy absorbing member to facilitate crushing in a bellows shape is shown in FIG. The plate thickness and material are the same as in the case of k = 1 except that there is a dent, and the maximum value Pcr of the initial crushing load can be reduced as compared with the case of k = 1. It can be seen that the subsequent load-displacement curve is almost the same as that of k = 1 and does not lead to an increase in the amount of energy absorption. On the other hand, the energy absorbing member according to the present invention exceeds the conventional energy absorption amount.
[0019]
【The invention's effect】
According to the present invention, the initial reaction force is reduced by reducing the thickness of the corner portion of the aluminum alloy extruded profile having a hollow cross section and / or the thickness of the joint between the inner web and the outer wall relative to the original thickness. A greater energy absorption capacity can be obtained while suppressing, and even a fragile material can be used as an axial energy absorption member.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a diagram showing various forms of the cross-sectional shape of an energy absorbing member having a square cross section according to the invention.
FIG. 2 is a view showing another embodiment of the cross-sectional shape of the energy absorbing member having the same U-shaped cross section.
FIG. 3 is a bellows-like collapse view of the energy absorbing member.
FIGS. 4A and 4B show compression load distributions of energy absorbing members having a square cross section, where FIG. 4A shows a conventional example and FIG. 4B shows an example of the present invention.
FIGS. 5A and 5B are a side view and a cross-sectional view, respectively, of an energy absorbing member having a square cross section used in an embodiment.
FIG. 6 is a load (Pcr / P (σ0.2))-displacement (crushing stalk) curve.
FIG. 7 is an energy absorption amount (U) -plate thickness ratio (k) curve and a ratio of maximum crush load to average crush load (Pcr / Pmean) -plate thickness ratio (k) curve.
FIG. 8 is a diagram showing a structure of a front portion of an automobile.
FIG. 9 is a schematic diagram of axial compression deformation of a rectangular cross-section member.
[Explanation of symbols]
1 Bumper reinforcement 2 Front side member

Claims (6)

外壁のコーナー部分が円弧状である中空断面のアルミニウム合金押出形材にあって、全てのコーナー部分の板厚が、押出軸方向の全長にわたり、元板厚すなわち外壁の薄く形成されていない箇所の板厚よりも薄く形成され、コーナー部分の板厚と元板厚との比をkとしたとき、k=0.45〜0.7であることを特徴とする押出軸方向に圧縮するとき蛇腹状に変形してエネルギーを吸収する押出軸方向エネルギー吸収部材。The outer wall corner portion is in an aluminum alloy extruded shape with a hollow cross section having an arc shape, and the plate thickness of all corner portions is the original plate thickness, that is, the portion where the outer wall is not thinly formed over the entire length in the extrusion axis direction . The bellows when compressed in the direction of the extrusion axis , wherein k is 0.45 to 0.7, where k is 0.45 to 0.7, where k is the ratio of the plate thickness of the corner portion to the original plate thickness. Extrusion axial energy absorbing member that absorbs energy by deforming into a shape. 外壁のコーナー部分が円弧状でありかつ内部にウエブを有する中空断面のアルミニウム合金押出形材にあって、全てのコーナー部分の板厚が、押出軸方向の全長にわたり、元板厚すなわち外壁の薄く形成されていない箇所の板厚よりも薄く形成され、コーナー部分の板厚と元板厚との比をkとしたとき、k=0.45〜0.7であることを特徴とする押出軸方向に圧縮するとき蛇腹状に変形してエネルギーを吸収する押出軸方向エネルギー吸収部材。In an aluminum alloy extruded section having a hollow cross section with an arc-shaped outer wall portion and a web inside, the thickness of all corner portions is the original plate thickness, that is, the outer wall is thin over the entire length in the direction of the extrusion axis. Extrusion shaft characterized in that k = 0.45 to 0.7, where k is 0.45 to 0.7, where k is the ratio of the plate thickness of the corner portion to the original plate thickness. An extruded axial energy absorbing member that absorbs energy by being deformed into a bellows shape when compressed in the direction. 外壁のコーナー部分が円弧状でありかつ内部にウエブを有する中空断面のアルミニウム合金押出形材にあって、ウエブと外壁との全ての接合部の板厚が、押出軸方向の全長にわたり、元板厚すなわちウエブの薄く形成されていない箇所の板厚よりも薄く形成され、ウエブと外壁との接合部の板厚と元板厚との比をkとしたとき、k=0.45〜0.7であることを特徴とする押出軸方向に圧縮するとき蛇腹状に変形してエネルギーを吸収する押出軸方向エネルギー吸収部材。A hollow cross section aluminum alloy extruded shape whose outer wall corner is arc-shaped and has a web inside, and the thickness of all joints between the web and the outer wall extends over the entire length in the direction of the extrusion axis. When the ratio of the plate thickness of the joint portion between the web and the outer wall to the original plate thickness is k, k = 0.45-0. 7. An extruded-axis-direction energy absorbing member that absorbs energy by being deformed into a bellows shape when compressed in the extruded-axis direction. 外壁のコーナー部分が円弧状でありかつ内部にウエブを有する中空断面のアルミニウム合金押出形材にあって、全てのコーナー部分の板厚が、押出軸方向の全長にわたり、元板厚すなわち外壁の薄く形成されていない箇所の肉厚より薄肉に形成され、コーナー部分の板厚と元板厚との比をkとしたとき、k=0.45〜0.7であり、かつウエブと外壁との全ての接合部の板厚が、押出軸方向の全長にわたり、元板厚すなわちウエブの薄く形成されていない箇所の板厚よりも薄く形成され、かつウエブと外壁との接合部の板厚と元板厚との比をkとしたとき、k=0.45〜0.7であることを特徴とする押出軸方向に圧縮するとき蛇腹状に変形してエネルギーを吸収する押出軸方向エネルギー吸収部材。In an aluminum alloy extruded section having a hollow cross section with an arc-shaped outer wall portion and a web inside, the thickness of all corner portions is the original plate thickness, that is, the outer wall is thin over the entire length in the direction of the extrusion axis. When the ratio of the thickness of the corner portion to the original plate thickness is k, k = 0.45 to 0.7 and the web and the outer wall are formed. The plate thickness of all joints is formed to be thinner than the original plate thickness, that is, the thickness of the portion where the web is not thinly formed , over the entire length in the direction of the extrusion axis , and the thickness and original thickness of the joint portion between the web and the outer wall are formed. Extrusion axial energy absorbing member that absorbs energy by being deformed into a bellows when compressed in the extrusion axial direction , where k = 0.45 to 0.7, where k is the ratio to the plate thickness . アルミニウム合金押出形材の断面が田の字形であることを特徴とする請求項2〜4のいずれかに記載の押出軸方向エネルギー吸収部材。  The extruded axial direction energy absorbing member according to any one of claims 2 to 4, wherein a cross section of the aluminum alloy extruded profile is a square shape. 自動車のサイドメンバに用いられることを特徴とする請求項1〜5のいずれかに記載の押出軸方向エネルギー吸収部材。 6. The extruded axial energy absorbing member according to claim 1 , which is used for a side member of an automobile.
JP21659296A 1996-07-29 1996-07-29 Extrusion axial energy absorbing member Expired - Fee Related JP3786743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21659296A JP3786743B2 (en) 1996-07-29 1996-07-29 Extrusion axial energy absorbing member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21659296A JP3786743B2 (en) 1996-07-29 1996-07-29 Extrusion axial energy absorbing member

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2001160584A Division JP3897542B2 (en) 2001-05-29 2001-05-29 Energy absorbing member

Publications (2)

Publication Number Publication Date
JPH1045023A JPH1045023A (en) 1998-02-17
JP3786743B2 true JP3786743B2 (en) 2006-06-14

Family

ID=16690842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21659296A Expired - Fee Related JP3786743B2 (en) 1996-07-29 1996-07-29 Extrusion axial energy absorbing member

Country Status (1)

Country Link
JP (1) JP3786743B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3701884B2 (en) * 2001-05-29 2005-10-05 豊臣機工株式会社 Energy absorbing member
JP4572674B2 (en) * 2004-12-02 2010-11-04 住友金属工業株式会社 Shock absorbing member
CN101678864B (en) 2007-04-04 2012-10-31 住友金属工业株式会社 Car-body reinforcing member, front side member, and car-body side structure
JP5741041B2 (en) * 2011-02-14 2015-07-01 マツダ株式会社 Crush can made of die-cast aluminum alloy
US9126628B2 (en) 2011-12-01 2015-09-08 Ford Global Technologies, Llc Lightweight vehicle beam
US11260099B2 (en) * 2016-12-16 2022-03-01 Hills Pet Nutrition, Inc. Pet food compositions
CN109720290B (en) * 2019-03-16 2023-11-10 吉林大学 Energy-absorbing pipe of imitative seagull feather axle structure

Also Published As

Publication number Publication date
JPH1045023A (en) 1998-02-17

Similar Documents

Publication Publication Date Title
JP3897542B2 (en) Energy absorbing member
US6099071A (en) Hollow frame member of aluminum alloy for vehicle body frame
US20060082170A1 (en) Bumper beam having face with supported angled wall
US6003930A (en) Vehicle with bumper and deforming element
JP3786743B2 (en) Extrusion axial energy absorbing member
JP2004148994A (en) Impact absorbing member for vehicle
JPH11208519A (en) Body frame structure of automobile
JP2013044407A (en) Shock absorbing member
US20030072900A1 (en) Impact energy absorbing structure
JP4039032B2 (en) Impact energy absorbing member
GB2248862A (en) Structural member resistant to buckling
JP4689300B2 (en) Shock absorbing member for vehicle
JP3520959B2 (en) Energy absorbing member for automotive frame structure made of extruded aluminum alloy with excellent axial crush characteristics
JP2004106612A (en) Energy absorbing member for absorbing impact in axial direction
JPH11255048A (en) Structural member having reinforcing structure
US6715593B1 (en) Crush tube assembly
JP3039145B2 (en) Body frame members
JP3029514B2 (en) Aluminum alloy car door reinforcement
JP2001227573A (en) Energy absorbing member
JP2007030647A (en) Axial compression energy absorbing member for automobile frame made of aluminum alloy
JP4198000B2 (en) Lateral collapse type bumper stay and bumper structure
JP2011011661A (en) Shock absorbing member
JP4022379B2 (en) Axial type vibration damping device that can be used for both earthquake and wind
JPH04287741A (en) Energy absorber of bumper for vehicle
JPH08170674A (en) Energy absorber provided with local reinforcing jig

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060322

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees