JP2012166645A - Die-cast aluminum alloy crash can - Google Patents

Die-cast aluminum alloy crash can Download PDF

Info

Publication number
JP2012166645A
JP2012166645A JP2011028175A JP2011028175A JP2012166645A JP 2012166645 A JP2012166645 A JP 2012166645A JP 2011028175 A JP2011028175 A JP 2011028175A JP 2011028175 A JP2011028175 A JP 2011028175A JP 2012166645 A JP2012166645 A JP 2012166645A
Authority
JP
Japan
Prior art keywords
wall thickness
crash
vehicle
diameter portion
die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011028175A
Other languages
Japanese (ja)
Inventor
Kojiro Tanaka
耕二郎 田中
Takahiro Kimura
貴広 木村
Nobuyuki Oda
信行 小田
Katsuya Nishiguchi
勝也 西口
Motoyasu Asakawa
元康 麻川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2011028175A priority Critical patent/JP2012166645A/en
Publication of JP2012166645A publication Critical patent/JP2012166645A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Body Structure For Vehicles (AREA)
  • Vibration Dampers (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce a shock received by a vehicle body or an occupant by a crash can 1 when a vehicle is collided.SOLUTION: The crash can 1 is formed of a die-cast aluminum alloy, and arranged between a side frame extending in the longitudinal direction on the right and left of the vehicle and an end of a bumper reinforcement extending in the vehicle width direction. The crash can 1 includes a hollow part 5 of a closed cross-sectional structure extending in the vehicle longitudinal direction, and includes steps 7 and 8 in an intermediate part in its vehicle longitudinal direction. A small diameter part 11, an intermediate diameter part 12 and a large diameter part 13 continue via the steps 7 and 8, the dimensional relationship among a wall thickness A of the small diameter part 11, a wall thickness B of the intermediate part 12 and a wall thickness C of the large diameter part 13 is set to A>B>C, and longitudinal thicknesses Dw and Dw' of the step parts 7 and 8 are formed in a thickness of the wall thickness A or thicker.

Description

本発明は車両用のクラッシュカンに関する。   The present invention relates to a crash can for a vehicle.

車両には、車両同士の衝突時や、運転操作ミスによる建造物への衝突時における乗員の安全確保や車体損傷の軽減を目的として衝撃吸収装置が備えられている。その代表的なものとして、車両のバンパ内側に設けられたバンパレインフォースメントと車体のサイドフレーム端部との間に設けられるクラッシュカン(「クラッシュボックス」ともいう。)がある。   The vehicle is provided with an impact absorbing device for the purpose of ensuring the safety of the occupant and reducing vehicle damage when the vehicles collide with each other or when the vehicle collides with a building due to a driving mistake. A typical example is a crash can (also referred to as “crash box”) provided between a bumper reinforcement provided inside a bumper of a vehicle and a side frame end of a vehicle body.

上記クラッシュカンは、一般にはスチール材によって形成され、車両の正突時やオフセット衝突時に蛇腹状に座屈変形しながら車両前後方向に潰れていく過程で衝突エネルギを吸収する。そのために、従来のスチール材よりなるクラッシュカンは、車両内側と車両外側の両断面コ字形状部材を接合することにより、内部が中空になった筒状に形成されている。また、クラッシュカンの閉断面形状を十字形やダルマ形にすることや、クラッシュカンの内側壁面及び外側壁面にビードを設けることも知られている。例えば、特許文献1には、スチール材よりなる閉断面十字状のクラッシュカンが記載され、また、その前端面に凹部を設け、この凹部をバンパビーム後面の車幅方向に延びる断面コ字状凸部に嵌め合わせた状態にすることが記載されている。   The crash can is generally formed of a steel material, and absorbs collision energy in the process of collapsing in the vehicle front-rear direction while buckling and deforming in a bellows shape at the time of a normal collision of the vehicle or an offset collision. For this purpose, a conventional crash can made of a steel material is formed in a cylindrical shape in which the inside is hollow by joining both U-shaped members on both the inside and outside of the vehicle. It is also known that the closed cross-sectional shape of the crash can is a cross shape or a dharma shape, and that beads are provided on the inner wall surface and the outer wall surface of the crash can. For example, Patent Document 1 describes a cross-shaped crush can having a closed cross section made of a steel material. Also, a concave portion is provided on the front end surface thereof, and the concave portion extends in the vehicle width direction on the rear surface of the bumper beam. It is described that it is put in a state fitted together.

また、クラッシュカンをアルミ合金製とする試みも知られている。例えば、特許文献2には、円筒状のダイカストアルミ合金製クラッシュカンにおいて、その壁厚を軸方向において連続的に又は部分的に変化させることが記載されている。また、特許文献3には、アルミ合金押出材よりなる中空矩形断面のクラッシュカンにおいて、その壁面を外側に突出させた軸方向に延びる断面コ字状の凸部を設けることが記載されている。   An attempt to make the crash can made of an aluminum alloy is also known. For example, Patent Document 2 describes that in a cylindrical die-cast aluminum alloy crush can, the wall thickness thereof is continuously or partially changed in the axial direction. Patent Document 3 describes that a crush can having a hollow rectangular cross section made of an aluminum alloy extruded material is provided with a convex portion having a U-shaped cross section extending in the axial direction with its wall surface protruding outward.

特開2010−70038号公報JP 2010-70038 A 特開2002−39245号公報JP 2002-39245 A 特開2002−12165号公報JP 2002-12165 A

車体を構成するクラッシュカンは大物部品ではないが、これを製作する材料をスチール材からアルミ合金材に代えると、強度確保のために壁厚を少し増大させる必要があるとしても、アルミ合金材の方が軽いから、車体の軽量化に有利になる。しかし、アルミ合金押出材の場合は、クラッシュカンが基本的には軸方向の全長にわたって同じ断面形状になるから、効果的な衝撃吸収性を得るべく断面形状を軸方向において変化させたり、或いは両端に接合フランジを設けたりすることが難しい。これに対して、特許文献2に記載されているダイカストアルミ合金製クラッシュカンの場合、筒状部の壁厚を変化させたりフランジ等を設けることは可能になるが、さらに効果的な衝撃吸収性を得ることが要望される。   The crash cans that make up the car body are not big parts, but if the material for making them is changed from steel to aluminum alloy, the wall thickness needs to be increased slightly to ensure strength. Because it is lighter, it is advantageous for reducing the weight of the vehicle body. However, in the case of an aluminum alloy extruded material, the crush can basically has the same cross-sectional shape over the entire length in the axial direction, so that the cross-sectional shape can be changed in the axial direction to obtain effective shock absorption or both ends. It is difficult to provide a joint flange. On the other hand, in the case of the die-cast aluminum alloy crash can described in Patent Document 2, it is possible to change the wall thickness of the cylindrical portion or to provide a flange or the like, but more effective shock absorption It is desired to obtain.

すなわち、従来のクラッシュカンでは、衝突荷重が加わった場合、クラッシュカンが衝突荷重に対して突っ張るため、最初の座屈を生ずるまでは車体側が受ける荷重が高くなっていき、その後に座屈を生ずることに伴って荷重が低下する所謂初期ピークが現れる。このような座屈を生ずるまでの初期の荷重ピークが高いクラッシュカンでは、車体が受けるダメージが大きくなり易く、乗員が受ける衝撃も大きい。座屈が始まると、車体側が受ける荷重は低下するものの、その座屈変形が止まると、次の座屈を生ずるまで荷重が再び増大していく。従って、クラッシュカンに更なる座屈が適切に生じない場合は車体側が大きな荷重を受けてしまうことになる。座屈が次から次に生ずる場合でも、後になるほど座屈し難い部位が座屈していくのであるから、車体側が受ける荷重が大きく増加していくことになる。つまり、車体が受けるダメージないし乗員が受ける衝撃が大きくなり易い。   In other words, in the case of a conventional crash can, when a collision load is applied, the crash can is stretched against the collision load, so the load received by the vehicle body increases until the first buckling occurs, and then the buckling occurs. A so-called initial peak in which the load decreases with this appears. In a crash can having a high initial load peak until buckling occurs, damage to the vehicle body is likely to increase, and a passenger receives a large impact. When buckling starts, the load received by the vehicle body decreases, but when the buckling deformation stops, the load increases again until the next buckling occurs. Therefore, when further buckling does not occur properly in the crash can, the vehicle body side receives a large load. Even when buckling occurs next time, the portion that is difficult to buckle will be buckled later, so that the load received on the vehicle body side will increase greatly. That is, the damage received by the vehicle body or the impact received by the occupant tends to increase.

そこで、本発明は、衝突初期の荷重ピークを下げて車体側が受ける衝撃を小さくするようにしたとき、その後も衝突エネルギを効率良く吸収して車体側が受ける荷重が過度に大きくならないようにする。   Therefore, according to the present invention, when the load peak at the initial stage of the collision is lowered to reduce the impact received on the vehicle body side, the collision energy is efficiently absorbed thereafter so that the load received on the vehicle body side is not excessively increased.

本発明は、上記課題を解決するために、ダイカストアルミ合金製クラッシュカンを採用し、衝突エネルギを効果的に吸収する座屈が順次生ずるように、クラッシュカンの中間部に座屈変形場所を区画する節となる段部を設けた。   In order to solve the above-mentioned problems, the present invention adopts a die-cast aluminum alloy crash can and partitions buckling deformation places in the middle portion of the crash can so that buckling that effectively absorbs collision energy occurs sequentially. A step is provided to serve as a knot.

すなわち、ここに開示するダイカストアルミ合金製クラッシュカンは、車両左右をそれぞれ前後方向に延びるサイドフレームと車幅方向に延びるバンパレインフォースメントの端部との間に設けられるものであって、
車両前後方向に延びる筒状部を備え、
上記筒状部は、車両前後方向の中間部に少なくとも一つの段部を備え、該段部において筒状部の周壁が階段状に折れ曲がって該段部より上記バンパレインフォースメント側が上記サイドフレーム側よりも小径に形成され、
上記段部よりも上記バンパレインフォースメント側の小径部の壁厚は、上記段部よりも上記サイドフレーム側の大径部の壁厚よりも大きく、
上記段部の前後厚さが上記周壁における上記段部を除く部分の最大壁厚以上の厚さになっており、
上記段部の前後厚さは、上記筒状部外周側において当該段部の上記バンパレインフォースメント側を向いた面と上記筒状部内周側において当該段部の上記サイドフレーム側を向いた面との距離であることを特徴とする。
In other words, the die-cast aluminum alloy crash can disclosed herein is provided between the side frame extending in the front-rear direction and the end of the bumper reinforcement extending in the vehicle width direction, respectively,
A cylindrical portion extending in the longitudinal direction of the vehicle,
The cylindrical portion includes at least one step portion at an intermediate portion in the vehicle front-rear direction, and the peripheral wall of the cylindrical portion is bent in a step shape at the step portion, and the bumper reinforcement side from the step portion is the side frame side. Formed with a smaller diameter than
The wall thickness of the small diameter portion on the bumper reinforcement side than the stepped portion is larger than the wall thickness of the large diameter portion on the side frame side than the stepped portion,
The front and rear thickness of the stepped portion is equal to or greater than the maximum wall thickness of the portion of the peripheral wall excluding the stepped portion,
The front and rear thicknesses of the stepped portions are a surface facing the bumper reinforcement side of the stepped portion on the outer peripheral side of the cylindrical portion and a surface facing the side frame side of the stepped portion on the inner peripheral side of the cylindrical portion. It is the distance to.

ここに、段部の前後厚さが周壁における段部を除く部分の最大壁厚以上の厚さになっているということは、当該段部は、強度が高く、筒状部に衝突荷重が加わったときの座屈を生ずる起点にはならず、筒状部における座屈変形場所を区画する、謂わば節となることを意味する。よって、筒状部に衝突荷重が加わったときには、段部を挟んだ前方側の小径部と後方側の大径部各々に座屈を確実に生じさせる上で有利になる。   Here, the front and rear thickness of the stepped portion is equal to or greater than the maximum wall thickness of the peripheral wall excluding the stepped portion, which means that the stepped portion has high strength and a collision load is applied to the cylindrical portion. This means that it does not become a starting point for causing buckling, but becomes a so-called node that defines a buckling deformation place in the cylindrical portion. Therefore, when a collision load is applied to the cylindrical portion, it is advantageous for reliably generating buckling in each of the small diameter portion on the front side and the large diameter portion on the rear side across the stepped portion.

そうして、上記段部よりも上記バンパレインフォースメント側(小径部)と上記サイドフレーム側(大径部)とを比べた場合、上記バンパレインフォースメント側の方が小径であるものの、その壁厚は上記バンパレインフォースメント側の方が大であるから、小径部に座屈を生ずる荷重と大径部に座屈を生ずる荷重とに大差を生じないようにすることができる。すなわち、小径部と大径部とを少しの荷重差でいずれか一方から順に座屈変形させていくことができる。   Then, when the bumper reinforcement side (small diameter part) and the side frame side (large diameter part) are compared with the stepped part, the bumper reinforcement side has a smaller diameter. Since the wall thickness on the bumper reinforcement side is larger, it is possible to prevent a large difference between a load causing buckling in the small diameter portion and a load causing buckling in the large diameter portion. That is, the small diameter portion and the large diameter portion can be buckled and deformed in order from either one with a slight load difference.

従って、上記小径部及び大径部の一方が比較的低い入力荷重で座屈するようにしたとき(衝突初期の荷重ピークを下げたとき)、その後に他方も比較的低い入力荷重で座屈することになり、車体側が受ける衝突荷重が過度に増大していくことが避けられる。よって、車体が受けるダメージや乗員が受ける衝撃を最小限に抑えつつ、衝突時のエネルギを効率良く吸収していくことができる。   Therefore, when one of the small-diameter portion and the large-diameter portion buckles with a relatively low input load (when the load peak at the initial stage of collision is lowered), the other then buckles with a relatively low input load. Thus, an excessive increase in the collision load received on the vehicle body side can be avoided. Therefore, it is possible to efficiently absorb the energy at the time of collision while minimizing the damage received by the vehicle body and the impact received by the occupant.

しかも、上記筒状部は、小径部と段部と大径部とが車両前後方向に順に並ぶ単純な階段形状になり、アンダカットは生じないから、下型と上型とが同軸上で相対移動する単純な二方向抜きの金型でクラッシュカンを製作することができ、ダイカスト成形用の金型構造が複雑になることはない。   Moreover, the cylindrical portion has a simple step shape in which the small diameter portion, the step portion, and the large diameter portion are arranged in order in the vehicle front-rear direction, and no undercut occurs, so the lower die and the upper die are coaxially relative to each other. The crush can can be manufactured with a moving die with a simple two-way, and the die casting mold structure is not complicated.

好ましい実施形態は、上記段部の内周面から外周面に至る壁厚は、上記小径部の壁厚と上記大径部の壁厚との合計厚さ以下であることを特徴とする。このことは、換言すれば、小径部と大径部とは段部を介して内外にオフセットしているものの、その小径部の外面と大径部の内面とは、同一面上にあるか、又は小径部の外面が大径部の内面よりも外側にあることを意味する。従って、小径部に加わる車両前後方向の荷重が段部を介して大径部にそのまま車両前後方向の荷重として伝わり易く、段部を起点として小径部が内方に折れ曲がるモーメントは小さくなる。よって、段部の節としての効果(小径部と大径部各々が別個に座屈変形するようにする効果)を確実に発現させる上で有利になる。   In a preferred embodiment, the wall thickness from the inner peripheral surface to the outer peripheral surface of the stepped portion is not more than the total thickness of the wall thickness of the small diameter portion and the wall thickness of the large diameter portion. In other words, although the small diameter portion and the large diameter portion are offset inward and outward through the stepped portion, the outer surface of the small diameter portion and the inner surface of the large diameter portion are on the same plane, Or it means that the outer surface of a small diameter part exists in the outer side rather than the inner surface of a large diameter part. Accordingly, the vehicle longitudinal load applied to the small-diameter portion is easily transmitted to the large-diameter portion as it is through the step as the vehicle longitudinal load, and the moment at which the small-diameter portion bends inward from the step is reduced. Therefore, it is advantageous for surely manifesting the effect as a node of the stepped portion (the effect of separately buckling and deforming each of the small diameter portion and the large diameter portion).

上記筒状部の断面形状は円形及び非円形のいずれにもすることができるが、非円形状、特に凸多角形状、或いは十字形状、その他の凹多角形状、或いはダルマ形状にすることが好ましい。これにより、正面からの衝突荷重を受ける場合だけでなく、オフセット荷重を受けた場合(クラッシュカンに対して衝突荷重が上下或いは左右から斜めに加わった場合)であっても、クラッシュカンを確実に座屈変形させて、衝突エネルギを吸収する上で有利になる。   The cross-sectional shape of the cylindrical portion can be either a circular shape or a non-circular shape, but is preferably a non-circular shape, particularly a convex polygon shape, a cross shape, other concave polygon shapes, or a dharma shape. As a result, not only when receiving a collision load from the front, but also when receiving an offset load (when the collision load is applied to the crash can obliquely from the top or bottom or from the left and right) It is advantageous for buckling deformation and absorbing collision energy.

以上のように、本発明に係るクラッシュカンは車両前後方向に延びる筒状部の中間部に段部を備え、該段部よりバンパレインフォースメント側がサイドフレーム側よりも小径に形成されていて、筒状部周壁の壁厚は上記バンパレインフォースメント側の小径部の方が上記サイドフレーム側の大径部よりも大きく、且つ段部の前後厚さが上記周壁における上記段部を除く部分の最大壁厚以上の厚さになっているから、段部が筒状部における座屈変形場所を区画する節となり、小径部及び大径部各々を略同程度の荷重で別個に座屈変形させることができるようになる。そのため、本発明によれば、衝突初期の荷重ピークが高くなることを抑えて、その後に車体側に加わる荷重が過度に増大しないようにすること、すなわち、車体ないし乗員に大きな衝撃が加わらないようにすることが容易になる。しかも、クラッシュカンのダイカスト成形も容易である。   As described above, the crash can according to the present invention includes a step portion in the middle portion of the cylindrical portion extending in the vehicle front-rear direction, and the bumper reinforcement side is formed with a smaller diameter than the side frame side from the step portion. The wall thickness of the cylindrical portion peripheral wall is larger in the small diameter portion on the bumper reinforcement side than the large diameter portion on the side frame side, and the front and rear thickness of the step portion is the portion of the peripheral wall excluding the step portion. Since the thickness is equal to or greater than the maximum wall thickness, the step portion becomes a node that defines the buckling deformation place in the cylindrical portion, and the small diameter portion and the large diameter portion are separately buckled and deformed with substantially the same load. Will be able to. Therefore, according to the present invention, it is possible to prevent the load peak at the initial stage of the collision from becoming high and prevent the load applied to the vehicle body side from increasing excessively thereafter, that is, not to apply a large impact to the vehicle body or the occupant. It becomes easy to make. Moreover, it is easy to die-crush a crash can.

本発明の実施形態に係る車両前部の車体構造を示す分解斜視図である。It is a disassembled perspective view which shows the vehicle body structure of the vehicle front part which concerns on embodiment of this invention. 本発明の実施形態に係るクラッシュカンの斜視図である。It is a perspective view of the crush can concerning the embodiment of the present invention. 同クラッシュカンの一部を示す縦断面図である。It is a longitudinal cross-sectional view which shows a part of the crash can. 同クラッシュカンの小径部の壁と中径部の壁とがオーバーラップしていることを示す説明図である。It is explanatory drawing which shows that the wall of the small diameter part and the wall of a medium diameter part of the crash can overlap. 同クラッシュカン製造用金型を模式的に示す断面図である。It is sectional drawing which shows the metal mold | die for crash can manufacturing typically. 同クラッシュカンが座屈変形した状態を模式的に示す正面図である。It is a front view showing typically the state where the crash can buckled and deformed. 実施例及び比較例各々のクラッシュカンの荷重−変位特性を示すグラフ図である。It is a graph which shows the load-displacement characteristic of the crash can of an Example and each comparative example. 別の実施形態に係るクラッシュカンの斜視図である。It is a perspective view of the crash can which concerns on another embodiment. 同クラッシュカンの横断面図である。It is a cross-sectional view of the crash can. 同クラッシュカン筒状部の第1変形パターンを示す図である。It is a figure which shows the 1st deformation pattern of the crash can cylinder part. 同クラッシュカン筒状部の第2変形パターンを示す図である。It is a figure which shows the 2nd deformation pattern of the crash can cylinder part. 同クラッシュカン筒状部の変形状態を示す斜視図である。It is a perspective view which shows the deformation | transformation state of the crash can cylinder part.

以下、本発明を実施するための形態を図面に基づいて説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. The following description of the preferred embodiments is merely exemplary in nature and is not intended to limit the invention, its application, or its use.

図1は車両前部の車体構造を示す分解斜視図である。同図において、1はダイカストアルミ合金製のクラッシュカン、2は車両左右をそれぞれ前後方向に延びるフロントサイドフレーム、3は車幅方向に延びるバンパレインフォースメント(バンパビーム)である。クラッシュカン1は左右各々のフロントサイドフレーム2の前端とバンパレインフォースメント3の両端部各々とを連結するように設けられる。   FIG. 1 is an exploded perspective view showing the vehicle body structure at the front of the vehicle. In the figure, 1 is a crash can made of die-cast aluminum alloy, 2 is a front side frame extending in the front-rear direction on the left and right sides of the vehicle, and 3 is a bumper reinforcement (bumper beam) extending in the vehicle width direction. The crash can 1 is provided so as to connect the front ends of the left and right front side frames 2 to both ends of the bumper reinforcement 3.

フロントサイドフレーム2は、車両前後方向に延びる閉断面構造体であって、車幅方向内側の断面ハット形インナメンバ2aと、車幅方向外側の平板状アウタメンバ2bとを接合して構成されている。このフロントサイドフレーム2の前端面には板面を前方に向けた取付プレート4が固定されている。バンパレインフォースメント3は、平板状のフロントメンバ3aと断面ハット形のリヤメンバ3bとを接合して構成されている。このバンパレインフォースメント3にバンパフェイス(図示省略)が取り付けられる。   The front side frame 2 is a closed cross-section structure that extends in the vehicle front-rear direction, and is configured by joining a cross-section hat-shaped inner member 2a on the inner side in the vehicle width direction and a flat plate outer member 2b on the outer side in the vehicle width direction. A mounting plate 4 with the plate surface facing forward is fixed to the front end surface of the front side frame 2. The bumper reinforcement 3 is configured by joining a flat front member 3a and a rear member 3b having a hat-shaped cross section. A bumper face (not shown) is attached to the bumper reinforcement 3.

クラッシュカン1は、図2に示すように、車両前後方向に延び且つ前方に向かって段階的に先細になった閉断面構造(中空)の筒状部5を備え、該筒状部5の後端に外方に張り出した接合フランジ6が設けられている。筒状部5は、断面形状が矩形であり、軸方向(車両前後方向)の中間部に前段部7及び後段部8を備えて階段状になった小径部11、中径部12及び大径部13を有する。   As shown in FIG. 2, the crash can 1 includes a cylindrical portion 5 having a closed cross-sectional structure (hollow) that extends in the vehicle front-rear direction and is tapered stepwise toward the front. A joint flange 6 projecting outward is provided at the end. The cylindrical portion 5 has a rectangular cross-sectional shape, and includes a small diameter portion 11, a medium diameter portion 12, and a large diameter that are stepped by including a front step portion 7 and a rear step portion 8 in an intermediate portion in the axial direction (vehicle longitudinal direction). Part 13.

筒状部5の前端を閉じる前壁14の中央にはクラッシュカン1の軽量化のために設けた軽量孔15が開口し、さらに前壁14の四隅にはボルト孔16が開口している。このボルト孔16によってクラッシュカン1の前端がバンパレインフォースメント3に結合される。接合フランジ6の四隅にもボルト孔16が形成されていて、このボルト孔16によってクラッシュカン1の後端がフロントサイドフレーム2の前端の取付プレート4に結合される。   Lightweight holes 15 provided to reduce the weight of the crash can 1 are opened at the center of the front wall 14 that closes the front end of the cylindrical portion 5, and bolt holes 16 are opened at four corners of the front wall 14. The front end of the crash can 1 is coupled to the bumper reinforcement 3 by the bolt hole 16. Bolt holes 16 are also formed at four corners of the joint flange 6, and the rear end of the crash can 1 is coupled to the mounting plate 4 at the front end of the front side frame 2 by the bolt holes 16.

筒状部5についてさらに説明する。図3に示すように、筒状部5の周壁は、前段部7及び後段部8において階段状に折れ曲がっており、前段部7より車両前方側が小径部11、前段部7と後段部8との間が中径部12、後段部8より車両後方側が大径部13に形成されている。   The cylindrical portion 5 will be further described. As shown in FIG. 3, the peripheral wall of the cylindrical portion 5 is bent stepwise at the front step portion 7 and the rear step portion 8, and the vehicle front side from the front step portion 7 is a small diameter portion 11, and the front step portion 7 and the rear step portion 8. The middle diameter part 12 is formed between the rear part 8 and the rear side part 8 is formed on the large diameter part 13.

そうして、小径部11の壁厚A、中径部12の壁厚B及び大径部13の壁厚Cの寸法関係は、A>B>Cとなっている。前段部7の前後厚さ(筒状部5の外周側において車両前方を向いた面7aと筒状部5の内周側において車両後方を向いた面7bとの距離)Dwは、筒状部周壁における段部を除く部分の最大壁厚(小径部11の壁厚A)以上の厚さになっている(Dw≧A)。前段部7の内周面から外周面に至る壁厚Dtは、その前方側の小径部11の壁厚Aと後方側の中径部12の壁厚Bとの合計厚さ以下になっている(A<Dt≦(A+B))。   Thus, the dimensional relationship among the wall thickness A of the small diameter portion 11, the wall thickness B of the medium diameter portion 12, and the wall thickness C of the large diameter portion 13 is A> B> C. The front-rear thickness (the distance between the surface 7a facing the front of the vehicle on the outer peripheral side of the cylindrical portion 5 and the surface 7b facing the rear of the vehicle on the inner peripheral side of the cylindrical portion 5) Dw is the cylindrical portion The peripheral wall has a thickness equal to or greater than the maximum wall thickness (wall thickness A of the small diameter portion 11) of the portion excluding the stepped portion (Dw ≧ A). The wall thickness Dt from the inner peripheral surface to the outer peripheral surface of the front step portion 7 is equal to or less than the total thickness of the wall thickness A of the small-diameter portion 11 on the front side and the wall thickness B of the middle-diameter portion 12 on the rear side. (A <Dt ≦ (A + B)).

後段部8も、その前後厚さDw'は最大壁厚(小径部11の壁厚A)以上の厚さになっており(Dw'≧A)、また、その壁厚Dt'は、その前方側の中径部12の壁厚Bと後方側の大径部13の壁厚Cとの合計厚さ以下になっている(B<Dt'≦(B+C))。   The rear portion 8 also has a front and rear thickness Dw ′ equal to or greater than the maximum wall thickness (wall thickness A of the small diameter portion 11) (Dw ′ ≧ A), and the wall thickness Dt ′ is The wall thickness B of the middle diameter portion 12 on the side and the wall thickness C of the large diameter portion 13 on the rear side are equal to or less than the total thickness (B <Dt ′ ≦ (B + C)).

例えば、壁厚A=3.0mm、壁厚B=2.5mm、壁厚C=2.0mmとするとき、前段部7及び後段部8の前後厚さDw,Dw'を3.0mm以上5.0mm以下、前段部7の壁厚Dtを4.5mm以上5.5mm以下、後段部8の壁厚Dt'を3.5mm以上4.5mm以下とすればよい。この場合、図4に示すように、小径部11の周壁と中径部12の周壁とは、車両前後方向視でのオーバーラップ量Xが0〜1mmとなり、中径部12の周壁と大径部13の周壁とに関しても、車両前後方向視でのオーバーラップ量が0〜1mmになる。好ましいのは、オーバーラップ量Xを零とするのではなく、ある程度のオーバーラップさせることである。   For example, when the wall thickness A = 3.0 mm, the wall thickness B = 2.5 mm, and the wall thickness C = 2.0 mm, the front and rear thicknesses Dw and Dw ′ of the front step portion 7 and the rear step portion 8 are 3.0 mm or more and 5 0.04 mm or less, the wall thickness Dt of the front step portion 7 may be 4.5 mm or more and 5.5 mm or less, and the wall thickness Dt ′ of the rear step portion 8 may be 3.5 mm or more and 4.5 mm or less. In this case, as shown in FIG. 4, the peripheral wall of the small-diameter portion 11 and the peripheral wall of the medium-diameter portion 12 have an overlap amount X of 0 to 1 mm when viewed in the vehicle front-rear direction. With respect to the peripheral wall of the portion 13, the overlap amount in the vehicle front-rear direction view is 0 to 1 mm. What is preferable is not to make the overlap amount X zero, but to make a certain amount of overlap.

また、上記壁厚A,B,Cに関しては、小径部11の全周長をL1、中径部12の全周長をL2、大径部13の全周長をL3とするとき、A×L1≒B×L2≒C×L3となるようにすること、つまり、壁厚と全周長との積が略一定になるようにすることである。これにより、クラッシュカン1に衝突荷重が加わったときに、小径部11、中径部12及び大径部13各々が座屈するに至る荷重に大差がなくなる。但し、本実施形態では、小径部11、中径部12及び大径部13各々の径(全周長)及び壁厚A〜Cの調整により、座屈に至る荷重の大きさは小径部11、中径部12及び大径部13の順で少しずつ大きくなるように設定している。   Further, regarding the wall thicknesses A, B, and C, when the total circumference of the small diameter portion 11 is L1, the total circumference of the medium diameter portion 12 is L2, and the total circumference of the large diameter portion 13 is L3, A × L1≈B × L2≈C × L3, that is, the product of the wall thickness and the total circumference is substantially constant. Thereby, when a collision load is applied to the crash can 1, there is no great difference in the load that causes the small diameter portion 11, the medium diameter portion 12, and the large diameter portion 13 to buckle. However, in the present embodiment, the magnitude of the load leading to buckling is adjusted by adjusting the diameters (total circumferential lengths) and wall thicknesses A to C of the small diameter part 11, the medium diameter part 12, and the large diameter part 13. The medium diameter portion 12 and the large diameter portion 13 are set so as to increase gradually.

<クラッシュカンの製法>
クラッシュカン1の製造には型締め力500tonの高真空ダイカスト装置を使用することが好ましい。図5はそのための金型を模式的に示す。同図において、21は下型、22は上型であり、この両型21,22によってクラッシュカン成形用キャビティ23が形成されている。符号24は中子可動板であり、この可動板24に軽量孔15を形成するための中子25及びボルト孔16を形成するための中子(図示省略)が設けられている。符号27は溶湯注入用プランジャが進退するプランジャ孔、符号28は湯道である。
<Crush can manufacturing method>
For the manufacture of the crash can 1, it is preferable to use a high vacuum die casting apparatus having a clamping force of 500 tons. FIG. 5 schematically shows a mold for that purpose. In the figure, 21 is a lower mold and 22 is an upper mold. A crush can molding cavity 23 is formed by both molds 21 and 22. Reference numeral 24 denotes a core movable plate, which is provided with a core 25 for forming the lightweight hole 15 and a core (not shown) for forming the bolt hole 16. Reference numeral 27 denotes a plunger hole through which the molten metal injection plunger advances and retracts, and reference numeral 28 denotes a runner.

上記クラッシュカン1の筒状部5自体は単純な階段型の先細形状であるから、図5から明らかなように、下型21及び上型22のいずれも割型とすることなく、単純な二方向抜きの金型として、当該クラッシュカン1を成形することができる。   Since the cylindrical portion 5 itself of the crash can 1 has a simple step-shaped taper shape, as is clear from FIG. 5, neither the lower mold 21 nor the upper mold 22 is split. The crash can 1 can be formed as a die without direction.

鋳造用アルミ合金としては、質量%で、Mn:1.4%以上1.6%以下、Si:0.2%以上5.0%以下、Cu:0.05%以上0.35%以下、Mg:0.1%以上0.3%以下、Fe:0.5%以上0.7%以下、Ti:0.1%以上0.3%以下を含有し、残部がAl及び不可避的不純物からなるものを採用することが好ましい。これにより、0.2%耐力が70MPa以上、引張強さが120MPa以上であり、且つ、伸びが10%以上であるクラッシュカン1を得ることができる。   As an aluminum alloy for casting, Mn: 1.4% or more and 1.6% or less, Si: 0.2% or more and 5.0% or less, Cu: 0.05% or more and 0.35% or less, Mg: 0.1% or more and 0.3% or less, Fe: 0.5% or more and 0.7% or less, Ti: 0.1% or more and 0.3% or less, and the balance from Al and inevitable impurities It is preferable to adopt the following. Thereby, the crash can 1 having a 0.2% proof stress of 70 MPa or more, a tensile strength of 120 MPa or more, and an elongation of 10% or more can be obtained.

例えば、Mn:1.56%、Si:0.22%、Cu:0.05%、Mg:0.16%、Fe:0.65%、Ti:0.15%を含有し、残部がAl及び不可避的不純物からなるアルミ合金を採用し、プランジャ速度:1.50m/秒、キャビティ内真空度:98kPa、型温150〜160℃の条件でダイカスト鋳造を行なうと、0.2%耐力が100MPa、引張強さが200MPa、伸びが約18%である機械的特性を有するクラッシュカン1を得ることができる。   For example, Mn: 1.56%, Si: 0.22%, Cu: 0.05%, Mg: 0.16%, Fe: 0.65%, Ti: 0.15%, the balance being Al In addition, when die casting is performed under the conditions of an aluminum alloy composed of unavoidable impurities, plunger speed: 1.50 m / sec, vacuum in cavity: 98 kPa, mold temperature: 150 to 160 ° C., 0.2% proof stress is 100 MPa. In addition, the crash can 1 having mechanical properties with a tensile strength of 200 MPa and an elongation of about 18% can be obtained.

<クラッシュカンの圧縮変形>
クラッシュカン1にバンパレインフォースメント3を介して衝突荷重が加わると、本実施形態の場合は小径部11に座屈を生じ、次いで中径部12に座屈を生じ、最後に大径部13に座屈を生ずる。図6は小径部11、中径部12及び大径部13各々が座屈した状態を模式的に示している。
<Compression deformation of crash can>
When a collision load is applied to the crash can 1 via the bumper reinforcement 3, in the case of this embodiment, the small diameter portion 11 is buckled, then the medium diameter portion 12 is buckled, and finally the large diameter portion 13 is formed. Cause buckling. FIG. 6 schematically shows a state in which each of the small diameter portion 11, the medium diameter portion 12, and the large diameter portion 13 is buckled.

この場合、前段部7及び後段部8は、各々前後厚さDw,Dw'が小径部11の壁厚A以上の厚さになっていて、その強度が高いことから、筒状部5を小径部11、中径部12及び大径部13各々が別個に座屈発生場所となるように区画する節として機能する。そのために、図6に示すように、小径部11、中径部12及び大径部13各々に確実に座屈を生ずることになる。   In this case, the front-stage portion 7 and the rear-stage portion 8 have the front and rear thicknesses Dw and Dw ′ that are equal to or greater than the wall thickness A of the small-diameter portion 11, and the strength thereof is high. The section 11, the medium diameter section 12, and the large diameter section 13 each function as a node that separates the buckling occurrence place. Therefore, as shown in FIG. 6, the small diameter portion 11, the medium diameter portion 12 and the large diameter portion 13 are surely buckled.

しかも、前段部7及び後段部8各々の壁厚Dt,Dt'は、A<Dt≦(A+B)、B<Dt'≦(B+C)になっている。つまり、図4に示すように、段部7,8を挟む前方の小径側の壁と後方の大径側の壁とが車両前後方向視においてオーバーラップしているか、或いは小径側の壁の外面と大径側の壁の内面とが車両前後方向視において面一になっている。このため、小径側の壁に加わる車両前後方向の荷重がそのまま段部7,8を介して大径側の壁に車両前後方向の荷重として伝わり易い。よって、段部7,8を起点として小径側の壁が内方に折れ曲がるように働くモーメントは小さい。つまり、段部7,8は節として有効に働き、筒状部5が段部7,8において座屈することが避けられる。   Moreover, the wall thicknesses Dt and Dt ′ of the front-stage part 7 and the rear-stage part 8 respectively satisfy A <Dt ≦ (A + B) and B <Dt ′ ≦ (B + C). That is, as shown in FIG. 4, the front small-diameter wall sandwiching the stepped portions 7 and 8 overlaps the rear large-diameter wall in the vehicle front-rear direction view, or the outer surface of the small-diameter side wall. And the inner surface of the large-diameter wall are flush with each other when viewed in the vehicle longitudinal direction. For this reason, the vehicle front-rear direction load applied to the small-diameter side wall is easily transmitted to the large-diameter side wall as the vehicle front-rear direction load via the step portions 7 and 8 as they are. Therefore, the moment that acts so that the small-diameter side wall is bent inward starting from the stepped portions 7 and 8 is small. That is, the step portions 7 and 8 effectively function as nodes, and the cylindrical portion 5 is prevented from buckling at the step portions 7 and 8.

図7は3種類のダイカストアルミ合金製クラッシュカンの圧縮テスト結果(荷重−圧縮変位データ)を示す。同図のS1は図2に示す実施例に係るクラッシュカン(壁厚A=3.0mm、壁厚B=2.5mm、壁厚C=2.0mm、前後厚さDw,Dw'=3.0mm、壁厚Dt=4.5mm、壁厚Dt'=3.5mm)の特性である。S2は筒状部が全長にわたって大径部13と同じ外径の断面矩形に形成された比較例1(壁厚=3.0mm一定,段部なし,他の構成は実施例と同じ)の特性である。S3は壁厚A,B,Cをいずれも3.0mmとした比較例2(他の構成は実施例と同じ,段部7,8あり)の特性である。   FIG. 7 shows compression test results (load-compression displacement data) of three types of die-cast aluminum alloy crush cans. S1 in the figure is a crash can according to the embodiment shown in FIG. 2 (wall thickness A = 3.0 mm, wall thickness B = 2.5 mm, wall thickness C = 2.0 mm, front and rear thicknesses Dw, Dw ′ = 3. 0 mm, wall thickness Dt = 4.5 mm, wall thickness Dt ′ = 3.5 mm). S2 is a characteristic of Comparative Example 1 (the wall thickness = 3.0 mm constant, other steps are the same as in the embodiment) in which the cylindrical portion is formed in a rectangular cross section having the same outer diameter as the large diameter portion 13 over the entire length. It is. S3 is a characteristic of Comparative Example 2 (the other configurations are the same as those of the example, with stepped portions 7 and 8) in which the wall thicknesses A, B, and C are all 3.0 mm.

S2(比較例1)をみると、初期の荷重ピーク値が大きく、その後は不規則な座屈変形をして、荷重値がだんだん増大していることがわかる。S3(比較例2)をみると、S2(比較例1)に比べて初期荷重ピークが低くなっている。この初期荷重ピークは小径部の座屈に係るものであるが、この小径部の壁厚は3.0mmであってS2(比較例1)と同じであるが、S1とは違って、小径であるから、初期荷重ピークが低くなったものである。   Looking at S2 (Comparative Example 1), it can be seen that the initial load peak value is large, and then the buckle deformation is irregular and the load value gradually increases. Looking at S3 (Comparative Example 2), the initial load peak is lower than S2 (Comparative Example 1). This initial load peak is related to buckling of the small diameter portion, but the wall thickness of this small diameter portion is 3.0 mm, which is the same as S2 (Comparative Example 1), but unlike S1, it has a small diameter. Therefore, the initial load peak is low.

そうして、このS3(比較例2)の場合、初期荷重ピークが出た後に、さらに荷重ピークが2箇所に現れているから、小径部、中径部及び大径部の順で座屈を生じたことがわかる。これは前段部と後段部の節効果である。しかし、初期荷重ピークに比べて次の荷重ピークが高くなっており、最後の荷重ピークはさらに高くなっている。これは、中径部及び大径部の壁厚が小径部の壁厚と同じであるから、径が大きくなるほど座屈に至る荷重値が高くなった結果である。   Then, in the case of this S3 (Comparative Example 2), after the initial load peak appears, the load peaks appear in two more places, so buckling occurs in the order of the small diameter part, medium diameter part and large diameter part. You can see that it happened. This is a node effect at the front and rear stages. However, the next load peak is higher than the initial load peak, and the last load peak is even higher. This is because the wall thickness of the medium-diameter portion and the large-diameter portion is the same as the wall thickness of the small-diameter portion, so that the load value that leads to buckling increases as the diameter increases.

これに対して、S1(実施例)では、S3(比較例2)と同じく初期荷重ピークが低く、さらに荷重ピークが2箇所に現れているから、小径部、中径部及び大径部の順で座屈を生じたことがわかる。しかし、S3(比較例2)とは違って、S1(実施例)では、2番目及び3番目の荷重ピークが低い。これは、小径部、中径部及び大径部の壁厚をA>B>Cとした効果である。   On the other hand, in S1 (Example), the initial load peak is low as in S3 (Comparative Example 2), and the load peaks appear in two places, so the order of the small diameter portion, the medium diameter portion, and the large diameter portion is the order. It can be seen that buckling occurred. However, unlike S3 (Comparative Example 2), the second and third load peaks are low in S1 (Example). This is an effect in which the wall thicknesses of the small diameter portion, the medium diameter portion, and the large diameter portion are set such that A> B> C.

以上から、実施例の場合、初期荷重ピークを低く抑えたときに、その後に車体側に加わる荷重が大きく増大することがなく、衝突エネルギが効率良く吸収され、衝突時に車体や乗員が受ける衝撃が小さくなることがわかる。   From the above, in the case of the embodiment, when the initial load peak is kept low, the load applied to the vehicle body side thereafter does not increase greatly, the collision energy is absorbed efficiently, and the vehicle body and the occupant receive the impact during the collision. It turns out that it becomes small.

<別の実施形態>
図8は本発明の別の実施形態に係るクラッシュカン1を示す。先の実施形態と異なる点は、筒状部5が8つの凸角部5aと4つの凹角部5bとを有する断面が十字形状の凹多角形に形成されていることであり、他は先の実施形態と同じである。図9に示すように、筒状部5の各凸角部5a及び各凹角部5bは、後述の第1及び第2の変形パターンの変形を容易にするために、平坦部に比べて壁厚が薄くなっている。
<Another embodiment>
FIG. 8 shows a crash can 1 according to another embodiment of the present invention. The difference from the previous embodiment is that the cylindrical portion 5 has a cross-shaped concave polygon having a cross section having eight convex corner portions 5a and four concave corner portions 5b. This is the same as the embodiment. As shown in FIG. 9, each convex corner portion 5a and each concave corner portion 5b of the cylindrical portion 5 have a wall thickness that is larger than that of the flat portion in order to facilitate deformation of first and second deformation patterns described later. Is thinner.

本実施形態の場合、先の実施形態と同じく、衝突時に小径部11、中径部12及び大径部13の順で座屈を生ずるだけでなく、小径部11、中径部12及び大径部13各々において、蛇腹状に折り畳まれていくような複数の座屈を生じ易くなる。すなわち、筒状部5は、図10に鎖線で示す基本断面形状「正十字形状」BFから、同図に実線で示すように変形する第1変形パターンT1と、図11に実線で示すように変形する第2変形パターンT2とを車両前後方向において交互に繰り返しながら座屈変形をしていく。   In the case of the present embodiment, as in the previous embodiment, not only does the small diameter portion 11, the medium diameter portion 12 and the large diameter portion 13 buckle in the order of collision, but also the small diameter portion 11, the medium diameter portion 12 and the large diameter portion. In each part 13, it becomes easy to produce several buckling which is folded in the shape of a bellows. That is, the cylindrical portion 5 has a first deformation pattern T1 that is deformed as shown by a solid line in FIG. 10 from a basic cross-sectional shape “regular cross shape” BF shown by a chain line in FIG. 10 and a solid line in FIG. The buckling deformation is performed while alternately repeating the second deformation pattern T2 that is deformed in the vehicle longitudinal direction.

図10に示す第1変形パターンT1は、上下の凸部31,32各々が幅狭になって上下方向外側に突出変位する一方、左右の凸部33,34各々が幅広になって左右方向内側に変位する変形パターンである。図11に示す第2変形パターンT2は、上下の凸部31,32各々が幅広になって上下方向内側に変位する一方、左右の凸部33,34各々が幅狭になって左右方向外側に突出変位する変形パターンである。    The first deformation pattern T1 shown in FIG. 10 is such that each of the upper and lower convex portions 31 and 32 becomes narrower and protrudes and displaces outward in the vertical direction, while each of the left and right convex portions 33 and 34 becomes wider and laterally inner. It is a deformation pattern displaced in In the second deformation pattern T2 shown in FIG. 11, the upper and lower convex portions 31 and 32 are widened and displaced inward in the vertical direction, while the left and right convex portions 33 and 34 are narrowed and laterally outward. It is a deformation pattern which protrudes and displaces.

このように第1変形パターンT1と第2変形パターンT2とが交互に発生するのは、金属板が例えば内側に座屈したとき、その座屈部に隣接する部位には外側へ変形する力が働くことによるものである。その結果、クラッシュカン1の筒状部5は、図12に示すように車両前後方向において蛇腹状に折り畳まれていく。   As described above, the first deformation pattern T1 and the second deformation pattern T2 are alternately generated when the metal plate is buckled inward, for example, because a force that deforms outward is applied to a portion adjacent to the buckled portion. It is by working. As a result, the cylindrical portion 5 of the crash can 1 is folded in a bellows shape in the vehicle front-rear direction as shown in FIG.

上記筒状部5の断面形状は十字形であるから、正面衝突時だけでなく、衝突荷重の入力方向が上下或いは左右にオフセットしている場合でも、四方に突出した十字の凸部31〜34が支えとなって筒状部5の倒れ変形が防止されるから、上記第1変形パターンT1と第2変形パターンT2とを交互に生じた蛇腹状折り畳み変形を生ずる。   Since the cross-sectional shape of the cylindrical portion 5 is a cross shape, not only at the time of a frontal collision, but also when the input direction of the collision load is offset up and down or left and right, the convex portions 31 to 34 projecting in four directions. As a result, the cylindrical portion 5 is prevented from falling and deforming, and the bellows-like folding deformation in which the first deformation pattern T1 and the second deformation pattern T2 are alternately generated is generated.

なお、上記実施形態では筒状部が小径部から順に座屈を生ずるようにしたが、大径部から小径部に向かって順に座屈を生ずるように壁厚を設定してもよい。   In the above embodiment, the cylindrical portion is buckled in order from the small diameter portion, but the wall thickness may be set so that the cylindrical portion is buckled in order from the large diameter portion to the small diameter portion.

また、筒状部の段部の数は、上記実施形態のような2つに限らず、1つであってもよく、或いは段部を3つ以上設けてもよい。   Further, the number of step portions of the cylindrical portion is not limited to two as in the above embodiment, but may be one, or three or more step portions may be provided.

また、筒状部5の断面形状は、上述の矩形及び十字状凹多角形に限らず、他の凹多角形、或いは凸多角形、或いはダルマ形(ひょうたん形)など、種々の断面形状にすることができる。   In addition, the cross-sectional shape of the cylindrical portion 5 is not limited to the above-described rectangular and cross-shaped concave polygons, but may be various cross-sectional shapes such as other concave polygons, convex polygons, or dharma shapes (gourd shapes). be able to.

1 クラッシュカン
2 サイドフレーム
3 バンパレインフォースメント
5 筒状部
7,8 段部
7a 車両前方を向いた面
7b 車両後方を向いた面
11 小径部
12 中径部
13 大径部
DESCRIPTION OF SYMBOLS 1 Crash can 2 Side frame 3 Bumper reinforcement 5 Cylindrical part 7, 8 Step part 7a The surface which faced the vehicle front 7b The surface which faced the vehicle rear 11 Small diameter part 12 Medium diameter part 13 Large diameter part

Claims (3)

車両左右をそれぞれ前後方向に延びるサイドフレームと車幅方向に延びるバンパレインフォースメントの端部との間に設けられるダイカストアルミ合金製クラッシュカンであって、
車両前後方向に延びる筒状部を備え、
上記筒状部は、車両前後方向の中間部に少なくとも一つの段部を備え、該段部において筒状部の周壁が階段状に折れ曲がって該段部より上記バンパレインフォースメント側が上記サイドフレーム側よりも小径に形成され、
上記段部よりも上記バンパレインフォースメント側の小径部の壁厚は、上記段部よりも上記サイドフレーム側の大径部の壁厚よりも大きく、
上記段部の前後厚さが上記周壁における上記段部を除く部分の最大壁厚以上の厚さになっており、
上記段部の前後厚さは、上記筒状部外周側において当該段部の上記バンパレインフォースメント側を向いた面と上記筒状部内周側において当該段部の上記サイドフレーム側を向いた面との距離であることを特徴とするダイカストアルミ合金製クラッシュカン。
A die-cast aluminum alloy crash can provided between a side frame extending in the front-rear direction on each side of the vehicle and an end of a bumper reinforcement extending in the vehicle width direction,
A cylindrical portion extending in the longitudinal direction of the vehicle,
The cylindrical portion includes at least one step portion at an intermediate portion in the vehicle front-rear direction, and the peripheral wall of the cylindrical portion is bent in a step shape at the step portion, and the bumper reinforcement side from the step portion is the side frame side. Formed with a smaller diameter than
The wall thickness of the small diameter portion on the bumper reinforcement side than the stepped portion is larger than the wall thickness of the large diameter portion on the side frame side than the stepped portion,
The front and rear thickness of the stepped portion is equal to or greater than the maximum wall thickness of the portion of the peripheral wall excluding the stepped portion,
The front and rear thicknesses of the stepped portions are a surface facing the bumper reinforcement side of the stepped portion on the outer peripheral side of the cylindrical portion and a surface facing the side frame side of the stepped portion on the inner peripheral side of the cylindrical portion. A die-cast aluminum alloy crush can characterized by
請求項1において、
上記段部の内周面から外周面に至る壁厚は、上記小径部の壁厚と上記大径部の壁厚との合計厚さ以下であることを特徴とするダイカストアルミ合金製クラッシュカン。
In claim 1,
The die cast aluminum alloy crash can characterized in that the wall thickness from the inner peripheral surface to the outer peripheral surface of the stepped portion is equal to or less than the total thickness of the wall thickness of the small diameter portion and the wall thickness of the large diameter portion.
請求項1又は請求項2において、
上記筒状部は、断面十字形状の凹多角形に形成されていることを特徴とするダイカストアルミ合金製クラッシュカン。
In claim 1 or claim 2,
The cylinder-shaped crush can made of a die-cast aluminum alloy, wherein the cylindrical portion is formed in a concave polygon having a cross-shaped cross section.
JP2011028175A 2011-02-14 2011-02-14 Die-cast aluminum alloy crash can Withdrawn JP2012166645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011028175A JP2012166645A (en) 2011-02-14 2011-02-14 Die-cast aluminum alloy crash can

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011028175A JP2012166645A (en) 2011-02-14 2011-02-14 Die-cast aluminum alloy crash can

Publications (1)

Publication Number Publication Date
JP2012166645A true JP2012166645A (en) 2012-09-06

Family

ID=46971238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011028175A Withdrawn JP2012166645A (en) 2011-02-14 2011-02-14 Die-cast aluminum alloy crash can

Country Status (1)

Country Link
JP (1) JP2012166645A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016090011A (en) * 2014-11-10 2016-05-23 小島プレス工業株式会社 Shock absorption member
CN106274769A (en) * 2015-05-20 2017-01-04 标致·雪铁龙汽车公司 Bumper holder for vehicle
JP2017185977A (en) * 2016-04-08 2017-10-12 トヨタ自動車株式会社 Impact absorption member
JP2018047780A (en) * 2016-09-21 2018-03-29 アイシン精機株式会社 Impact absorption member and impact absorption device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016090011A (en) * 2014-11-10 2016-05-23 小島プレス工業株式会社 Shock absorption member
CN106274769A (en) * 2015-05-20 2017-01-04 标致·雪铁龙汽车公司 Bumper holder for vehicle
CN106274769B (en) * 2015-05-20 2021-05-04 标致·雪铁龙汽车公司 Bumper bracket for vehicle
JP2017185977A (en) * 2016-04-08 2017-10-12 トヨタ自動車株式会社 Impact absorption member
JP2018047780A (en) * 2016-09-21 2018-03-29 アイシン精機株式会社 Impact absorption member and impact absorption device

Similar Documents

Publication Publication Date Title
JP5741041B2 (en) Crush can made of die-cast aluminum alloy
JP5949925B2 (en) Crash box and car body
US7617916B2 (en) Tapered crushable polygonal structure
JP5078597B2 (en) Shock absorption structure
WO2009125781A1 (en) Bumper reinforcement for vehicles
US9533641B2 (en) Tubular beam of an automotive structure having an improved impact behavior
JP2012166645A (en) Die-cast aluminum alloy crash can
CN109808466A (en) Door anti-collision joist
JP4035292B2 (en) Bumper reinforcement with excellent offset impact
US20020060463A1 (en) Shock absorbing member and bumper
JP2012166673A (en) Die cast aluminum alloy-made crash can
JP2012166641A (en) Die-cast aluminum alloy crash can
JP2012166642A (en) Crash can made of die-cast aluminum alloy, and mounting structure thereof
JP2019166855A (en) Vehicular structural member and vehicle
JP4759871B2 (en) Impact energy absorbing member
JP2003139179A (en) Collision energy absorption member
JP2012030624A (en) Automobile bumper
JP2011011661A (en) Shock absorbing member
JP2005170232A (en) Shock absorbing member
CN111976435B (en) Anti-collision beam of vehicle door made of aluminum alloy
EP3566911B1 (en) Bumper reinforcement
JP2012166643A (en) Crush can made of die-cast aluminum alloy
JP4706656B2 (en) Bumpy stay
JP2003285703A (en) Bumper reinforcing member with stay
JP2006008088A (en) Impact absorption device for vehicle

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513