JPH104202A - Method and device for removal of short-circuited part of solar battery - Google Patents

Method and device for removal of short-circuited part of solar battery

Info

Publication number
JPH104202A
JPH104202A JP8155112A JP15511296A JPH104202A JP H104202 A JPH104202 A JP H104202A JP 8155112 A JP8155112 A JP 8155112A JP 15511296 A JP15511296 A JP 15511296A JP H104202 A JPH104202 A JP H104202A
Authority
JP
Japan
Prior art keywords
solar cell
short
voltage
electrode
circuit portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8155112A
Other languages
Japanese (ja)
Other versions
JP3740618B2 (en
Inventor
Atsuo Ishikawa
敦夫 石川
Atsushi Takenaka
淳 竹中
Masataka Kondo
正隆 近藤
Hideo Yamagishi
英雄 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP15511296A priority Critical patent/JP3740618B2/en
Publication of JPH104202A publication Critical patent/JPH104202A/en
Application granted granted Critical
Publication of JP3740618B2 publication Critical patent/JP3740618B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/208Particular post-treatment of the devices, e.g. annealing, short-circuit elimination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To completely remove or insulate by oxidizing the short-circulated part by Joule heat generated when the inverse voltage lower than withstand voltage is applied, in the case where a short-circuited part is formed between an electrode on the side of a substrate and the electrode on the back side pinching a semiconductor layer. SOLUTION: In a device described above, the voltage lower than the withstand voltage is applied in reverse direction to both positive and negative poles of a solar battery cell 12 in a solar battery 14 consisting of one or a plurality of solar battery cells 12 (12a to 12d), on which a first electrode layer 16 (16a to 16c), a semiconductor layer 18 (18a to 18c) and a second electrode layer 20 (20a to 20d) are successively formed on an insulated substrate 10, and a short-circuited part is removed. In this case, one or two kinds of application members selected from the application members 30 and 32 having a plurality of dot-like contacting parts, or the application members having a plurality of linear contacting parts, and the application member having one or a plurality of planar contacting parts, are brought into contact with the positive and the negative electrodes of the solar battery 12, respectively.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は太陽電池特に非晶質
太陽電池の短絡部除去方法及び短絡部除去装置に関する
ものであり、さらに詳しくは、発電層を挟持する基板側
電極と裏面側電極との電極間に短絡部が発生した場合
に、耐電圧以下の逆方向電圧を印加して、その際に発生
したジュール熱により短絡部を除去あるいは酸化して絶
縁する方法及びその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for removing a short-circuit portion of a solar cell, particularly an amorphous solar cell, and more particularly, to a substrate-side electrode and a back-side electrode sandwiching a power generation layer. The present invention relates to a method and a device for applying a reverse voltage equal to or lower than the withstand voltage when a short-circuit portion is generated between the electrodes and removing or oxidizing the short-circuit portion by Joule heat generated at that time and insulating the same.

【0002】[0002]

【発明が解決しようとする課題】従来より、非晶質太陽
電池の基板側の電極と裏面側の電極との短絡による欠陥
をなくす方法として、種々の方法が採られている。その
一つは、図9に示すように、基板1側の電極2bと同電
位の電極3cと、裏面側の電極3bとの間にプローブ4
を接触させ、その間に介在するpin接合などの起電力
半導体層5に対して、逆方向にバイアス電圧を印加する
方法である。こうすることにより、短絡部(以下ピンホ
ールと呼ぶ)に電流が集中し、その結果、ジュール熱が
発生して短絡部の金属が酸化して絶縁層となるか、ある
いはその際の熱によって、その部分の金属が飛散してし
まうことにより、ピンホール部の欠陥を消滅させること
ができるのである。
Conventionally, various methods have been adopted as a method of eliminating defects due to short-circuit between an electrode on the substrate side and an electrode on the back side of an amorphous solar cell. One of them is, as shown in FIG. 9, that a probe 4
And a bias voltage is applied in the opposite direction to the electromotive force semiconductor layer 5 such as a pin junction interposed therebetween. By doing so, current concentrates on the short-circuited portion (hereinafter referred to as a pinhole), and as a result, Joule heat is generated and the metal of the short-circuited portion is oxidized to become an insulating layer. By scattering the metal in that portion, the defect in the pinhole can be eliminated.

【0003】しかしながら、この方法はコスト的に安価
で且つ簡便であるが、ジュール熱によってピンホール部
を酸化あるいは飛散させることにより、短絡箇所が絶縁
した状態になるものの、電圧の印加時間、印加電圧値な
どの条件により、飛散した箇所の残りの部分において、
飛散の状況が必ずしも絶縁状況を作り出すものではなか
った。たとえば挟持された半導体層5である発電層が飛
散させられる一方、裏面金属3b部分が残ってしまい、
その結果、裏面金属3bが基板1側の電極2bと接触し
てしまい、依然短絡状態のままになるということがよく
見られた。更に、そのピンホール部をジュール熱により
酸化または飛散させるために電圧を印加していく過程
で、耐電圧以上の電圧を印加してしまい、太陽電池の素
子を破壊してしまったり、あるいは発熱が大きすぎて、
飛散が発電層にのみ偏り、いっそうピンホール部を大き
くしてしまうという欠陥があった。
[0003] However, this method is inexpensive and simple in terms of cost, but the pinhole portion is oxidized or scattered by Joule heat, so that the short-circuited portion is insulated. Depending on the value and other conditions,
Scattering conditions did not always create an insulating condition. For example, while the power generation layer which is the sandwiched semiconductor layer 5 is scattered, the back metal 3b remains,
As a result, it was often observed that the back metal 3b came into contact with the electrode 2b on the substrate 1 side and still remained in a short-circuit state. Furthermore, in the process of applying a voltage to oxidize or scatter the pinhole portion by Joule heat, a voltage higher than the withstand voltage is applied, and the element of the solar cell is destroyed or heat is generated. Too big,
There is a defect that the scattering is biased only in the power generation layer, and the pinhole portion is further enlarged.

【0004】2つ目の短絡部除去方法は、微小な短絡部
をセル上部から見つけだし、レーザービームを用いてそ
の部分にレーザーを照射することにより、ピンホール部
を加熱し、飛散させる方法である。この方法において
は、ピンホール部を除去するために用いるレーザー発生
装置が高価であることに加え、ピンホールの部位を検出
するための装置が高価であるため、太陽電池のコストア
ップにつながってしまうという問題があった。
A second short-circuit removing method is a method in which a minute short-circuit is found from the upper part of a cell, and the pin-hole is heated and scattered by irradiating the laser with a laser beam. . In this method, the laser generator used to remove the pinhole portion is expensive, and the device for detecting the portion of the pinhole is expensive, leading to an increase in the cost of the solar cell. There was a problem.

【0005】3つ目の短絡部除去方法は、レジストを用
いてピンホール部を予め埋めてしまうという方法であ
る。この方法は非晶質層を蒸着した後、レジストを塗布
し、その後ピンホ─ル部分にのみ光が通過することを利
用してレジストを硬化させ、そのピンホ─ル部分にのみ
絶縁層を作り出すのである。その後、塗布されたレジス
ト膜の未反応部分をリムーバーで除去し、洗浄乾燥を経
た後、裏面金属層を蒸着して、短絡部のない太陽電池を
製造するのである。
[0005] A third method of removing a short-circuit portion is to fill a pinhole portion in advance using a resist. In this method, after depositing an amorphous layer, a resist is applied, and then the resist is cured using light passing only through the pinhole portion, and an insulating layer is created only in the pinhole portion. is there. Thereafter, the unreacted portion of the applied resist film is removed by a remover, and after washing and drying, a backside metal layer is deposited to manufacture a solar cell without a short-circuit portion.

【0006】このレジストを用いる方法は、裏面金属層
を蒸着する前に、レジストの現像工程やリムーブ工程な
どの所謂ウエット工程があるため、発電層である半導体
層と裏面金属層との間に、良好なオーミック接合を作り
難いという欠点があった。しかも、工程数が多くなるた
め、太陽電池のコストアップにつながってしまうという
問題もあった。
In this method using a resist, there is a so-called wet process such as a developing process or a removing process of the resist before vapor deposition of the back metal layer, so that a power generation layer is formed between the semiconductor layer and the back metal layer. There is a disadvantage that it is difficult to make a good ohmic junction. In addition, there is a problem that the number of steps is increased, which leads to an increase in the cost of the solar cell.

【0007】そこで、本発明者らは短絡部除去方法とし
てコスト的にも安価であり、簡便に処理が可能な上記1
番目の方法、すなわち太陽電池を構成する電極3間に逆
方向のバイアス電圧を印加する方法を採用し、その方法
を改良することとした。この方法は、先に述べたよう
に、バイアス電圧の印加時間や印加する電圧の値により
ピンホール部をジュール熱により完全に酸化させ、ある
いは飛散させ、導通部をなくし絶縁状態を作り出すとい
う方法である。しかしながら、この方法は、ピンホール
部に電流を流し、その部分を酸化あるいは飛散させる前
に、電圧を印加し過ぎることにより、逆に絶縁箇所で、
しかもその絶縁間距離が特に短い部分に電界が集中して
しまい、その部分で放電が起こり、その際の熱で新たな
短絡箇所を作る恐れがある。また、不適切な印加電圧に
より、ピンホール部に電流が流れその部分が飛散して
も、非晶質半導体層5部分のみが飛散して、裏面の金属
電極3b部分が充分に飛散しないため、裏面金属電極3
bと透明電極2b側が短絡するという事態もある。更
に、逆方向に電圧を印加し過ぎてしまい、太陽電池素子
6そのものを破壊してしまうという恐れもある。
Therefore, the inventors of the present invention have found that the above-described 1 method which is inexpensive as a short-circuit portion removing method and can be easily processed.
The second method, that is, a method of applying a reverse bias voltage between the electrodes 3 constituting the solar cell was adopted, and the method was improved. According to this method, as described above, the pinhole portion is completely oxidized or scattered by Joule heat depending on the application time of the bias voltage and the value of the applied voltage, thereby eliminating the conductive portion and creating an insulating state. is there. However, in this method, a current is applied to the pinhole portion, and before the portion is oxidized or scattered, an excessive voltage is applied.
In addition, the electric field concentrates on a portion where the distance between the insulations is particularly short, and a discharge occurs in that portion, and there is a possibility that a new short-circuited portion may be formed by heat at that time. In addition, even if a current flows through the pinhole portion due to an inappropriate applied voltage and the portion scatters, only the amorphous semiconductor layer 5 scatters and the metal electrode 3b on the back surface does not scatter sufficiently. Back metal electrode 3
b and the transparent electrode 2b side may be short-circuited. Further, there is a possibility that the voltage is excessively applied in the reverse direction and the solar cell element 6 itself is destroyed.

【0008】本発明者らはこれら問題点を解決するため
に鋭意研究し検討した結果、本発明に係る太陽電池の短
絡部除去方法及びその装置を発明するに至った。
The present inventors have conducted intensive studies and studies to solve these problems, and as a result, have come to invent a method and an apparatus for removing a short circuit portion of a solar cell according to the present invention.

【0009】[0009]

【課題を解決するための手段】本発明に係る太陽電池の
短絡部除去方法の要旨とするところは、絶縁基板上に第
1の電極層、半導体層、第2の電極層が順次形成された
1又は複数の太陽電池セルから成る太陽電池における該
太陽電池セルの正負の両極に対し、逆方向に耐電圧以下
の電圧を印加し、短絡部を除去する太陽電池の短絡部除
去方法において、該太陽電池セルの隣接する正負の電極
にそれぞれ、複数の点状、若しくは1又は複数の線状、
または1又は複数の面状に逆電圧を印加して短絡部を除
去することにある。
The gist of the method for removing a short-circuit portion of a solar cell according to the present invention is that a first electrode layer, a semiconductor layer, and a second electrode layer are sequentially formed on an insulating substrate. In a method for removing a short-circuit portion of a solar cell, in which a voltage equal to or lower than a withstand voltage is applied in a reverse direction to both positive and negative electrodes of the solar cell in a solar cell including one or a plurality of solar cells to remove a short-circuit portion. Each of the positive and negative electrodes adjacent to the solar cell has a plurality of dot shapes, or one or a plurality of linear shapes,
Another object is to remove a short-circuit portion by applying a reverse voltage to one or a plurality of planes.

【0010】次に、本発明に係る太陽電池の短絡部除去
装置の要旨とするところは、絶縁基板上に第1の電極
層、半導体層、第2の電極層が順次形成された1又は複
数の太陽電池セルから成る太陽電池における該太陽電池
セルの正負の両極に対し、逆方向に耐電圧以下の電圧を
印加し、短絡部を除去する太陽電池の短絡部除去装置に
おいて、該太陽電池セルの隣接する正負の電極にそれぞ
れ、複数の点状の接触部を有する印加部材、1又は複数
の線状の接触部を有する印加部材、及び1又は複数の面
状の接触部を有する印加部材から選ばれる1種又は2種
の印加部材を接触させるようにしたことにある。
Next, the gist of the solar cell short-circuit removing device according to the present invention resides in that one or more of a first electrode layer, a semiconductor layer, and a second electrode layer are sequentially formed on an insulating substrate. In a solar cell comprising a solar cell, a short-circuit portion removing device for removing a short-circuit portion by applying a voltage equal to or lower than a withstand voltage in the opposite direction to both positive and negative electrodes of the solar cell. The application member having a plurality of point-like contact portions, the application member having one or a plurality of linear contact portions, and the application member having one or a plurality of planar contact portions respectively to the adjacent positive and negative electrodes. One or two selected application members are brought into contact with each other.

【0011】また、かかる太陽電池の短絡部除去装置に
おいて、太陽電池セルの長手方向の長さに対して、前記
1又は複数の線状又は面状の接触部を有する印加部材の
前記長手方向における接触長さが、約50%以上である
ことにある。
In the solar cell short-circuit removing device, the applying member having the one or more linear or planar contact portions in the longitudinal direction may have a length in the longitudinal direction of the solar cell. The contact length is at least about 50%.

【0012】[0012]

【発明の実施の形態】本発明に係る太陽電池の短絡部除
去方法及び装置は、逆バイアス電圧印加処理を行う際
に、各太陽電池セル毎の電極にそれぞれ、複数個のプロ
ーブなどから成る印加部材や、線状あるいは面状の印加
部材を接触させることにより、プローブから短絡部まで
の電圧降下を小さくすることができる。その結果、ピン
ホール部に電流を流す際に、印加部材によりピンホール
部の近傍部から逆方向の耐電圧以下の電圧で、ピンホー
ル部を飛散あるいは酸化させるのに充分な電流を適切に
制御して流すことができるようになる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The method and apparatus for removing a short-circuit portion of a solar cell according to the present invention, when a reverse bias voltage application process is performed, apply a plurality of probes or the like to each electrode of each solar cell. By contacting the member or the linear or planar applying member, the voltage drop from the probe to the short-circuit portion can be reduced. As a result, when a current flows through the pinhole, a voltage sufficient to cause the pinhole to scatter or oxidize from the vicinity of the pinhole by the application member with a voltage less than the withstand voltage in the opposite direction is appropriately controlled. You will be able to shed.

【0013】すなわち、ピンホールが存在する箇所は、
各太陽電池セルにおいて、特に製膜時などに問題がなけ
れば、全くランダムに発生するものであり、しかもピン
ホール自身も複数個存在することが多い。このようにピ
ンホールを有する太陽電池セルに一つのプローブを当て
て電圧を印加した場合、ピンホール箇所とプローブ箇所
が近ければ容易にピンホールを酸化あるいは飛散により
除去することが可能であるが、距離が遠くなればピンホ
ール箇所までの距離が長くなるため、その箇所までの電
圧降下が大きくなる。この結果、ピンホール部分にかか
る電圧を充分な電圧にするためには、プローブ間にかか
る電圧をより大きな電圧としなければならない。この様
な過剰な電圧は、素子の破壊や、正常部での放電を誘発
し、ピンホール部における導通箇所を適切に除去できな
くなると言う問題点があった。そこで、各太陽電池セル
に電圧を印加する際に、複数個のプローブなどから成る
印加部材や線状又は面状の印加部材を用いて、その印加
部材に電圧を印加させることにより、ピンホールまで最
近接の印加部材から、ピンホールに印加することができ
る。したがって、電圧降下は小さなものとなり、同じ電
圧を印加した場合においても、ピンホール部分により多
くの電圧がかかるようになる。この結果、ピンホールを
除去するのに当たり、必要以上の電圧を印加させること
がなくなり、安定的にピンホールを除去することが可能
となる。
That is, the place where the pinhole exists is as follows:
In each solar battery cell, if there is no problem particularly at the time of film formation, the solar battery cells are generated at random, and moreover, a plurality of pinholes are often present. When a voltage is applied by applying one probe to a solar cell having a pinhole as described above, it is possible to easily remove the pinhole by oxidation or scattering if the pinhole and the probe are close to each other, The longer the distance, the longer the distance to the pinhole location, and the greater the voltage drop to that location. As a result, in order to make the voltage applied to the pinhole portion a sufficient voltage, the voltage applied between the probes must be made larger. Such an excessive voltage induces destruction of the element and discharge in a normal portion, and there is a problem that a conductive portion in a pinhole portion cannot be appropriately removed. Therefore, when applying a voltage to each solar cell, an applying member including a plurality of probes or a linear or planar applying member is used to apply a voltage to the applying member, so that a pinhole is formed. The voltage can be applied to the pinhole from the closest application member. Therefore, the voltage drop is small, and even when the same voltage is applied, more voltage is applied to the pinhole portion. As a result, it is not necessary to apply an excessive voltage when removing the pinhole, and the pinhole can be removed stably.

【0014】また、印加部材を線状又は面状に形成する
ことができ、特に印加部材を面状に形成した場合、太陽
電池セルの金属電極は、接触面においては電圧降下がな
く印加されることになり、また、接触面以外の面におい
ても、電圧降下がほとんどない状態で印加されることに
なる。したがって、電圧を印加する際に、幅方向に太陽
電池セルとほぼ同じ長さ、あるいは少なくとも5割以上
の長さを持つ平滑な面を有する接触面を持つ印加部材に
電圧を印加することにより、ピンホールまでの距離が一
つのプローブを用いて行う場合に比べ大幅に短縮でき、
それにより金属電極及び透明電極部分の電圧降下は小さ
なものとなり、同じだけ電圧をかけた場合においても、
ピンホール部分により多くの電圧がかかるようになる。
この結果、ピンホールを除去するのにあたり、必要以上
の電圧がかかることがなくなり、安定的にピンホールの
みを除去することが可能となる。
Further, the applying member can be formed in a linear or planar shape. In particular, when the applying member is formed in a planar shape, the metal electrode of the solar cell is applied without any voltage drop at the contact surface. In other words, the voltage is applied to a surface other than the contact surface with almost no voltage drop. Therefore, when applying a voltage, by applying a voltage to an application member having a contact surface having a smooth surface having substantially the same length as the solar cell in the width direction, or at least 50% or more, The distance to the pinhole can be significantly reduced compared to when using a single probe,
Thereby, the voltage drop of the metal electrode and the transparent electrode part becomes small, and even when the same voltage is applied,
More voltage is applied to the pinhole portion.
As a result, no unnecessary voltage is applied to remove the pinhole, and only the pinhole can be removed stably.

【0015】次に、本発明に係る太陽電池の短絡部除去
方法及び短絡部除去装置の実施の形態を図面に基づいて
詳しく説明する。
Next, embodiments of a method and an apparatus for removing a short-circuited portion of a solar cell according to the present invention will be described in detail with reference to the drawings.

【0016】まず本発明が適用される太陽電池はたとえ
ば図1に示すように、絶縁基板10上に複数の太陽電池
セル12a,12b……が集積された太陽電池14を挙
げることができる。太陽電池14は、絶縁基板10上に
所定のパターンで複数の第1の電極層16a,16b…
…と半導体層18a,18b……及び第2の電極層20
a,20b……が順次形成されて成る複数の太陽電池セ
ル12a,12b……が集積化されたものである。
First, as the solar cell to which the present invention is applied, for example, as shown in FIG. 1, a solar cell 14 in which a plurality of solar cells 12a, 12b... The solar cell 14 includes a plurality of first electrode layers 16a, 16b,.
And the semiconductor layers 18a and 18b and the second electrode layer 20
a, 20b are sequentially formed, and a plurality of solar cells 12a, 12b... are integrated.

【0017】この太陽電池14において、絶縁基板10
としてガラス基板や透明樹脂基板などの透光性の基板を
用いた場合、通常、第1の電極層16a,16b……と
して透明電極、第2の電極層20a,20b……として
金属電極が形成され、また、絶縁基板10として金属板
などの透光性を有しない基板を用いた場合、第1の電極
層16a,16b……として金属電極、第2の電極層2
0a,20b……として透明電極が形成される。これら
透明電極や金属電極は常法により1層又は2層以上から
形成され、いずれも公知の材質が用いられ、特に限定さ
れない。
In this solar cell 14, the insulating substrate 10
When a light-transmitting substrate such as a glass substrate or a transparent resin substrate is used, a transparent electrode is usually formed as the first electrode layer 16a, 16b, and a metal electrode is formed as the second electrode layer 20a, 20b. When a non-light-transmitting substrate such as a metal plate is used as the insulating substrate 10, the first electrode layers 16a, 16b...
The transparent electrodes are formed as 0a, 20b.... These transparent electrodes and metal electrodes are formed from one or more layers by a conventional method, and any known materials are used and are not particularly limited.

【0018】また、半導体層18a,18b……につい
ても特に限定されるものではなく、たとえば非晶質シリ
コン系半導体層の場合、非晶質シリコン、水素化非晶質
シリコン、水素化非晶質シリコンカーバイド、非晶質シ
リコンナイトライドなどの他、シリコンと炭素、ゲルマ
ニウム、スズなどの他の元素との合金から成る非晶質シ
リコンなどが用いられ、さらにこれら非晶質又は微結晶
をpin型、nip型、ni型、pn型、MIS型、ヘ
テロ接合型、ホモ接合型、ショットキーバリアー型ある
いはこれらを組み合わせた型などに構成した半導体層が
用いられる。更にその他、半導体層18はシリコン系に
限られず、CdS系、GaAs系、InP系などであっ
ても良く、なんら限定されない。
The semiconductor layers 18a, 18b... Are not particularly limited. For example, in the case of an amorphous silicon-based semiconductor layer, amorphous silicon, hydrogenated amorphous silicon, hydrogenated amorphous In addition to silicon carbide and amorphous silicon nitride, amorphous silicon made of an alloy of silicon and another element such as carbon, germanium, and tin is used. For example, a semiconductor layer configured as a semiconductor layer of a nip type, a nip type, a nip type, a pn type, a MIS type, a heterojunction type, a homojunction type, a Schottky barrier type, or a combination thereof is used. In addition, the semiconductor layer 18 is not limited to the silicon-based one, and may be a CdS-based, GaAs-based, InP-based, or the like, and is not limited at all.

【0019】太陽電池14が形成された後、図2に示す
ように、絶縁基板10の両端部には太陽電池14の正負
の電極部に取出し電極22,24が半田26により取り
付けられる。取出し電極22,24は半田メッキされた
銅箔などが用いられ、この取出し電極22,24の半田
付けは、たとえば太陽電池14の正負の電極部に予備半
田付けした半田を超音波半田付け法などにより溶融させ
て行われるが、その他の方法でも良く、特に限定されな
い。取出し電極22,24を取り付けた後、封止樹脂に
より封止してモジュール化する前に、太陽電池セル12
a,12b……に生じたピンホールなどによる短絡部の
除去が行われる。
After the solar cell 14 is formed, as shown in FIG. 2, lead electrodes 22 and 24 are attached to the positive and negative electrode portions of the solar cell 14 by solder 26 at both ends of the insulating substrate 10. The extraction electrodes 22 and 24 are made of solder-plated copper foil or the like. The extraction electrodes 22 and 24 are soldered by, for example, an ultrasonic soldering method in which solder preliminarily soldered to the positive and negative electrode portions of the solar cell 14 is used. The method is carried out by melting, but other methods may be used, and there is no particular limitation. After the extraction electrodes 22 and 24 are attached, the solar cells 12 are sealed with a sealing resin to form a module.
a, 12b... are removed.

【0020】太陽電池の短絡部の除去は次のようにして
行われる。すなわち、製造された太陽電池14は複数の
太陽電池セル12a,12b……が直列に集積されてい
て、任意の太陽電池セル12cの第2の電極層(以下、
金属電極という)20cは隣接する一方の太陽電池セル
12bの第1の電極層(以下、透明電極という)16b
と半導体層18bのスクライブ線28によって電気的に
接続されている。したがって、任意の太陽電池セル12
bの透明電極16bはその太陽電池セル12bに隣接す
る太陽電池セル12cの金属電極20cと同電位であ
り、短絡部を除去するためのプローブ30,32の接続
は隣接する2つの太陽電池セル12b,12cの金属電
極20b,20cに対して行われる。
The removal of the short-circuit portion of the solar cell is performed as follows. That is, the manufactured solar cell 14 includes a plurality of solar cells 12a, 12b,... Which are integrated in series, and a second electrode layer (hereinafter, referred to as a second electrode layer) of an arbitrary solar cell 12c.
A first electrode layer (hereinafter, referred to as a transparent electrode) 16b of one adjacent solar cell 12b is referred to as a metal electrode 20c.
And a scribe line 28 of the semiconductor layer 18b. Therefore, any solar cell 12
The transparent electrode 16b of b has the same potential as the metal electrode 20c of the solar cell 12c adjacent to the solar cell 12b, and the connection of the probes 30 and 32 for removing the short-circuit portion is performed on the two adjacent solar cells 12b. , 12c for the metal electrodes 20b, 20c.

【0021】プローブ30,32は図1及び図3に示す
ように、ほぼ等間隔に複数配設されていて、電気的に良
導体により形成され、プローブ30,32の先端が金属
電極20b,20cの表面に接触させられたとき、複数
のプローブ30,32の先端がそれぞれほぼ均等な圧力
で接触させられ、且つ金属電極20b,20cやその下
の半導体層18b,18cなどを損傷させないように構
成されている。したがって、プローブ30,32は銅や
アルミニウムなどの金属のほか、弾力性、柔軟性を有す
る材料たとえば導電性樹脂などで形成されても良く、特
に限定されない。なお、個々のプローブ30,32を取
り付けるとともに電流を導くフレーム34,36に、個
々のプローブ30,32の接触圧力をほぼ一定にするた
めのバネやスポンジなどの緩衝部材又は緩衝装置を組み
込んでおくのが好ましい。
As shown in FIGS. 1 and 3, a plurality of probes 30 and 32 are provided at substantially equal intervals, are formed of electrically good conductors, and the tips of probes 30 and 32 are connected to metal electrodes 20b and 20c. When the probe is brought into contact with the surface, the tips of the plurality of probes 30 and 32 are brought into contact with substantially equal pressure, respectively, and the metal electrodes 20b and 20c and the semiconductor layers 18b and 18c thereunder are not damaged. ing. Therefore, the probes 30 and 32 may be formed of a material having elasticity and flexibility, such as a conductive resin, in addition to metals such as copper and aluminum, and are not particularly limited. The frames 34 and 36 on which the individual probes 30 and 32 are attached and which conduct the current are provided with a buffer member or a buffer such as a spring or a sponge for making the contact pressure of the individual probes 30 and 32 substantially constant. Is preferred.

【0022】プローブ30と32はそれぞれ相隣合う太
陽電池セル12b,12cの金属電極20b,20cの
表面に接触するように配設されていて、プローブ30と
32には太陽電池セル12b,12cの正負の両極に対
して逆方向に、すなわちバイアス電圧の印加方向とは逆
方向に電圧が印加される。図1に基づいてより詳しく説
明するため、たとえば、ガラス基板10の上に被着形成
した透明電極16a,16b……上に、非晶質シリコン
半導体をp、i、nの順に積層して半導体層18a,1
8b……を形成し、更にその上に金属電極20a,20
b……を被着形成した構造の太陽電池セル12a,12
b……が集積された太陽電池14を例に説明する。
The probes 30 and 32 are disposed so as to be in contact with the surfaces of the metal electrodes 20b and 20c of the adjacent solar cells 12b and 12c, respectively. The probes 30 and 32 are provided with the solar cells 12b and 12c, respectively. A voltage is applied to both the positive and negative poles in the opposite direction, that is, in the direction opposite to the bias voltage application direction. In order to explain in more detail with reference to FIG. 1, for example, an amorphous silicon semiconductor is laminated in the order of p, i, and n on transparent electrodes 16a, 16b,. Layer 18a, 1
8b are formed, and the metal electrodes 20a and 20b are further formed thereon.
b solar cells 12a, 12 having a structure in which
The solar cell 14 in which b... are integrated will be described as an example.

【0023】この太陽電池14における任意の太陽電池
セル12bについて、短絡部を除去するために、まずプ
ローブ30はその太陽電池セル12bのn側に接した金
属電極20bに接触させられ、またプローブ32はp側
に接した透明電極16bと同電位である隣接する太陽電
池セル12cの金属電極20cに接触させられ、pin
と逆方向の電圧が印加される。その際、各太陽電池セル
12a,b……にそれぞれプローブ30,32を当てて
電圧を印加するのであるが、各太陽電池セル12に当て
るプローブ30,32の本数を複数個用いることによ
り、ランダムに発生する短絡部とプローブ30,32と
の距離が最も短い箇所に電流が流れ、電圧降下を極力低
くすることができる。したがって、プローブ30,32
における印加電圧の制御が容易となり、太陽電池セル1
2における絶縁部分、特に集積部分に電界がかかりすぎ
ることによって素子が破壊したり、あるいは素子そのも
のに耐電圧以上の逆方向電圧がかかることにより、素子
が破壊したりすることがなくなる。
In order to remove a short-circuit portion of an arbitrary solar cell 12b in the solar cell 14, a probe 30 is first brought into contact with a metal electrode 20b in contact with the n-side of the solar cell 12b, and a probe 32 Is brought into contact with the metal electrode 20c of the adjacent solar cell 12c having the same potential as the transparent electrode 16b in contact with the p-side,
And a voltage in the opposite direction is applied. At this time, the voltage is applied by applying the probes 30 and 32 to the respective solar cells 12a, b,..., And by using a plurality of the probes 30 and 32 applied to the respective solar cells 12, a random number is obtained. Current flows through the shortest point between the probe 30 and the short-circuited portion generated at the point, and the voltage drop can be minimized. Therefore, the probes 30, 32
Control of the applied voltage in the solar cell 1
The element does not break down due to an excessive electric field applied to the insulating portion, particularly the integrated portion, in 2, or the element does not break down due to a reverse voltage higher than the withstand voltage applied to the element itself.

【0024】以上、本発明に係る太陽電池の短絡部除去
方法及びその装置における一実施の形態を詳述したが、
本発明は上述の形態に限定されるものではない。
In the above, one embodiment of the method and the apparatus for removing the short-circuited portion of the solar cell according to the present invention has been described in detail.
The present invention is not limited to the above embodiment.

【0025】たとえば、複数のプローブに代えて、図4
に示すように、1又は複数の線状の印加部材38で短絡
部除去装置40を構成することができる。印加部材38
を線状に形成することにより、太陽電池セル12a,1
2b……の金属電極20a,20b……との接触部が線
で接触するため、ランダムに生ずる短絡部との距離を極
力短くすることができる。また、線状の印加部材38を
複数ほぼ並行して配設することにより、短絡部との距離
を更に短くすることができる。特に、短絡部を除去しよ
うとする太陽電池セル12bの金属電極20bに接触さ
せられる印加部材38については複数配設されているこ
とが好ましい。一方、短絡部を除去しようとする太陽電
池セル12bの透明電極16bを介して隣接する太陽電
池セル12cの金属電極20cに接触させられる印加部
材38については、1本でも良いが、印加部材38は特
に、透明電極16bと金属電極20cとが接続されるス
クライブ線28の近傍部で金属電極20cと接触させる
ようにするのが、電圧降下を最小限にすることができて
好ましい。
For example, instead of a plurality of probes, FIG.
As shown in (1), the short-circuit removing device 40 can be constituted by one or a plurality of linear application members 38. Applying member 38
Are formed in a linear shape, so that the solar cells 12a, 1
Since the contact portions of the metal electrodes 20a, 20b,... With the metal electrodes 20a, 20b,... Are in contact with each other by wires, the distance to the randomly generated short-circuit portions can be minimized. Further, by arranging a plurality of linear application members 38 substantially in parallel, the distance to the short-circuit portion can be further reduced. In particular, it is preferable that a plurality of the application members 38 to be brought into contact with the metal electrode 20b of the solar cell 12b from which the short-circuit portion is to be removed are provided. On the other hand, as for the application member 38 that is brought into contact with the metal electrode 20c of the adjacent solar cell 12c via the transparent electrode 16b of the solar cell 12b whose short circuit portion is to be removed, one application member may be used. In particular, it is preferable to make contact with the metal electrode 20c near the scribe line 28 connecting the transparent electrode 16b and the metal electrode 20c because the voltage drop can be minimized.

【0026】ここで、印加部材38は銅などの電気的良
導体である金属や導電性樹脂などによって形成され、断
面形状は円形、楕円形、多角形など、いずれでも良く、
特に限定されない。また、印加部材38の線径などにつ
いても限定されず、線状の印加部材38が安定且つ平均
して金属電極20の表面に接触し、更に金属電極20な
どにダメージを与えないように弾力性・柔軟性を備えて
構成されるのが好ましい。
Here, the application member 38 is formed of a metal such as copper or a conductive resin, which is an electrically good conductor, and may have a circular, elliptical or polygonal cross section.
There is no particular limitation. Further, the wire diameter of the application member 38 is not limited, and the linear application member 38 is stably and averagely brought into contact with the surface of the metal electrode 20 and has elasticity so as not to damage the metal electrode 20 and the like. -It is preferable to be configured with flexibility.

【0027】この線状の印加部材38が図5(a) に示す
ように単一の部材で構成されている場合、太陽電池セル
12の長手方向の長さLに対して、その長手方向におけ
る印加部材38の接触長さnは、長さLより短いのが好
ましいが、ほぼ同じ程度の長さであるのが最も好まし
い。また、この印加部材38の接触長さnは、太陽電池
セル12の金属電極20における電圧降下を考慮すれ
ば、長さLの約5割以上であるのが最も好ましい。
When the linear application member 38 is formed of a single member as shown in FIG. 5A, the length L of the solar cell 12 in the longitudinal direction is The contact length n of the application member 38 is preferably shorter than the length L, but is most preferably substantially the same. The contact length n of the application member 38 is most preferably about 50% or more of the length L in consideration of the voltage drop at the metal electrode 20 of the solar cell 12.

【0028】また、図5(b) に示すように、線状の印加
部材39が太陽電池セル12の長手方向に対して複数
(m個)に分割されて構成されている場合、印加部材3
9の全長は太陽電池セル12の長さLよりも短いのが好
ましい。また、この印加部材39の長さ(n1 +n2
3 +……+nm-1 +nm )は、前述と同様に、太陽電
池セル12の金属電極20における電圧降下を考慮すれ
ば、長さLの約5割以上であるのが最も好ましい。
As shown in FIG. 5 (b), when the linear applying member 39 is divided into a plurality (m) in the longitudinal direction of the solar cell 12, the applying member 3 is formed.
9 is preferably shorter than the length L of the solar cell 12. Further, the length (n 1 + n 2 +
n 3 + ...... + n m- 1 + n m) , like the above, considering the voltage drop at the metal electrode 20 of the solar cell 12, is most preferably about 5% or more of length L.

【0029】次に、図7に示すように、印加部材42を
金属電極20の表面に対して面状に接触し得るように構
成するのも好ましい。すなわち、印加部材42は太陽電
池セル12a,12b……の金属電極20a,20b…
…の形状を縮小したような平滑な接触面で形成されるの
が好ましい。より具体的には、印加部材42の接触面は
矩形に形成されるのが好ましく、この印加部材42の材
質は導電性に優れた金属で形成し、金属電極20a,2
0b……との接触面となる表面に金などの接触抵抗が小
さい金属をメッキなどにより被覆するのが好ましい。太
陽電池セル12a,12b……の金属電極20a,20
b……を傷つけないためである。
Next, as shown in FIG. 7, it is also preferable that the applying member 42 is configured to be able to come into planar contact with the surface of the metal electrode 20. That is, the application member 42 is a metal electrode 20a, 20b... Of the solar cells 12a, 12b.
Are preferably formed with a smooth contact surface as if the shape of. More specifically, the contact surface of the application member 42 is preferably formed in a rectangular shape, and the material of the application member 42 is formed of a metal having excellent conductivity, and the metal electrodes 20a, 2
It is preferable to coat a metal having a low contact resistance, such as gold, by plating or the like on the surface to be in contact with Ob. Metal electrodes 20a, 20 of solar cells 12a, 12b ...
This is to prevent b ....

【0030】印加部材42の金属電極20a,20b…
…との接触面の形状は、太陽電池セル12a,12b…
…の幅(長手)方向に伸びた接触面を有しているのが好
ましく、金属電極20a,20b……から食み出さない
大きさであれば良いが、より大きな効果を得るために
は、印加部材42の長さが少なくとも太陽電池セル12
a,12b……の幅(長手方向の長さ)の5割以上の長
さを有する接触面を有する形状であるのが好ましく、よ
り好ましくは幅方向の接触面の長さが9割以上のものが
好ましい。また、印加部材42の長さは太陽電池セル1
2の幅の5割以上の長さを有することが好ましいが、こ
の際、幅方向に伸びた印加部材42は単一である必要は
なく、図6の例と同様に複数個に分割されていても良
い。
The metal electrodes 20a, 20b,.
The shape of the contact surface with the solar cells 12a, 12b ...
It is preferable to have a contact surface extending in the width (longitudinal) direction of..., And any size that does not protrude from the metal electrodes 20a, 20b. The length of the application member 42 is at least the solar cell 12
a, 12b... preferably have a contact surface having a length of 50% or more of the width (length in the longitudinal direction), more preferably 90% or more of the width of the contact surface in the width direction. Are preferred. In addition, the length of the application member 42 is
It is preferable that the application member 42 has a length of 50% or more of the width of 2. However, at this time, the application member 42 extending in the width direction does not need to be a single one, and is divided into a plurality as in the example of FIG. May be.

【0031】印加部材が金属製である場合、接触時に太
陽電池セル12a,12b……を傷つける可能性がある
ため、図6に示すように、少なくとも金属電極20a,
20b……との接触部を導電性エラストマーを用いて印
加部材44を構成するのが好ましい。導電性エラストマ
ーはエラストマーにカーボン又は金、銀、あるいは銅な
どの金属の微粉を混ぜて導電性を有するようにした高分
子をいう。この結果、エラストマー自身に高い導電性を
与えることができる。更に、高い導電性を保持するため
にエラストマー内部に、金細線などを保持した導電性エ
ラストマーを用いることも可能である。
If the application member is made of metal, there is a possibility that the solar cells 12a, 12b... May be damaged at the time of contact, and therefore, as shown in FIG.
It is preferable to form the application member 44 by using a conductive elastomer at the contact portion with 20b. The conductive elastomer refers to a polymer obtained by mixing a fine powder of a metal such as carbon, gold, silver, or copper with the elastomer so as to have conductivity. As a result, high conductivity can be given to the elastomer itself. Furthermore, it is also possible to use a conductive elastomer holding a gold wire or the like inside the elastomer in order to maintain high conductivity.

【0032】このような印加部材44を用いることによ
り、太陽電池セル12a,12b……における絶縁部
分、特に集積部分に電界がかかりすぎることによって素
子が破壊したり、あるいは素子そのもの耐電圧以上の逆
方向電圧がかかることにより素子が破壊したりすること
がなくなる。
By using such an applying member 44, an element is destroyed due to an excessive electric field applied to an insulating portion, particularly an integrated portion, of the solar cells 12a, 12b... The device is not destroyed by the application of the directional voltage.

【0033】以上、本発明に係る短絡部除去方法及びそ
の装置の実施の形態を図面に基づいて説明したが、本発
明は図示した例示に限定されるものではないのは言うま
でもない。
While the embodiments of the method and apparatus for removing a short-circuit portion according to the present invention have been described with reference to the drawings, it is needless to say that the present invention is not limited to the illustrated example.

【0034】たとえば図1に示す複数のプローブ30,
32は直線状に配設されているだけでなく、格子状ある
いは千鳥状に配設されていても良く、特に限定されな
い。また、プローブ30,32の先端は球面又は平面で
あるのが好ましく、金属電極20との接触時における面
圧を極力下げるようにするのが好ましい。
For example, a plurality of probes 30 shown in FIG.
The reference numerals 32 are not particularly limited, and may be arranged not only in a straight line but also in a lattice shape or a staggered shape. Further, the tips of the probes 30 and 32 are preferably spherical or flat, and it is preferable to reduce the surface pressure at the time of contact with the metal electrode 20 as much as possible.

【0035】また、上述の各種の印加部材を適宜組み合
わせて用いることも可能であり、印加部材の構成は本発
明の趣旨を逸脱しない範囲で組み合わせる構成すること
が可能である。
It is also possible to use the above-mentioned various kinds of application members in appropriate combinations, and it is possible to combine the configurations of the application members without departing from the spirit of the present invention.

【0036】次に、印加部材を通して印加される電圧
は、直流だけでなく交流であっても良く、直流電圧をパ
ルス状にして印加することは可能であり、パルスの間隔
などは特に限定されない。また、印加電圧は一定であっ
ても良いが、連続的にあるいは断続的に電圧を増加又は
減少させ、あるいは増加と減少を繰り返して印加するよ
うに構成することも可能である。これら印加される電
圧,電流の大きさ、パルスの有無などの条件は太陽電池
セルによって決定される。
Next, the voltage applied through the application member may be not only DC but also AC, and it is possible to apply the DC voltage in a pulse form, and the pulse interval is not particularly limited. Further, although the applied voltage may be constant, the voltage may be increased or decreased continuously or intermittently, or the voltage may be repeatedly increased and decreased. Conditions such as the applied voltage, the magnitude of the current, and the presence or absence of a pulse are determined by the solar cell.

【0037】その他、太陽電池セルの集積方法や構造な
どは上述の実施の形態に限定されるものではないなど、
本発明はその趣旨を逸脱しない範囲内で、当業者の知識
に基づき種々なる改良、修正、変形を加えた態様で実施
し得るものである。
In addition, the integration method and structure of the solar cell are not limited to the above-described embodiment.
The present invention can be implemented in various modified, modified, and modified modes based on the knowledge of those skilled in the art without departing from the spirit of the present invention.

【0038】[0038]

【実施例1】まず、本発明が適用される非晶質太陽電池
を作製した。図1に示すように、基板サイズ400mm
×300mm、厚み4mmのガラス基板10上に熱CV
D法により透明導電膜層(16)を被着形成した後、波
長0.53μmのYAGレーザーの第二高調波を用い
て、その透明導電膜層(16)を膜面側からスクライブ
し、短冊状に電気的に分離して透明電極16a,16b
…を作製した。その後、純水で超音波洗浄を行い、透明
電極16a,16b…が形成された面側に、基板温度を
200℃、反応圧力を0.5Torrから1.0Tor
rに設定して、モノシラン、メタン、ジボランから成る
混合ガス、モノシラン、水素から成る混合ガス、モノシ
ラン、水素、ホスフィンから成る混合ガスをこの順序に
て容量結合型グロー放電分解装置内で分解することによ
り、P型、I型、N型の非晶質半導体層の膜(18)を
形成した。この後、先程のレーザーによるスクライブ線
より僅かにずれた位置を、透明電極16a,16b…に
ダメージがないように波長0.53μmのYAGレーザ
ーの第二高調波をガラス面側から入射させて分離し、非
晶質半導体層18a,18b…を形成した。引き続い
て、非晶質半導体層18a,18b…の面側に金属層
(20)としてアルミニウムをスパッタリング法によ
り、厚み300nmを形成した後、この金属層(20)
を波長0.53μmのYAGレーザーの第二高調波を用
いて、透明電極16のスクライブ線とは反対方向で、非
晶質半導体層18a,18b…のスクライブ線よりわず
かにずれた位置にスクライブ線を入れて電気的に分離し
て金属電極20a,20b…を形成することにより、集
積型非晶質シリコン太陽電池14を作製した。
Example 1 First, an amorphous solar cell to which the present invention was applied was manufactured. As shown in FIG. 1, the substrate size is 400 mm
Heat CV on a glass substrate 10 × 300 mm, thickness 4 mm
After the transparent conductive film layer (16) is deposited and formed by the method D, the transparent conductive film layer (16) is scribed from the film surface side using a second harmonic of a YAG laser having a wavelength of 0.53 μm. Transparent electrodes 16a and 16b
... was produced. Then, ultrasonic cleaning is performed with pure water, and the substrate temperature is set to 200 ° C. and the reaction pressure is set to 0.5 Torr to 1.0 Torr on the surface on which the transparent electrodes 16a, 16b,.
Decompose a mixed gas consisting of monosilane, methane and diborane, a mixed gas consisting of monosilane and hydrogen, and a mixed gas consisting of monosilane, hydrogen and phosphine in this order in a capacitively-coupled glow discharge decomposition apparatus, set to r. As a result, a film (18) of a P-type, I-type, and N-type amorphous semiconductor layer was formed. Then, the position slightly deviated from the scribe line by the laser is separated by applying a second harmonic of a YAG laser having a wavelength of 0.53 μm from the glass surface side so as not to damage the transparent electrodes 16a, 16b. Then, the amorphous semiconductor layers 18a, 18b,... Were formed. Subsequently, aluminum is formed as a metal layer (20) on the surface side of the amorphous semiconductor layers 18a, 18b... By sputtering to a thickness of 300 nm, and then the metal layer (20) is formed.
Using a second harmonic of a YAG laser having a wavelength of 0.53 μm, a scribe line is provided at a position slightly deviated from the scribe lines of the amorphous semiconductor layers 18 a, 18 b in the direction opposite to the scribe lines of the transparent electrode 16. , And electrically separated to form metal electrodes 20a, 20b..., Thereby producing an integrated amorphous silicon solar cell 14.

【0039】次に、図2に示すように、この太陽電池1
4の両端に正負の取り出し電極22,24を設けた。こ
の取り出し電極22,24は半田メッキされた銅箔を用
いており、ガラス基板10との接着は超音波半田付け法
により、予備半田付けされた半田26によってガラス基
板10との接着を行った。
Next, as shown in FIG.
4 were provided with positive and negative extraction electrodes 22 and 24 at both ends. The extraction electrodes 22 and 24 are made of solder-plated copper foil, and are bonded to the glass substrate 10 by an ultrasonic soldering method using solder 26 preliminarily soldered.

【0040】このようにして作製された太陽電池は複数
の太陽電池セルが集積されたものであり、個々の太陽電
池セルを以下、ユニットセル12a,12b…と呼ぶ。
図1に示されるように、この隣接した2つのユニットセ
ル12b,12cにおける一方の電位はpin接合のn
側に接した金属電極20bの電位であり、他方のユニッ
トセル12cの金属電極20cの電位はp側に接した透
明電極16bの電位と同電位となっている。したがっ
て、逆方向に電圧を印加するためには、n側に接する金
属電極20bに(+)、透明電極16bと同電位である
金属電極20cには(−)の電圧を印加することにな
る。
The solar cell manufactured in this way is an integrated one of a plurality of solar cells, and the individual solar cells are hereinafter referred to as unit cells 12a, 12b...
As shown in FIG. 1, one of the potentials of the two adjacent unit cells 12b and 12c is equal to n of the pin junction.
This is the potential of the metal electrode 20b contacting the p-side, and the potential of the metal electrode 20c of the other unit cell 12c is the same as the potential of the transparent electrode 16b contacting the p-side. Therefore, in order to apply a voltage in the opposite direction, a (+) voltage is applied to the metal electrode 20b in contact with the n-side, and a (-) voltage is applied to the metal electrode 20c having the same potential as the transparent electrode 16b.

【0041】ここで、上記の手法によって製造された太
陽電池14は、長さが0.75cm、幅が38.8cm
の細長い短冊状のユニットセル12a,12b…が40
段、集積化された構造となっている。そこで、図1及び
図3に示すように、プローブ30,32を4cm間隔で
10本ずつ平行に2列配置し、1列目のプローブ30と
2列目のプローブ32をそれぞれ隣合うユニットセル1
2b,12cの金属電極20b,20cに接触させ、そ
れぞれユニットセル12b,12cに対して逆方向にバ
イアス電圧を印加して、ピンホールの除去を行った。こ
のようにして集積化された40段の全てのユニットセル
12a,12b…に逆方向バイアスを印加して行き、こ
の集積型太陽電池のピンホール部の除去を行った。な
お、電圧の印加は2回行い、1回目は6V、2回目は8
Vの電圧をそれぞれ0.5秒ずつの矩形波で印加した。
Here, the solar cell 14 manufactured by the above method has a length of 0.75 cm and a width of 38.8 cm.
Of the strip-shaped unit cells 12a, 12b,.
The steps have an integrated structure. Therefore, as shown in FIG. 1 and FIG. 3, the probes 30 and 32 are arranged in two parallel rows of 10 at intervals of 4 cm, and the first row of probes 30 and the second row of probes 32 are adjacent to each other.
The pinholes were removed by contacting the metal electrodes 20b and 20c of the electrodes 2b and 12c and applying a bias voltage to the unit cells 12b and 12c in opposite directions. A reverse bias was applied to all of the unit cells 12a, 12b,... Of the forty stages integrated in this manner, and the pinholes of the integrated solar cell were removed. The voltage was applied twice, the first time was 6V, and the second time was 8V.
A voltage of V was applied in a rectangular wave of 0.5 seconds each.

【0042】まず、製造された10枚の太陽電池14に
ついて、何らの処理も施さずに特性として出力を測定し
た。測定条件は、100mW/cm2 エアーマス1.5
の条件であった。その結果の平均値を初期値として表1
に示した。次いで、上記短絡部除去方法によりその太陽
電池14について特性回復を行った後、特性を測定し
た。その結果の平均値を処理後として表1に示した。
First, the output of the ten solar cells 14 was measured as a characteristic without any treatment. The measurement conditions were 100 mW / cm 2 air mass 1.5
Condition. Table 1 shows the average value of the results as the initial value.
It was shown to. Next, after the characteristics of the solar cell 14 were recovered by the above-described method for removing short-circuit portions, the characteristics were measured. The average of the results is shown in Table 1 as after treatment.

【0043】[0043]

【表1】 [Table 1]

【0044】[0044]

【実施例2】実施例1と同様にして製造された10枚の
太陽電池14について、まず何らの処理も施さずに特性
として出力を測定した。測定条件は実施例1と同様であ
る。次いで、この太陽電池14を用いて、図7に示すよ
うに、長さ0.2mm、幅38.0cmの接触面を有す
る面状の印加部材42を2列に配置し、1列目と2列目
に、それぞれ太陽電池セル12b,12c金属電極20
b,20cに対して逆方向にバイアス電圧を印加して、
ピンホールの除去を行った。このようにして集積化され
た40段全ての太陽電池セル12a,12b…に逆方向
バイアス電圧を印加して行き、この集積型セルのピンホ
ール部の除去を行った。尚、電圧の印加は2回行い、1
回目は6V、2回目は8Vの電圧をそれぞれ0.5秒ず
つの矩形波で印加した。このようにして特性回復を行っ
た太陽電池10枚の平均の初期値と処理後の特性比較を
表1に示す。
EXAMPLE 2 The output of ten solar cells 14 manufactured in the same manner as in Example 1 was measured as a characteristic without any treatment. The measurement conditions are the same as in Example 1. Next, using the solar cell 14, as shown in FIG. 7, a planar application member 42 having a contact surface having a length of 0.2 mm and a width of 38.0 cm is arranged in two rows. In the columns, the solar cells 12b and 12c have the metal electrodes 20 respectively.
a bias voltage is applied in the opposite direction to
The pinhole was removed. A reverse bias voltage was applied to all of the 40 solar cells 12a, 12b,... Integrated in this manner, and the pinholes of the integrated cells were removed. The voltage was applied twice and 1
A voltage of 6 V was applied for the second time, and a voltage of 8 V was applied for the second time in the form of a rectangular wave of 0.5 seconds each. Table 1 shows a comparison between the average initial value of the 10 solar cells subjected to the characteristic recovery and the characteristic after the treatment.

【0045】[0045]

【実施例3】実施例1と同様にして製造された10枚の
太陽電池14について、まず何らの処理も施さずに特性
として出力を測定した。測定条件は実施例1と同様であ
る。次いで、この太陽電池14を用いて、図5に示すよ
うに、長さ0.2mm、幅10.0cmの接触面を有す
る面状の印加部材42を2列に配置して、実施例2と同
様にしてピンホールの除去を行った。このようにして特
性回復を行った太陽電池10枚の平均の初期値と処理後
の特性比較を表1に示す。
Example 3 Ten solar cells 14 manufactured in the same manner as in Example 1 were first measured for output without any treatment. The measurement conditions are the same as in Example 1. Next, using the solar cell 14, as shown in FIG. 5, the planar application members 42 having a contact surface having a length of 0.2 mm and a width of 10.0 cm were arranged in two rows, and Similarly, pinholes were removed. Table 1 shows a comparison between the average initial value of the 10 solar cells subjected to the characteristic recovery and the characteristic after the treatment.

【0046】[0046]

【比較例1】実施例1と同様にして製造された10枚の
太陽電池14について、何らの処理も施さずに特性を測
定し、その平均値を初期値として表1に示した。次に、
従来どおり図9に示すように、1本のプローブ4で逆方
向バイアス電圧を印加する処理による太陽電池の特性回
復を行った。得られた太陽電池について特性を測定し、
その平均値を処理後として表1に併せて示した。
Comparative Example 1 The characteristics of ten solar cells 14 manufactured in the same manner as in Example 1 were measured without any treatment, and the average value is shown in Table 1 as an initial value. next,
As in the prior art, as shown in FIG. 9, the characteristics of the solar cell were recovered by a process of applying a reverse bias voltage with one probe 4. The characteristics of the obtained solar cell were measured,
The average value is shown in Table 1 as “after treatment”.

【0047】表1からも分かるように、実施例1に示す
複数のプローブによる短絡部除去方法では、初期値に対
して処理後は出力が約1.46倍に向上していた。ま
た、実施例2に示す面状の印加部材による短絡部除去方
法では、初期値に対して出力が約1.45倍に向上して
いた。一方、従来方法では、出力が1.16倍までにし
か特性が回復していなかった。
As can be seen from Table 1, in the method of removing short-circuit portions using a plurality of probes shown in Example 1, the output was improved about 1.46 times the initial value after processing. In the method of removing a short-circuit portion using a planar applying member shown in Example 2, the output was improved about 1.45 times the initial value. On the other hand, in the conventional method, the characteristics have been recovered only up to the output of 1.16 times.

【0048】[0048]

【発明の効果】本発明に係る太陽電池の短絡部除去方法
及びその装置は、複数のプローブから成る印加部材や、
1又は複数の線状あるいは面状の印加部材により短絡部
までの距離を短くし、第1の電極及び第2の電極におけ
る電圧降下が少なくなるように構成したため、印加電圧
の設定と制御が容易且つ安定したものとなり、短絡部の
除去を確実に行うことができる。その結果、この方法を
用いることにより、太陽電池の最大出力が大幅に改善さ
れ、太陽電池そのものの歩留まりを向上させることが可
能となる。
The method and apparatus for removing a short-circuited portion of a solar cell according to the present invention include an applying member comprising a plurality of probes,
The distance to the short-circuit portion is shortened by one or a plurality of linear or planar applying members, and the voltage drop at the first electrode and the second electrode is reduced, so that setting and control of the applied voltage is easy. In addition, it is stable, and the short-circuit portion can be reliably removed. As a result, by using this method, the maximum output of the solar cell is significantly improved, and the yield of the solar cell itself can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る太陽電池の短絡部除去方法及びそ
の装置の1実施の形態を示す要部拡大斜視説明図であ
る。
FIG. 1 is an enlarged perspective explanatory view of a main part showing one embodiment of a method and an apparatus for removing a short-circuited portion of a solar cell according to the present invention.

【図2】本発明に用いられる太陽電池の1例を示す説明
図であり、同図(a) は要部拡大正面説明図、同図(b) は
平面説明図である。
FIGS. 2A and 2B are explanatory views showing an example of a solar cell used in the present invention, wherein FIG. 2A is an enlarged front view of a main part, and FIG. 2B is a plan view.

【図3】図1に示す太陽電池の短絡部除去方法及びその
装置の実施の形態を示す要部斜視説明図である。
FIG. 3 is an explanatory perspective view of an essential part showing an embodiment of a method and an apparatus for removing a short-circuited portion of the solar cell shown in FIG. 1;

【図4】本発明に係る太陽電池の短絡部除去方法及びそ
の装置の他の実施の形態を示す要部拡大斜視説明図であ
る。
FIG. 4 is an enlarged perspective view of a main part showing another embodiment of a method and an apparatus for removing a short-circuited portion of a solar cell according to the present invention.

【図5】図4に示す太陽電池の短絡部除去方法及びその
装置の全体の構成を示す斜視説明図である。
FIG. 5 is a perspective explanatory view showing the entire configuration of a method and an apparatus for removing a short-circuit portion of the solar cell shown in FIG. 4;

【図6】本発明に係る太陽電池の短絡部除去方法及びそ
の装置の他の実施の形態を示す斜視説明図である。
FIG. 6 is a perspective explanatory view showing another embodiment of a method and an apparatus for removing a short circuit portion of a solar cell according to the present invention.

【図7】本発明に係る太陽電池の短絡部除去方法及びそ
の装置の更に他の実施の形態を示す要部拡大斜視説明図
である。
FIG. 7 is an enlarged perspective view of a main part showing still another embodiment of a method and an apparatus for removing a short-circuited portion of a solar cell according to the present invention.

【図8】本発明に係る太陽電池の短絡部除去方法及びそ
の装置の更に他の実施の形態を示す要部拡大斜視説明図
である。
FIG. 8 is an enlarged perspective view of a main part showing still another embodiment of a method and an apparatus for removing a short-circuited portion of a solar cell according to the present invention.

【図9】従来の太陽電池の短絡部除去方法及びその装置
の1例を示す要部拡大斜視説明図である。
FIG. 9 is an enlarged perspective view of an essential part showing an example of a conventional method for removing a short-circuit portion of a solar cell and an apparatus therefor.

【符号の説明】[Explanation of symbols]

10:絶縁基板(ガラス基板) 12:太陽電池セル 14:太陽電池 16:第1の電極層(透明電極) 18:半導体層 20:第1の電極層(金属電極) 30,32:プローブ(印加部材) 38,39,42,44,46:印加部材 40:短絡部除去装置 10: insulating substrate (glass substrate) 12: solar cell 14: solar cell 16: first electrode layer (transparent electrode) 18: semiconductor layer 20: first electrode layer (metal electrode) 30, 32: probe (applied) 38), 39, 42, 44, 46: applying member 40: short circuit removing device

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 絶縁基板上に第1の電極層、半導体層、
第2の電極層が順次形成された1又は複数の太陽電池セ
ルから成る太陽電池における該太陽電池セルの正負の両
極に対し、逆方向に耐電圧以下の電圧を印加し、短絡部
を除去する太陽電池の短絡部除去方法において、該太陽
電池セルの隣接する正負の電極にそれぞれ、複数の点
状、若しくは1又は複数の線状、または1又は複数の面
状に逆電圧を印加して短絡部を除去することを特徴とす
る太陽電池の短絡部除去方法。
A first electrode layer, a semiconductor layer,
In a solar cell including one or a plurality of solar cells in which a second electrode layer is sequentially formed, a voltage lower than the withstand voltage is applied in the opposite direction to both positive and negative electrodes of the solar cell, thereby removing a short circuit portion. In the method for removing a short-circuit portion of a solar cell, a reverse voltage is applied to adjacent positive and negative electrodes of the solar cell in a plurality of points, or in one or more lines, or in one or more planes, thereby causing a short circuit. A method for removing a short-circuit portion of a solar cell, comprising removing a portion.
【請求項2】 絶縁基板上に第1の電極層、半導体層、
第2の電極層が順次形成された1又は複数の太陽電池セ
ルから成る太陽電池における該太陽電池セルの正負の両
極に対し、逆方向に耐電圧以下の電圧を印加し、短絡部
を除去する太陽電池の短絡部除去装置において、該太陽
電池セルの隣接する正負の電極にそれぞれ、複数の点状
の接触部を有する印加部材、1又は複数の線状の接触部
を有する印加部材、及び1又は複数の面状の接触部を有
する印加部材から選ばれる1種又は2種の印加部材を接
触させるようにしたことを特徴とする太陽電池の短絡部
除去装置。
2. A semiconductor device comprising: a first electrode layer, a semiconductor layer,
In a solar cell including one or a plurality of solar cells in which a second electrode layer is sequentially formed, a voltage lower than the withstand voltage is applied in the opposite direction to both positive and negative electrodes of the solar cell, thereby removing a short circuit portion. In an apparatus for removing a short-circuit portion of a solar cell, an applying member having a plurality of point-like contact portions, an applying member having a plurality of linear contact portions, and an applying member having a plurality of linear contact portions, respectively, on adjacent positive and negative electrodes of the solar cell. Alternatively, one or two kinds of application members selected from application members having a plurality of planar contact portions are brought into contact with each other, wherein a short-circuit portion removal device for a solar cell is provided.
【請求項3】 太陽電池セルの長手方向の長さに対し
て、前記1又は複数の線状又は面状の接触部を有する印
加部材の前記長手方向における接触長さが、約50%以
上であることを特徴とする請求項2に記載する太陽電池
の短絡部除去装置。
3. The contact length in the longitudinal direction of the application member having the one or more linear or planar contact portions with respect to the longitudinal length of the solar battery cell is about 50% or more. 3. The device for removing short-circuited portions of a solar cell according to claim 2, wherein:
JP15511296A 1996-06-17 1996-06-17 Method for removing short circuit part of solar cell and apparatus for removing short circuit part Expired - Lifetime JP3740618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15511296A JP3740618B2 (en) 1996-06-17 1996-06-17 Method for removing short circuit part of solar cell and apparatus for removing short circuit part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15511296A JP3740618B2 (en) 1996-06-17 1996-06-17 Method for removing short circuit part of solar cell and apparatus for removing short circuit part

Publications (2)

Publication Number Publication Date
JPH104202A true JPH104202A (en) 1998-01-06
JP3740618B2 JP3740618B2 (en) 2006-02-01

Family

ID=15598859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15511296A Expired - Lifetime JP3740618B2 (en) 1996-06-17 1996-06-17 Method for removing short circuit part of solar cell and apparatus for removing short circuit part

Country Status (1)

Country Link
JP (1) JP3740618B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1073095A2 (en) * 1999-07-29 2001-01-31 Kaneka Corporation Method for cleaning photovoltaic module and cleaning apparatus
US6228662B1 (en) 1999-03-24 2001-05-08 Kaneka Corporation Method for removing short-circuited sections of a solar cell
JP2001237440A (en) * 2000-02-22 2001-08-31 Kanegafuchi Chem Ind Co Ltd Reverse bias treatment device of solar battery module
US6288323B1 (en) 1999-08-25 2001-09-11 Kaneka Corporation Thin film photoelectric conversion module and method of manufacturing the same
US6365825B1 (en) 1999-05-14 2002-04-02 Kaneka Corporation Reverse biasing apparatus for solar battery module
US6653550B2 (en) 2001-05-17 2003-11-25 Kaneka Corporation Integrated thin-film photoelectric conversion module
WO2008041454A1 (en) * 2006-10-03 2008-04-10 Sharp Kabushiki Kaisha Reverse bias processing apparatus for photoelectric conversion device and method for reverse bias processing
WO2009020073A1 (en) 2007-08-06 2009-02-12 Sharp Kabushiki Kaisha Method and apparatus for manufacturing thin film photoelectric conversion module
JP2010021593A (en) * 2009-10-28 2010-01-28 Kaneka Corp Reverse bias treatment device of solar battery module
JP2010021437A (en) * 2008-07-11 2010-01-28 Ulvac Japan Ltd Device for manufacturing solar cell and its manufacturing method
WO2010029939A1 (en) * 2008-09-09 2010-03-18 三洋電機株式会社 Method for manufacturing solar cell module
CN101958363A (en) * 2009-07-16 2011-01-26 日本麦可罗尼克斯股份有限公司 Battery short circuit portion removal device and method
JP2011054482A (en) * 2009-09-03 2011-03-17 Micronics Japan Co Ltd Device and method for removing battery short-circuited portion, and device and method for determining battery short-circuited portion removing voltage
WO2012029282A1 (en) * 2010-09-02 2012-03-08 三洋電機株式会社 Method for producing photoelectric conversion device
WO2012108256A1 (en) * 2011-02-07 2012-08-16 シャープ株式会社 Inverse bias processing device and inverse bias processing method using same
WO2012108257A1 (en) * 2011-02-07 2012-08-16 シャープ株式会社 Inverse bias processing device and inverse bias processing method using same
US8679862B2 (en) 2008-02-13 2014-03-25 Sharp Kabushiki Kaisha Method and device for manufacturing thin film photoelectric conversion module
EP2782183A4 (en) * 2011-11-14 2015-09-23 Nihon Micronics Kk Repair device for sheet-shaped battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011104881A1 (en) * 2010-02-26 2013-06-17 株式会社エヌエフ回路設計ブロック Solar cell repair method, solar cell manufacturing method, solar cell manufactured by this manufacturing method, solar cell repair device, solar cell manufacturing device and inspection device, solar cell using these devices in the manufacturing process

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1039553A3 (en) * 1999-03-24 2002-04-10 Kaneka Corporation Method for removing short-circuited sections of a solar cell
US6228662B1 (en) 1999-03-24 2001-05-08 Kaneka Corporation Method for removing short-circuited sections of a solar cell
EP1494294A3 (en) * 1999-03-24 2006-04-05 Kaneka Corporation Method for removing short-circuited sections of a solar cell
EP1670067A3 (en) * 1999-05-14 2006-10-04 Kaneka Corporation Reverse biasing method and apparatus for solar battery module
EP1052704A3 (en) * 1999-05-14 2002-05-02 Kaneka Corporation Reverse blasing apparatus for solar battery module
US6365825B1 (en) 1999-05-14 2002-04-02 Kaneka Corporation Reverse biasing apparatus for solar battery module
US6506260B1 (en) 1999-07-29 2003-01-14 Kaneka Corporation Method for cleaning photovoltaic module and cleaning apparatus
EP1073095A3 (en) * 1999-07-29 2001-09-19 Kaneka Corporation Method for cleaning photovoltaic module and cleaning apparatus
EP2141735A3 (en) * 1999-07-29 2012-01-04 Kaneka Corporation Method for cleaning photovoltaic module and cleaning apparatus
EP1073095A2 (en) * 1999-07-29 2001-01-31 Kaneka Corporation Method for cleaning photovoltaic module and cleaning apparatus
US6288323B1 (en) 1999-08-25 2001-09-11 Kaneka Corporation Thin film photoelectric conversion module and method of manufacturing the same
JP2001237440A (en) * 2000-02-22 2001-08-31 Kanegafuchi Chem Ind Co Ltd Reverse bias treatment device of solar battery module
US6653550B2 (en) 2001-05-17 2003-11-25 Kaneka Corporation Integrated thin-film photoelectric conversion module
WO2008041454A1 (en) * 2006-10-03 2008-04-10 Sharp Kabushiki Kaisha Reverse bias processing apparatus for photoelectric conversion device and method for reverse bias processing
US8134111B2 (en) 2006-10-03 2012-03-13 Sharp Kabushiki Kaisha Reverse bias processing apparatus and reverse bias processing method for photoelectric conversion devices
WO2009020073A1 (en) 2007-08-06 2009-02-12 Sharp Kabushiki Kaisha Method and apparatus for manufacturing thin film photoelectric conversion module
US8349623B2 (en) 2007-08-06 2013-01-08 Sharp Kabushiki Kaisha Method and apparatus for manufacturing thin film photoelectric conversion module
US8679862B2 (en) 2008-02-13 2014-03-25 Sharp Kabushiki Kaisha Method and device for manufacturing thin film photoelectric conversion module
JP2010021437A (en) * 2008-07-11 2010-01-28 Ulvac Japan Ltd Device for manufacturing solar cell and its manufacturing method
WO2010029939A1 (en) * 2008-09-09 2010-03-18 三洋電機株式会社 Method for manufacturing solar cell module
US8158454B2 (en) 2008-09-09 2012-04-17 Sanyo Electric Co., Ltd. Method for manufacturing solar cell module
TWI427804B (en) * 2009-07-16 2014-02-21 Nihon Micronics Kk Battery short circuit part removing apparatus and method
CN101958363A (en) * 2009-07-16 2011-01-26 日本麦可罗尼克斯股份有限公司 Battery short circuit portion removal device and method
JP2011054482A (en) * 2009-09-03 2011-03-17 Micronics Japan Co Ltd Device and method for removing battery short-circuited portion, and device and method for determining battery short-circuited portion removing voltage
CN102013448A (en) * 2009-09-03 2011-04-13 日本麦可罗尼克斯股份有限公司 Apparatus and method for removing battery short circuit portion and apparatus and method for determining battery short circuit portion removing voltage
JP2010021593A (en) * 2009-10-28 2010-01-28 Kaneka Corp Reverse bias treatment device of solar battery module
WO2012029282A1 (en) * 2010-09-02 2012-03-08 三洋電機株式会社 Method for producing photoelectric conversion device
WO2012108256A1 (en) * 2011-02-07 2012-08-16 シャープ株式会社 Inverse bias processing device and inverse bias processing method using same
WO2012108257A1 (en) * 2011-02-07 2012-08-16 シャープ株式会社 Inverse bias processing device and inverse bias processing method using same
JP2012164819A (en) * 2011-02-07 2012-08-30 Sharp Corp Reverse bias processing apparatus and reverser bias processing method using the same
JP2012164818A (en) * 2011-02-07 2012-08-30 Sharp Corp Reverse bias processing apparatus and reverser bias processing method using the same
EP2782183A4 (en) * 2011-11-14 2015-09-23 Nihon Micronics Kk Repair device for sheet-shaped battery
US9799927B2 (en) 2011-11-14 2017-10-24 Kabushiki Kaisha Nihon Micronics Repair apparatus of sheet type cell

Also Published As

Publication number Publication date
JP3740618B2 (en) 2006-02-01

Similar Documents

Publication Publication Date Title
JPH104202A (en) Method and device for removal of short-circuited part of solar battery
US7498508B2 (en) High voltage solar cell and solar cell module
US5268037A (en) Monolithic, parallel connected photovoltaic array and method for its manufacture
US8421074B2 (en) Semiconductor device with heterojunctions and an interdigitated structure
US20120152299A1 (en) Solar Cell And Solar Cell Module With Improved Read-Side Electrodes, And Production Method
JP2002217430A (en) P-n junction solar battery
JP2008543067A (en) Method for manufacturing single-sided contact solar cell and single-sided contact solar cell
JPH01171284A (en) Interconnected semiconductor devices
JPH0473306B2 (en)
US20240047595A1 (en) Wire-based metallization and stringing for solar cells
US11682737B2 (en) Laser assisted metallization process for solar cell fabrication
JPWO2016152649A1 (en) Solar cell module and manufacturing method thereof
JP2021521631A (en) Local metallization of semiconductor substrates using a laser beam
TW201807835A (en) Solar battery and method of manufacturing solar battery
JPH11298019A (en) Solar battery and manufacture of the solar battery
JP2005175399A (en) Photovoltaic cell manufacturing method and photovoltaic cell
JP2000164901A (en) Solar battery
JP3964123B2 (en) Manufacturing method of solar cell
JPH1012901A (en) Method and device for removing short-circuiting part of solar battery
TWI668878B (en) Solar cell and method for manufacturing solar cell
JPH11204816A (en) Manufacture of semiconductor thin film photoelectric converter
JP4519089B2 (en) Solar cell, solar cell string and solar cell module
TW423166B (en) Photodiode with the emitting surface and ohmic electrode located on different plane and its manufacturing method
JPS61199672A (en) Photovoltaic device
JPS6252927A (en) Method for forming electrode of thin film semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051026

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101118

Year of fee payment: 5

S202 Request for registration of non-exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R315201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101118

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111118

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111118

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121118

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131118

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131118

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term